
The Dogged Pursuit of Bug-Free C Programs:
The Frama-C Software Analysis Platform

Patrick Baudin1, François Bobot1, David Bühler1, Loïc Correnson1, Florent Kirchner1, Nikolai
Kosmatov2, André Maroneze1, Valentin Perrelle1, Virgile Prevosto1, Julien Signoles1, Nicky

Williams1
1Université Paris-Saclay, CEA, List, Software Safety and Security Lab, Palaiseau, France

2Thales Research and Technology, Palaiseau, France

ABSTRACT
The C programming language remains popular for system-level
programming and embedded code in many critical domains, where
the consequences of errors can be extremely costly or even dra-
matic. Verification and validation of such programs is crucial to
make the software-dependent services reliable and secure. This
paper presents a panorama of Frama-C, a popular platform for C
program analysis and verification. It relies on a careful architectural
design, in which different analyzers rely on a common kernel and
share a common specification language. The key success factors of
the platform are the soundness of its tools, a wide range of avail-
able analyzers and a rich ecosystem. This overview presents the
main design choices of the platform, its basic analyzers, and their
advanced uses for a large set of software verification tasks.
ACM Reference Format:
Patrick Baudin1, François Bobot1, David Bühler1, Loïc Correnson1, Florent
Kirchner1, Nikolai Kosmatov2, André Maroneze1, Valentin Perrelle1, Virgile
Prevosto1, Julien Signoles1, Nicky Williams1. 2019. The Dogged Pursuit
of Bug-Free C Programs:, The Frama-C Software Analysis Platform. In
Proceedings of Commun. ACM (CACM). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The C programming language is a cornerstone of computer science.
Designed by Ritchie and Thompson at Bell Labs as a key element of
Unix engineering, it was rapidly adopted by system-level program-
mers for its portability, efficiency, and relative ease of use compared
to assembly languages. It remains today, nearly 50 years after its
creation, still widely used in software engineering.

ButC is a hard language to wield. Its native design choices giving
a large freedom to the developer—the same that gave its popularity—
clash with the requirements of modern development practices such
as strong typing, encapsulation, or genericity. Given its ubiquity
in software engineering, this has had noticeable safety and, more
recently, cybersecurity impacts. The use of verification techniques,
and in the case of systems with high-confidence requirements,
formal methods, can address these shortcomings.

Indeed, formal methods is a set of techniques based on logic,
mathematics, and theoretical computer science which are used for
specifying, developing and verifying software and hardware sys-
tems. By relying on solid theoretical foundations, formal methods is
able to provide strong guarantees about those systems. In particular,
program analysis techniques focus on the program code after it has

CACM, 2019, City
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

been written or even compiled. Such techniques are called sound if
their results are correct with respect to the behavior of the program
under analysis.

Unfortunately, implementing such techniques for C programs is
hard. Indeed, the same issues that make C programming very error-
prone also tend to complicate the task for formal-methods based
analyzers. It is very easy to write an illegal programwhose behavior
is undefined by the C standard: it can for instance provoke a crash,
or sometimes silently corrupt memory and lead to arbitrary results.
Examples of such behaviors include division by 0, illegal memory
access and reading uninitialized variables. In particular, the fact that
C allows a direct access, through casts and pointer arithmetic, to
the sequence of bytes that contain the concrete representation of an
object in memory is a major impediment to any attempt to reason
on these objects at a more abstract level. Yet, many functions from
the C standard library, starting with memcpy for copying an object to
another location in memory, will trigger such low-level accesses,
not to mention their presence in many parts of user-defined code.

Frama-C [26] is a C code analysis platform that attempts to tackle
this complex issue. It is developed at CEA List with a few key ideas
at its core. First and foremost, it acknowledges the fact that there is
no silver bullet in software verification, in the sense that no single
technique will ever be able to succeed in assessing all properties a
user can be interested in. Thus, the platform should foster collabo-
rations between various techniques, by letting individual analyzers
exchange information about the properties they can handle as well
as the hypotheses they make along the analysis (in the hope that
another analyzer may be able to validate them). In a similar manner,
the platform was meant to be easily extensible, in particular, by
third-party developers. This is also reflected by the choice of the
LGPL license for open-source releases of the tool, which allows the
development of proprietary plug-ins as long as any change made
to the core platform is contributed back. Finally, Frama-C is meant
to be usable by software engineers that are not necessarily experts
in formal methods. This implies providing as much automation as
possible, as well as assessing the performances of the platform on
real-world case studies. The purpose of this paper is to provide a
panorama of the platform, its key design choices and its uses.

Since its first public release in 2008, Frama-C has been con-
tinuously evolving. An active R&D is conducted to bring well-
established program analysis techniques (such as abstract interpre-
tation or weakest precondition calculus) to the level of industrial-
strength tools. In parallel, novel techniques are developed for spe-
cific analysis tasks, for example, for specification and verification of
specific kinds of properties coming into focus with the increasing

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CACM, 2019, City P. Baudin et al.

Plug-ins

verificationWp

Eva

E-ACSL PathCrawler

Dedicated

CaFE
Mthread

LTest

expressiveness

Clang
JCard

Aoraï

Rpp

Rte

Conc2Seq

MetACSL

SecureFlow

Variadic

Volatile

simplification

Constfold

SecuritySlicingSlicing

Sparecode

understanding

Metrics
Nonterm

Callgraph & Users

Occurrence

From & InOut

Impact
Scope

support

Before

Cfp

Synthesis

Pilat

AfterCounter-Examples

StaDy

Report

plug-in distributed within Frama-C external plug-in close source plug-in

Figure 1: Frama-C plug-in gallery.

complexity of modern software, or enhancing existing techniques
with new approaches. This paper illustrates efforts of both kinds.

2 OVERVIEW OF THE PLATFORM
Frama-C allows users to analyze a given C program, better un-
derstand (or even simplify) it and assess properties about it. The
user can for instance explore the program structure and compute
some metrics on it. Program properties can be explicitly expressed
as annotations written in the formal specification language ACSL
(described below). They can be validated by partial, dynamic verifi-
cation or formally verified by rigorous, static verification.

Frama-C is not a single tool, but a framework that groups to-
gether several tools. Each tool is provided as a plug-in. The latest
open-source release, Frama-C 21-Scandium contains 27 plug-ins.
Frama-C offers an extensible and collaborative setting: anyone can
develop and provide new plug-ins, and the plug-ins can collaborate
with each other in different ways.

2.1 Different Plug-ins for Different Analyses
Figure 1 shows a selection of Frama-C plug-ins.Verification plug-
ins are the most important ones. The value analysis plug-in Eva
focuses on detecting undefined behaviors (often called runtime er-
rors) and tries to prove their absence. For example, for the code
if(*p<0) *p = -(*p); where p is of type int*, it has to check that: (i)
reading and writing *p is safe, and (ii) -(*p) does not overflow, that
is, *p≠−231, because the type int (over 32 bits) can only express
values −231 ...(231 − 1). For a division, it has to check that the de-
nominator is not 0. Eva does not require additional annotations:
potential runtime errors can be deduced from the code.

On the contrary, proving program-specific, functional properties
requires first to specify them as ACSL annotations. For the previous
example, such annotations can state that it computes the absolute
value of *p. Then such properties can be proved using the deductive
verification plug-inWp. It can also require additional proof-guiding
annotations or even a user-guided, interactive proof.

Sometimes, when such properties are not (yet) proved, the user
can automatically verify them at runtime for a given execution

using E-ACSL. The user can also automatically generate test inputs
and check for these inputs that the program behaves as expected
using PathCrawler. A few other plug-ins are specialized, such as
CaFE for temporal properties,MThread for concurrency properties
and LTest for test automation.

Several plug-ins are aimed at supporting the verification pro-
cess, either before or after the run of verification plug-ins. Cfp [1]
prepares the analysis with Eva for a given library function speci-
fied with an ACSL contract by inferring a suitable analysis context.
Synthesis automatically generates a function body implementing a
given function contract. Pilat [16] infers necessary proof-guiding
annotations for loops (as polynomial loop invariants) for a proof
withWp. In case of a proof failure, StaDy. and Counter-Examples
aim at generating a counter-example. Report summarizes what has
been (or not yet) verified.

Other plug-ins help verification engineers to better understand
the analyzed code: From, InOut, Impact, Scope, and Occurrence
detail dependency and scope information related to memory lo-
cations. Callgraph and Users provide information about function
calls, while Nonterm warns about non-terminating code.Metrics
provides some code metrics.

A few plug-ins are program transformers that simplify the
analyzed code. Constfold performs constant propagation, while
Slicing removes pieces of code that are irrelevant with respect to
a specific criterion. Sparecode and SecuritySlicing [32] perform
specialized simplifications, removing non-executable, dead code or
code irrelevant for confidentiality/integrity properties.

Last but not least, several plug-ins extend the expressiveness
of other analyzers. Frama-Clang and JCard target C++ and Java-
Card code, Volatile and Variadic specifically deal with volatile
memory locations and variadic functions, while RTE, Aoraï, RPP,
MetACSL, Conc2Seq, and SecureFlow automatically generate ACSL
properties from higher-level or implicit specifications.

2.2 Plug-in Collaboration
No program analysis technique is perfect by nature: many program
analysis problems are undecidable. In other words, it is impossible
to create a tool capable to solve them for all programs. However,
some approaches and tools are more efficient for particular kinds
of properties or programs than others. To take benefit from the
strengths of different tools, Frama-C promotes analyzer collabora-
tion. It can be used to decompose verification work and comes in
two different flavors: sequential and parallel.

Sequential collaboration consists in using the result of an
analyzer as input to another one. It can also consist in generating
annotated C code that encodes a verification problem in such a way
that it can be understood by another analyzer. Such collaborations
are allowed by the plug-ins in support and expressiveness categories
of Fig. 1. Several examples are provided below.

Parallel collaboration consists in using several analyzers to
verify program properties, each analyzer verifying a subset of prop-
erties. For instance, absence of undefined behaviors can be verified
by Eva, while functional properties can be proved byWp. Eventu-
ally, the few remaining properties may be checked at runtime by
E-ACSL. Frama-C ensures the consistency of partial results emitted

The Dogged Pursuit of Bug-Free C Programs: Frama-C CACM, 2019, City

by the analyzers, and summarizes what has been verified and what
remains to be [14].

2.3 Platform Architecture
Frama-C plug-ins are based on a kernel that provides key services
to both end-users and plug-in developers. The kernel contains
three main components: (1) basic services (such as program pars-
ing) that build a normalized representation (called Abstract Syntax
Tree, or AST) of the analyzed program, (2) specialized services
(e.g. exploring and manipulating the program AST including ACSL
annotations) for code analyses and (3) general-purpose libraries.
Altogether, they provide a large API, providing useful services to
analyzers and facilitating plug-in development. This makes it possi-
ble to develop, within a few days, a brand-new prototype analyzer
supporting most C constructs.

3 ACSL SPECIFICATION LANGUAGE
For specifyingC code, Frama-C offersACSL, the ANSI/ISOC Specifi-
cation Language1. ACSL clauses (annotations) are written in special
comments //@... or /*@... */. While ACSL is a fairly rich language,
we give in this paper only a very brief description. Interested readers
can refer to existing tutorials2 for an in-depth presentation.

As we mentioned above, Frama-C can be used to check that
no input leads to a runtime error (RTE) in a given program. Such
checks can be generated by the RTE plug-in as ACSL assertions,
for verification by other plug-ins (Eva,Wp, or E-ACSL). An ACSL
assertion (assert clause) can be put anywhere in the code to indicate
that a property must hold at this particular point. For the code
example if(*p<0) *p = -(*p); we considered above, RTE generates
the following (simplified) assertions:
//@ assert \valid(p);
if(*p < 0){

//@ assert *p>INT_MIN;

*p = - (*p);

}

These assertions indicate precisely the required properties: (i) pointer
p is valid, that is, *p can be safely read/written, and (ii) *p should
be greater than the minimal value of type int. Lines 13–14 of Fig. 4
show an assertion to prevent a division by 0.

Obviously, such properties only ensure the absence of undefined
behaviors. They do not mean that the program behaves as intended.
In order to verify its functional properties—the intended behavior—
it is necessary to have a precise, formal description of what this
intended behavior is. Such a description can also be expressed in
ACSL.

A key ingredient of ACSL is the notion of function contract, which
can be traced back to Eiffel and Meyer’s Design by Contract [31].
Basically, a (function) contract defines some constraints on the
state in which the function might be called (the precondition), and
in exchange provides some guarantees about the state in which it
returns control to its caller (the postcondition). It is also important
to define which parts of the state (i.e. which variables or memory
locations) can be modified during the execution of the function (the

1https://github.com/acsl-language/acsl/releases/tag/1.14
2https://github.com/fraunhoferfokus/acsl-by-example/raw/master/
ACSL-by-Example.pdf, https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

1 /*@ requires \valid(p);
2 requires *p > INT_MIN;

3 assigns *p;

4 ensures (\old(*p) ≥ 0 ⇒ *p == \old(*p)) ∧
5 (\old(*p) < 0 ⇒ *p == -\old(*p));

6 */

7 void pabs(int *p){

8 if (*p < 0)

9 *p = -(*p);

10 }

Figure 2: Example of ACSL function contract.
1 int i = 0, j = 10, k = 12;

2 /*@ loop invariant 0 ≤ i ≤ 10;

3 loop invariant i+j == 10;

4 loop assigns i,j;

5 */

6 while (i < 10) { i++; j--; }

7 //@ assert j == 0;

8 //@ assert k == 12;

Figure 3: Example of ACSL loop contract.

frame rule). Thanks to it, the caller knows that everything that is
not in the frame is left untouched.

Figure 2 shows a possible contract for a simple function with
the considered conditional statement. The requires clauses express
the precondition (lines 1–2), denoted Prepabs. It states that function
pabs expects to be called with an argument p that is a valid pointer,
and the pointed value is greater than the minimal value of type int.
This precondition guarantees the absence of runtime errors in the
function. The ensures clause (lines 4–5) expresses the postcondition
Postpabs, which states that the resulting value of *p is the absolute
value of its initial (old) value. Furthermore, pabs is supposed to
modify only *p, as indicated by the assigns clause on line 3.

Another important ingredient of ACSL is a loop contract. Placed
in front of a loop, it contains clauses providing additional informa-
tion to reason about the loop behavior. It includes a loop invariant
stating properties that hold when entering the loop for the first
time and are preserved after each loop step. Hence, by induction,
they also hold at the end of the loop, regardless of the number of
steps. As for functions, loops also have frame rules, introduced by
loop assigns. Figure 3 illustrates these annotations (see lines 2–4) on
a very simple loop manipulating i and j together in order to keep
their sum constant, while leaving variable k untouched. Lines 7–8
contain two assertions that hold after the loop. We will illustrate
below how loop contracts help to reason for programs with loops.

ACSL uses first-order logic formulas, with integer and real arith-
metic. Unlike the bounded C types, ACSL’s integer and real types
are unbounded. In particular, this makes it easier to write anno-
tations stating the absence of arithmetic overflow. For instance,
assuming x and y are C variables of type int (hence also their sum),
the following assertion will guarantee that their sum can be safely
computed in C, without triggering an overflow:

1 /*@ assert INT_MIN ≤ x+y ≤ INT_MAX; */

Finally, ACSL features several built-in predicates for stating prop-
erties over the pointers manipulated by the program.

4 CORE ANALYSES OF THE PLATFORM
This section introduces the four core Frama-C plug-ins, namely
Eva that focuses on detecting undefined behaviors,Wp that aims

https://github.com/acsl-language/acsl/releases/tag/1.14
https://github.com/fraunhoferfokus/acsl-by-example/raw/master/ACSL-by-Example.pdf
https://github.com/fraunhoferfokus/acsl-by-example/raw/master/ACSL-by-Example.pdf
https://allan-blanchard.fr/publis/frama-c-wp-tutorial-en.pdf

CACM, 2019, City P. Baudin et al.

1 int x, y, sum , res;

2 // 𝐷2
x =𝐷

2
y =𝐷

2
sum =𝐷2

res = {Uninit}
3 if(getchar ()=='*'){
4 x = 0; y = 0;

5 // 𝐷5
x = {0}, 𝐷5

y = {0}
6 }else{
7 x = 1; y = 1;

8 // 𝐷8
x = {1}, 𝐷8

y = {1}
9 }

10 // 𝐷10
x = {0, 1}, 𝐷10

y = {0, 1}
11 sum = x + y;

12 // 𝐷12
sum = {0, 1, 2}

13 //@ assert sum ≠ 0;

14 res = 10/sum;

1 int x, y, sum , res;

2 // 𝐷2
x =𝐷

2
y =𝐷

2
sum =𝐷2

res = {Uninit}
3 if(getchar ()=='*'){
4 x = 0; y = 1;

5 // 𝐷5
x = {0}, 𝐷5

y = {1}
6 }else{
7 x = 1; y = 0;

8 // 𝐷8
x = {1}, 𝐷8

y = {0}
9 }

10 // 𝐷10
x = {0, 1}, 𝐷10

y = {0, 1}
11 sum = x + y;

12 // 𝐷12
sum = {0, 1, 2}

13 //@ assert sum ≠ 0;

14 res = 10/sum;

Figure 4: Eva illustrated on two toy examples, (a) and (b).

at proving functional properties, E-ACSL that checks properties at
runtime, and PathCrawler that generates test cases.

4.1 Chasing Undefined Behaviors with Eva
The Eva plug-in provides a configurable and automatic analysis of
the whole program, intended to prove the absence of undefined
behaviors. This term refers to instructions for which the C standard
imposes no requirements, leading to crashes and more generally
unpredictable execution flow. They can in particular result in se-
curity vulnerabilities and attackers frequently exploit such illegal
instructions in order to steal data or execute malware. Eva detects
most undefined behaviors, such as invalid memory accesses, unini-
tialized memory reads, divisions by zero, signed integer overflows,
undefined bit shifts and invalid pointer comparisons. It can also
treat as erroneous some behaviors that are allowed by the stan-
dard but often unwanted by developers, such as unsigned integer
overflows or exceptional floating-point values (e.g. infinities).

Eva is based on a technique called abstract interpretation. The
goal of the analysis is to compute a set of possible values for each
variable at each program point. Since computing these sets pre-
cisely is undecidable (as we explained in the Plug-In Collaboration
section), Eva uses abstractions to over-approximate them. For in-
stance, if the set of values 𝐷𝑙

𝑣 of a variable 𝑣 at program point 𝑙 is
{1, 3, 5, . . . , 97, 99}, it can be approximated as the integer interval
[1, 99]. If 𝑣 takes value 𝑣0 at point 𝑙 for some execution, 𝑣0 will
necessary belong to the approximated set 𝐷𝑙

𝑣 . The contrary is not
true: the set 𝐷𝑙

𝑣 can contain values that 𝑣 never takes at point 𝑙
in practice. Thus, the computed abstractions build a sound over-
approximation of all possible behaviors. As a consequence, Eva is
sound: its analysis is exhaustive and reports all undefined behaviors
that could happen in an execution of a program.

Let us illustrate how Eva analyzes the toy example of Fig. 4a, that
gives the body of function main. It expects the user to type a character
(cf. line 3). In the majority of cases, the else branch is activated and
the program executes without errors. But if the user types ’*’, the
program executes the then branch and tries to divide by 0 on line
14. We use line numbers to refer to program points 𝑙 . At line 2, the
sets of values computed by Eva (shown in comments on line 2) for
the four variables contain only the special “Uninitialized” value.
After the assignements of line 4 (resp., 7), the new domains of x and
y are shown on line 5 (resp., 8), the others being unchanged. On line
10, the domains coming from both branches are merged. Therefore,

the computed over-approximated set of values for sum on line 12
is 𝐷12

sum = {0, 1, 2}, even if the value 1 is not possible in practice.
Since 0 ∈ 𝐷12

sum, the assertion on line 13 cannot be proved, and Eva
reports a potential division by 0. This is a true alarm: the division
by 0 can happen, and Eva detects it. Other runtime errors can be
detected similarly. For instance, if the assignment of y is removed
on line 4, Eva computes 𝐷5

y = {Uninit} and 𝐷10
y = {Uninit, 1}, and

reports an alarm for reading an unitialized variable on line 11.
Approximations often lead to false alarms: correct code can also

be flagged as a potential error. It can be seen on the example of
Fig. 4b, where the computed over-approximated set of values for
sum on line 12 is again 𝐷12

sum = {0, 1, 2}, while only value 1 occurs
in practice. Based on this over-approximated set, Eva cannot prove
the assertion on line 13 and reports a potential division by 0 while
it can never happen: this is a false alarm. To avoid it, the user can
use trace partitioning, i.e. make the analysis consider both paths
separately to make the analysis more precise. Eva will continue the
analysis of both branches without merging their values on line 10:
in both cases (with 𝐷10

x = {0}, 𝐷10
y = {1} and 𝐷10

x = {1}, 𝐷10
y = {0})

Eva will compute 𝐷12
sum = {1} and prove the absence of the error.

To limit the burden of false alarms while maintaining a reason-
able analysis time, a balance must be reached between precision and
efficiency. Typically, Eva is used in an iterative process where the
analyst uses the result of one analysis run to finely tweak the next
one, by configuring the abstractions and partitioning. To make com-
plex settings easily accessible for non-expert users, Eva provides a
meta-option -eva-precision N, with N between 0 and 11, which
conveniently adjusts a dozen of underlying options (including trace
partitioning [30]). Any N ≥ 1 avoids the false alarm for Fig. 4b.

Eva provides various means of expressing abstractions (called
abstract domains) that can be enabled and tuned on a case-by-case
basis. The default abstract domain represents integer values as small
discrete sets or intervals with a linear congruence information,
floating-point values as intervals following the IEEE 754 standard,
and pointers as possible offsets for each potential base address. It
accurately represents arrays, structures and unions. Various ad-
ditional domains (such as gauges [39], numerors [25], numerical
domains provided by Apron3) bring more expressiveness but slow
down the analysis.

Studying the results. The main output of Eva is an exhaustive
list of potential undefined behaviors, or alarms, expressed as ACSL
assertions. Each alarm should be reviewed to determine if it reveals
a real bug or is a false alarm caused by the analysis approximations.
False alarms might be disproved by other Frama-C plug-ins. It is
possible to inspect (cf. Fig. 5), at each program point and for each
call stack, the values computed for each variable and expression.

Eva is tightly integrated with other tools of the platform provid-
ing to them detailed information about its results. These results
are used by many other plug-ins. Notably, Studia highlights all
statements reading or writing a given memory location, allow-
ing the user to jump between the sink of a bug (where it can be
observed) and its source (the actual culprit). InOut computes the
memory zones read and written by a function, summarizing its

3http://apron.cri.ensmp.fr/library/

http://apron.cri.ensmp.fr/library/

The Dogged Pursuit of Bug-Free C Programs: Frama-C CACM, 2019, City

Figure 5: Frama-C graphical interface allows any C expres-
sion to be inspected for its possible runtime values, as com-
puted by Eva. Pointers, structured and scalar values are ex-
pressed in a concise but precise notation. Each callstack is
separated, with filtering and grouping capabilities.

1 int x=-42, y=36;

2 int *q=&x;

3 // Prepabs holds

4 pabs(q);

5 //@ assert x==42;

6 //@ assert y==36;

1 int x=INT_MIN;

2 int *q=&x;

3 // Value of *q

4 // is INT_MIN.

5 // Prepabs fails

6 pabs(q);

1 int a[2]={ -42 ,0};

2 int *q=&a[0];

3 // Pointer q+2

4 // is invalid.

5 // Prepabs fails

6 pabs(q+2);

Figure 6:Wp illustrated on toy examples, (a), (b) and (c).

dependencies. Finally,Metrics estimates the analysis code coverage
and reports the statements proven unreachable by Eva.

Usage. Eva handles the subset of C99 commonly used in em-
bedded software. Dynamic allocation is supported, but often leads
to imprecise results. The analysis is fully context-sensitive: func-
tion calls are inlined, and recursive functions are not supported.
Eva has been highly optimized for years to achieve scalability on
large programs, and has already been successfully applied to verify
safety-critical codes, especially in the nuclear industry [33].

4.2 Proving Functional Properties with Wp
Deductive verification aims at proving that functional properties of
a program hold in all cases. It is usually performed in a modular
way, function by function, where the caller’s proof can rely on the
callee’s contract, proved separately. The Wp plug-in is a modern
and effective implementation of this approach for C and ACSL.

Let us illustrate this approach on the code of Fig. 6a (say, giving
the body of function main) that calls the function of Fig. 2. After
line 2 of Fig. 6a, pointer q refers to x, thus x and *q are aliases. On
this code,Wp deduces the first assertion from the value −42 of *q
before the call and the postcondition of pabs (cf. lines 4–5 in Fig. 2).
Since other variables cannot be modified by the call of pabs (cf. line
3 in Fig. 2), Wp also proves the second assertion of Fig. 6a.

However, a call to a function guarantees to ensure its postcon-
dition after the call only if its precondition is respected before the
call. Thus, Wp must check that the precondition of pabs (cf. lines

1–2 in Fig. 2) is respected before the call: here, indeed, pointer q is
valid and the pointed value is not INT_MIN. The precondition cannot
be proved for the code of Fig. 6b, where the pointed value is INT_MIN.
Its proof also fails for the code of Fig. 6c, where q refers to the first
cell of an array of two integers, hence q+2 is invalid: dereferencing
it would be an out-of-bound access (i.e. an undefined behavior).

In the modular approach, the function contract of the callee must
be proved separately. For the code of Fig. 2,Wp successfully proves
that the implementation of pabs respects its contract.

Deductive verification for programs with loops usually relies on
loop contracts that must be specified by the user. To illustrate it on
a toy example, consider the code of Fig. 3. For the loop contract,
Wp must verify that the loop invariant is indeed true before the
loop and is preserved by each new loop iteration, and that the loop
frame rule is indeed true. Thanks to the loop invariant, at line 7Wp
knows that 0 ≤ 𝑖 ≤ 10, 𝑖 + 𝑗 = 10, and since the execution exited
the loop, 𝑖 ≥ 10. From these conditions, it deduces that 𝑖 = 10 and
therefore 𝑗 = 0, that proves the assertion on line 7. The assertion
on line 8 is deduced from the frame rule (line 4) since the value of
𝑘 cannot be changed by the loop.

To perform deductive verification, Wp relies on Hoare Logic and
Weakest Precondition Calculus. At a high level,Wp compiles C code
and ACSL contracts into mathematical theorems (called verification
conditions and expressed as first-order logic formulas) that provide
sufficient conditions to entail the validity of the expected functional
properties. These theorems use various mathematical theories (in-
cluding integer and real arithmetics, anonymous functions, arrays
and records). They are then sent to automated theorem provers (or
SMT solvers, like Alt-Ergo, Z3 or CVC4) to be checked for validity.
Alternatively, one can also use a proof assistant like Coq.

Naive implementations ofweakest precondition calculus are known
to have exponential cost and cannot be used on complex programs.
Moreover, modelling the semantics of C memory access with alias-
ing and low-level encoding of data is known to be a challenge for
automated reasoning.Wp has been developed since 2008 with an
industrial target in mind, and benefits from well-known modern
techniques to make it efficient.

Wp implements a generic backward calculus engine to produce
verification conditions by weakest precondition calculus [28]. It is
parameterized by a memory model, defining a specific representa-
tion of memory locations in the resulting verification conditions.
Wp features various memory models which combine known tech-
niques [22] to propose different balancing between efficiency and
expressiveness, and some heuristics to select which model(s) to
apply on a given program.

Wp offers several backends for discharging the generated verifi-
cation conditions with automated SMT solvers and proof assistants,
either natively or via theWhy3 [21] platform. The complexity of
the generated verification conditions is dramatically reduced by
Qed [13], a generic and extensible simplification engine of Wp,
helping to discharge some corner cases of theories that are still
issues for mainstream SMT solvers. Finally, Wp features an exten-
sible proof tactic engine to interactively split complex proofs into
smaller ones, possibly executing custom decision procedures.

Altogether, these features make Wp an efficient implementation
of deductive verification to prove functional properties of C/ACSL
programs. A recent industrial use-case in avionics [9] reports that

CACM, 2019, City P. Baudin et al.

98.5% of the 3315 C functions were proved by Wp, where only 2.3%
functions required the interactive termination of some proofs.

4.3 Checking Properties at Runtime with
E-ACSL

Runtime assertion checking is the process of verifying specifications
(historically, assertions) at runtime, i.e. when the program is being
executed. It was popularized by the programming language Eiffel
in the late 1980s to support defensive programming. At the turn
of the millennium, this approach was adopted by dedicated formal
specification languages for mainstream programming languages
like JML for Java or Spec# for C#.

In the context of C and Frama-C, ACSLwould be the language of
choice for runtime assertion checking. However, being primarily de-
signed for deductive verification, it needed adjustments for runtime
checking. In addition, verifying expressive properties at runtime
for a language like C in a sound and efficient way is challenging
and requires original solutions.

4.3.1 Specification Language Adjustments. As explained above,
ACSL is based on mathematical logic. In particular, it contains
several constructs that have no computational meaning, such as
lemmas and axioms, or unbounded quantifications. Therefore, they
were removed from the executable subset of ACSL dedicated to
runtime assertion checking: the E-ACSL specification language4.

Another important issue of ACSL with respect to runtime check-
ing is its logic-based semantics that assigns a (possibly unspecified)
value to each construct. For instance, the predicate 0/0 ≡ 0/0 is
necessarily true in ACSL by reflexivity of equality. This semantics
helps formal reasoning made by the Wp plug-in and associated
provers. However, it is problematic at runtime since terms like 0/0
cannot be safely executed. Consequently, E-ACSL considers that the
semantics of such terms is actually undefined (relying on Chalin’s
strong validity principle [11] and three-valued logic). Undefined
terms and predicates must never be executed.

4.3.2 Compiling Formal Properties into Executable Code. Compil-
ing E-ACSL annotations into C code is the purpose of the E-ACSL
plug-in [38] of Frama-C. The instrumented code it produces checks
the annotations at runtime and reports failures. For instance, using
the E-ACSL plug-in to check at runtime the code of Fig. 6a con-
firms that the annotations (including the assertions, the pre- and
postcondition of pabs) are verified, while for Fig. 6b,c the failing
preconditions are detected and reported to the user.

At a first glance, the compilation process may look quite easy. For
instance, the E-ACSL assertion /*@ assert z ≠ 0;*/ is compiled to
the C assertion assert(z ≠ 0);. However, in general it is not always
so simple to generate both sound and efficient code, as shown below
on two illustrative cases.

Arithmetic. For the E-ACSL assertion /*@ assert x+1 ≤ INT_MAX;*/,
it would be unsound to generate the C code assert(x+1 ≤ INT_MAX);

since at runtime x+1might overflow, while in the ACSL specification,
as we explained above, it is computed over (unbounded) mathe-
matical integers. Consequently, E-ACSL generates specific code5

4http://frama-c.com/download/e-acsl/e-acsl.pdf
5based on GNU multiple precision library, https://gmplib.org/

Figure 7: Results of a test generation session with PathCraw-
ler-online illustrating condition coverage of the generated
test cases. Failed test cases are shown in red. For each test
case, its inputs, outputs and the activated path can be in-
spected. Any gaps in the coverage of the function are also
explained.

to perform the computations precisely and to remain sound. To re-
main efficient, it still generates (more efficient) machine arithmetic
based code when it is sound to do so. For instance, assuming that
the type of x is int on a standard 64-bit architecture, the previous
assertion is compiled to assert((long)x+1L ≤ (long)INT_MAX); to exe-
cute the addition and comparison without overflow over the larger
C type long.

Memory Properties. An important feature of the specification lan-
guage are memory properties such as \valid(p). In order to soundly
and efficiently evaluate such properties, memory-related operations
(allocations, deallocations and assignments) in the original code
that are relevant for the memory properties of interest are recorded
in a dedicated datastructure.

4.4 Generating Test Cases with PathCrawler
Another dynamic analysis plug-in of Frama-C is PathCrawler [40].
Given a C program and a specific function in it, PathCrawler gen-
erates unit test cases for this function. Basically, it explores (a sub-
set) of program paths and tries to generate test inputs for each
of them. PathCrawler follows the so-called concolic test genera-
tion technique (also called Dynamic Symbolic Execution) since it
combines symbolic execution of the program with a usual (concrete,
i.e. non symbolic) execution of the compiled code. Symbolic exe-
cution represents the execution of a program path symbolically,
with undetermined values of program inputs. It relies on the path
predicate defining the values of the input variables that activate
the chosen path. To find a set of concrete values satisfying the path
predicate, i.e. test inputs for the path, PathCrawler relies on the
Colibri constraint solver, also developed at CEA List. A concrete
execution of the generated test on an instrumented version of the
program is used to confirm the executed path and to optimize the
test generation process.

To ensure that the test inputs are realistic, and avoid detecting
bugs which would never arise in legitimate function calls, the user
can provide a precondition limiting the admissible input values. If
the user also provides an oracle function, that compares the outputs

http://frama-c.com/download/e-acsl/e-acsl.pdf
https://gmplib.org/

The Dogged Pursuit of Bug-Free C Programs: Frama-C CACM, 2019, City

produced by the test with the expected behavior, then PathCrawler
will automatically report a pass or fail verdict for each test.

Since 2009, PathCrawler has an online version6 (see Fig. 7) that
allows the user to provide a C file (or choose one of the available
examples), generate test cases and explore the results.

5 TELL FRAMA-C WHAT YOUWANT TO
VERIFY

Together with the expressive power of ACSL specifications, the core
analyzers presented in the previous section allow the verification of
a very large class of properties about C programs. However, the bare
ACSL language makes it sometimes difficult to express other kinds
of properties. In that case, there exist various specialized plug-ins
dedicated to ease the task of writing the formal specification of a
property of interest.

In many cases, such a plug-in offers a dedicated Domain-Specific
Language (DSL) for writing the property and operates by instru-
menting the code under analysis with additional ACSL annotations
and/or C instructions so that the verification of standard ACSL an-
notations on the instrumented code with the core analyzers implies
that the original DSL formulas hold on the original code.

5.1 Verify Sequences of Events: Aoraï and CaFE
It is often necessary to verify that a set of events during a program
execution follow a particular order, for example:

a call to function send_private_data() must always be
preceded by a call to function authenticate() returning
0, without a call to function logout() in-between.

Such properties (often expressed in temporal logic [12]) can be
verified for any given execution using an automaton. In our exam-
ple, it consists of three states encoding the current status of the
execution: user non authenticated (initial state), user authenticated
(and not yet logged out), or error (i.e. private data sent without be-
ing authenticated). The transitions between states naturally follow
the observed function calls, except that the error state cannot be
left. The first two states are accepting (i.e., the property is respected
as long as the execution ends in one of them), while the last one
means the property fails for the given execution.

Two Frama-C plug-ins are dedicated to such properties. Ao-
raï [26], simply adds C variables representing the states, together
with the appropriate transition functions and ACSL annotations
ensuring we end up in an accepting state. Checking the validity of
these annotations is then left to one of the main analysis plug-ins
described in the previous section. A more recent plug-in, CaFE, can
handle additional properties including nested function calls. CaFE
is based on a refined version of classical temporal logic, CaRet [2],
and relies on model-checking techniques [12].

5.2 Verify Relational Properties: RPP
On the contrary to an ACSL contract, that specifies what is sup-
posed to happen during a single call to the corresponding function,
relational properties examine the relations that may exist between
several executions of either the same or different functions. An
interesting example of this class of properties is non-interference:

6http://pathcrawler-online.com/

1 int sec , pub;

2 void noleak (){

3 pub=pub +10;

4 sec=sec+pub; }

5 void leak(){

6 pub=pub+sec; }

1 int sec1 , pub1 , sec2 , pub2;

2 /*@ requires pub1==pub2;

3 ensures pub1==pub2; */

4 void wrapper_leak (){

5 pub1=pub1+sec1; /* 1st call */

6 pub2=pub2+sec2; /* 2nd call */ }

Figure 8: (a) A C code, and (b) RPP transformation for leak.

given a partition of the variables into public and private ones, one
wants to ensure that any two executions starting in states where
public variables have the same values always end up in states where
public variables have the same values. In other words, the public
result should not depend upon the values of private variables. Fig-
ure 8a illustrates a function noleak that respects this property: the
public variable pub does not depend on the secret variable sec. This
property is not true for function leak, where pub depends on sec.

RPP [8] is a Frama-C plug-in that offers an extension of ACSL
to formally specify relational properties (involving any number of
executions of any number of functions). RPP then uses a form of
self-composition [6] to generate a wrapper function (composing the
executions of the functions involved in the relational property) with
an ACSL contract such that its proof implies the relational property
for the original code. For instance, the wrapper of Fig. 8b simu-
lates two executions of leak with equal public values (line 2), but
this equality after these executions (line 3)—the non-interference—
cannot be proved: the public result depends on a secret variable.

An important benefit of RPP’s transformation is that it also
allows the use of a proven relational property as a hypothesis
in subsequent proofs, following the modularity of the standard
deductive verification approach.

5.3 Enforce Global Properties:MetACSL
It is often the case that one wants to enforce a given property
across the whole program. For instance, we may associate a confi-
dentiality level with each memory location and check that a read
access is never done from a location with a higher level than that
of the current user, and dually, a write is never performed into
a lower-level location. While these kinds of properties could in
theory be expressed with standard ACSL annotations, they would
spread everywhere in the program. In practice, it can be difficult to
write them all by hand without making a mistake and to convince
ourselves that the set of annotations is indeed complete.

The recently startedMetACSL plug-in [37] seeks to alleviate this
issue by automatically generating these ACSL annotations from a
single higher-level property expressed in a small DSL extending
ACSL to indicate the contexts in which the property must hold. It
has been tested over various examples to establish security proper-
ties (confidentiality and integrity) and is currently being assessed
over more realistic case studies.

5.4 Prove Concurrent Programs: Conc2Seq
While most of its plug-ins focus on sequential program analysis,
Frama-C also offers an experimental plug-in, called Conc2Seq, for
deductive verification of concurrent programs [7]. Similarly to the
CSec approach7, it performs a dedicated code transformation of a
given concurrent program into a sequential one, which simulates

7http://www.southampton.ac.uk/~gp1y10/cseq/cseq.html

http://pathcrawler-online.com/
http://www.southampton.ac.uk/~gp1y10/cseq/cseq.html

CACM, 2019, City P. Baudin et al.

concurrent executions of the code in several threads by interleav-
ing the executions of indivisible (atomic) blocks in various ways,
defined non-deterministically. Conc2Seq also automatically trans-
forms specifications of the initial program into specifications for
the resulting program. The variables of various threads are repre-
sented by arrays in the simulating program, so that the user can
add guiding annotations relating these variables between them to
help the proof. Thanks to this transformation, the Wp plug-in can
be used to verify the resulting sequential program. If the proof of
the annotations for it is successful, the initial concurrent program
respects its specification.

5.5 Specify Test Objectives: LAnnotate
Test objectives give another example of specific annotations that
can be added for analysis using Frama-C core plug-ins. Various
structural test coverage criteria (e.g. functions, statements, decisions
or branches, conditions, conditions-decisions) can be treated in a
unified way provided that the corresponding test objectives are
expressed in the code in the generic form of elementary coverage
targets. Such a coverage target, also called a label [4], is basically a
predicate inserted in a particular location. A label is covered by a test
when the execution of the test reaches this location and satisfies the
predicate. For a given test coverage criterion, the LAnnotate plug-
in [4] inserts the corresponding labels, and other plug-ins can be
used to reason about them. In particular, PathCrawler supports the
label coverage criterion (and therefore, all coverage criteria that can
be expressed using labels) and offers an efficient test generation for
labels. Other usages of labels will be discussed in the next section.

6 GO BEYOND RAW ANALYSES RESULTS
The previous section presented several analyses that apply core
plug-ins after a relatively lightweight adaptation (often, via instru-
mentation) of properties of interest into properties they can directly
handle. For more complex analysis problems, this is not sufficient:
the target properties can require an advanced code or specification
transformation or even a dedicated reasonning. Their analysis can
still rely on some of the core analyzers, but has to extend or adapt
them in a more significant way. We present here a few examples.

6.1 Counter-Examples for Unproven
Annotations: StaDy

Manual analysis of proof failures during deductive program veri-
fication can be a very complex and time-consuming task. Such a
failure can be due to an error in the code or in the specification
itself, a missing or too weak specification for a called function or
a loop, or lack of time or simply incapacity of the prover to finish
a particular proof. Using a combination of deductive verification
(with Wp) and test generation (with PathCrawler), the StaDy plug-
in [35] helps to classify proof failures into several categories and
provides a counter-example illustrating the issue. The translation
of ACSL annotations (preconditions, postconditions, etc.) into their
counterparts supported by test generation is not straigtforward.
For example, to support unbounded integers in ACSL annotations
during both concrete and symbolic execution, operations with un-
bounded integers are translated in two different ways: directly into
unbounded integers supported by the constraint solver for symbolic

execution, and using a dedicated library for execution of unbounded
integers for a concrete execution.

While StaDy was mainly designed for using withWp, it can also
be applied to alarms reported by Eva. Such alarms being reported
as unproven assertions, StaDy can be applied to generate counter-
examples for some of them (thus showing that they are not false
alarms) and facilitate the analysis of alarms by the verification
engineer. This is another illustration of the benefits of sharing the
same specification language between different analyzers.

6.2 Infeasible Test Objectives: LUncov
Section 5.5 illustrated how generic test objectives—or labels—allow
PathCrawler to support test-case generation for various test cov-
erage criteria. An important issue in testing is related to infeasible
(i.e. uncoverable) test objectives that cannot be covered by any test
case. Infeasible test objectives lead to an imprecise computation of
coverage for a given test suite, and a waste of resources for trying
to cover them. Detection of infeasible test objectives—which is in
general undecidable—is thus an important task in testing.

An efficient approach to identify infeasible test objectives is to
use static analysis. This is the purpose of the LUncov plug-in [4]
of Frama-C. It translates a label with predicate 𝑝 into an assertion
with the negated predicate ¬𝑝 at the same location. The label is
uncoverable if and only if the resulting assertion is always true.
LUncov implements various analysis techniques relying on value
analysis using Eva and weakest precondition calculus using Wp.
In particular, it provides an advanced combination of both tools,
where Eva is used to compute the domains of program variables
and then shares this information with Wp, to make it more precise.

6.3 Program Simplification: Slicing
Slicing is a program transformation technique that takes as input a
program and a so-called slicing criterion (e.g. to preserve the value
of a given variable at a given program point) and outputs a simpli-
fied C program that preserves the property defined by the slicing
criterion. The pieces of code necessary to ensure the preservation
property (or for a correct compilation) of the resulting program are
kept, while all other, irrelevant instructions are removed. Slicing
helps the end-user to focus on a particular point of interest. It also
facilitates other analyses by reducing the size of the code they must
deal with. The Frama-C slicing tool proposes numerous slicing
criteria including preserving read and written memory locations at
particular program points, function calls, return values, ACSL anno-
tations or statements. It soundly relies on Eva to compute aliasing
and dependency information. Therefore, it may over-approximate
its results by keeping pieces of code that are actually not relevant for
the selected criterion. However, it never removes anything relevant.

6.4 Information Flow: SecureFlow
Information flow properties denote properties of the dependencies
between the outputs and the inputs of the program. The most
common example is non-interference, presented above. It expresses
the absence of information leak. The SecureFlow plug-in [3] lets
the user annotate each declaration with a public or private attribute
and uses a dataflow analysis to verify the absence of information

The Dogged Pursuit of Bug-Free C Programs: Frama-C CACM, 2019, City

leak. It also relies on Eva’s results for determining which locations
(hence, with which confidentiality level) pointers might refer to.

7 MORE THAN A TOOLSET: AN ECOSYSTEM
7.1 Frama-C Community
Since its initial release in May 2008, Frama-Cmanaged to attract an
active community of users and plug-in developers. Its open-source
license (LGPL 2.1) played of course an important role in this devel-
opment, facilitating its integration into many Linux distributions
(the oldest package, from Debian, dating back to 2009 and Frama-C
3.0 Lithium), and into the main repository of the opam package
manager that handles software written in OCaml as is the case
of Frama-C. As of July 2020, opam reports around 200 monthly
downloads (via opam) of the latest release, Frama-C 21.1 Scandium,
that appeared in June 2020.

Naturally, these public releases are accompanied with various
communication channels8, including a mailing list, a bug tracker,
and a dedicated StackOverflow tag. Frama-C’s blog9 is also a good
way to inform users about what is going on in the platform.

An important part of Frama-C development is funded through
collaborative projects, mainly at French and European level. Apart
from CEA itself, these projects usually gather a mix of academic
and industrial partners in order to explore new research directions
while keeping sure that they are relevant to real-world problems.
Among these projects, we can in particular mention the French
RNTL project CAT and its successor U3CAT10, funded by ANR,
which were fundamental for building the grounding blocks of the
platform. Later on, European projects Stance and Vessedia help
broadening Frama-C’s target properties to cybersecurity.

7.2 Teaching with Frama-C
Frama-C is intensively used for teaching. It became difficult to keep
track of all universities where the toolset is used in various program
analysis or verification courses. In France, where the platform was
born and is developed, there are dozens of departments relying
on Frama-C for teaching every year. To give just a few examples,
Ecole Polytechnique, CentraleSupélec, École Normale Supérieure,
ENSIIE, almost all universities in and around Paris, but also in Be-
sançon, Bordeaux, Bourges, Grenoble, Lille, Lyon, Orléans, Rennes,
Toulouse, and many others. Frama-C is also increasingly used in
other countries. They include, for instance, Austria, Brazil, China,
Germany, Portugal, Russia, UK, USA. Among the analyzers of the
open-source distribution, most popular for teaching are probably
Eva,Wp and E-ACSL. PathCrawler is also actively used for teaching
thanks to its online version, PathCrawler-online, allowing the user
to explore advanced test generation results. Finally, Frama-C has
often been used for trainings in industrial companies and for tuto-
rials on program verification at premier international conferences
including ASE, FM, iFM, ISSRE, POPL, SAC, TAP, QSIC, etc.

7.3 Collaborations and Industrial Applications
Long-time partnerships started around Frama-C’s precursorCaveat,
which was developed in the 1990s in close collaboration with the
8see https://frama-c.com/support.html
9https://blog.frama-c.com
10https://frama-c.com/u3cat.html

teams at Airbus, and leveraging automated reasoning capabilities
from Inria’s Alt-Ergo solver.

As Caveat went into industrial production, the development
around Frama-C continued these collaborations and engaged them
in assisting design decisions. Notably, this took the form of a domain
specific language for low-level specifications that compiles into
ACSL for deductive verification with Wp, or into a system similar
to E-ACSL for runtime verification. This system, called NWOW [9],
has been deployed at large scale for the development of onboard
critical software, and will be extended to other applications.

Other partnerships started, mid-2000s, with Électricité de France
(EDF) and Areva for energy production systems. In particular, EDF
reported [33] that Frama-C’s Value analysis plug-in (predecessor
of Eva) improved the analysis of a 39 kLoC nuclear power plant
shutdown system, allowing the demonstration of the absence of
intrinsic run-time errors. After some experimentation with different
tools, Frama-C was chosen to analyze the code. Today, an ongoing
collaboration with EDF focuses on the analysis of larger code bases.
R&D efforts between EDF, Framatome and CEA study further usage
of Frama-C for other safety-critical software.

Frama-C has also been used for verifying software in other indus-
trial domains, notably by Fraunhofer FOKUS [36] and Mitsubishi
for rail and Brazil’s TIA for space applications [18]. The 2010s saw
a broadening of this base, and an extension from safety-critical
software into cybersecurity. The capabilities of Frama-C were put
to use by NASA in air traffic management [24], SRI International
in gamified cybersecurity [20], Bureau Veritas in marine and off-
shore [27], and Thales and ANSSI in communication systems [19].

Test generation with PathCrawler was recently evaluated by
MERCE (Mitsubishi Electric R&D Centre Europe). After developing
additional tooling around PathCrawler, MERCE evaluated auto-
matic test generation over industrial code of about 80,000 lines. In
this experiment, 86% of functions were successfully covered in 8
hours. MERCE estimated that automatic test generation with Path-
Crawler could bring an effective benefit factor of more that 230 for
test input generation in the company. Those very good results are
very encouraging for an adoption of the technology in the business
units [5].

Beyond applications, the extensibility of the platform also al-
lowed tool developers to abstract from the groundwork of code
parsing and data structure design, and to focus on new types of ver-
ification. Early on, Inria experimented with deductive verification
in the Jessie plug-in, later on extended and adapted by ISPRAS in
AstraVer [29]. Adelard investigated lightweight concurrency, while
teams at Atos implemented dataflow conformity capabilities [15]
and prototyped IDE integrations. The field of cybersecurity also
proved fertile in academic developments, giving rise to the Stac
plug-in from Verimag [10] or the Celia plug-in from Université
Paris Diderot [17]. Finally, the mid-2010s modernization brought
about with the Eva plug-in allowed for another level of extensibility,
at the level of its abstract domains. This was quickly adopted to in-
terface with developments in this field from Verimag, including the
Apron domain library and the VPL verified polyhedron library [23].

https://frama-c.com/support.html
https://blog.frama-c.com
https://frama-c.com/u3cat.html

CACM, 2019, City P. Baudin et al.

Similarly, in the context of European projects Stance11 (FP7)
and Vessedia12 (H2020), Search Lab developed Frama-C plug-ins
dedicated to generate counter-examples in the spirit of StaDy (Sec-
tion 6.1) but based on external test case generators, namely Search
Lab’s own tool Flinder13 and later theAFL fuzzer14. In these projects,
Dassault Aviation also designed a methodology based on Eva, E-
ACSL and two home-made plug-ins in order to detect security
vulnerabilites and deploy runtime counter-measures when neces-
sary [34]. It has been experimented on a few modules of Apache.

8 CONCLUSION
Since its first public release more than 10 years ago, the Frama-C
framework has demonstrated its adequacy to successfully address
very diverse verification tasks. One of the main factors of this
success is undoubtedly the key design idea of a modular analy-
sis platform, where developing a specialized plug-in and having it
communicate with others should be as easy as possible. Another im-
portant aspect is the fact that the development of Frama-C has been
fueled by collaborative projects, that strive to maintain a balance
between exploring new research directions and targeting existing
industrial code. This is still true to this day, with lines of research
towards new programming languages (C++, Rust), cybersecurity
and privacy properties, verifying AI-based applications or using
AI in verification among others. We hope the readers will try out
Frama-C15 and will find it useful for their verification activities.

REFERENCES
[1] Michele Alberti and Julien Signoles. 2017. Context Generation from Formal

Specifications for C Analysis Tools. In Logic-based Program Synthesis and Trans-
formation (LOPSTR’17).

[2] Rajeev Alur, Kousha Etessami, and P Madhusudan. 2004. A temporal logic of
nested calls and returns. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’04).

[3] Gergö Barany and Julien Signoles. 2017. Hybrid Information Flow Analysis for
Real-World C Code. In Tests and Proofs (TAP’17).

[4] Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and Nikolai Kosmatov. 2014.
An All-in-One Toolkit for Automated White-Box Testing. In Tests and Proofs
(TAP’14).

[5] Sébastien Bardin, Nikolai Kosmatov, Bruno Marre, David Mentré, and Nicky
Williams. 2018. Test Case Generation with PathCrawler/LTest: How to Automate
an Industrial Testing Process. In Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’18).

[6] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2011. Secure information
flow by self-composition. Mathematical Structures in Computer Science 6 (2011).

[7] Allan Blanchard, Nikolai Kosmatov, Matthieu Lemerre, and Frédéric Loulergue.
2016. Conc2Seq: A Frama-C Plugin for Verification of Parallel Compositions of
C Programs. In Source Code Analysis and Manipulation (SCAM’16).

[8] Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall, and Virgile Prevosto. 2017.
RPP: Automatic Proof of Relational Properties by Self-composition. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’17).

[9] Abderrahmane Brahmi, Marie-Jo Carolus, David Delmas, Mohamed Habib
Essoussi, Pascal Lacabanne, Victoria Moya Lamiel, Famantanantsoa Randim-
bivololona, and Jean Souyris. 2020. Industrial use of a safe and efficient formal
method based software engineering process in avionics. In Embedded Real Time
Software and Systems (ERTS’20).

[10] Dumitru Ceara, Laurent Mounier, andMarie-Laure Potet. 2010. Taint Dependency
Sequences: A Characterization of Insecure Execution Paths Based on Input-
Sensitive Cause Sequences. In Int. Conf. on Software Testing, Verification and
Validation (ICST’10).

[11] Patrice Chalin. 2007. A Sound Assertion Semantics for the Dependable Systems
Evolution Verifying Compiler. In Int. Conf. on Software Engineering (ICSE’07).

[12] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. 1986. Automatic Ver-
ification of Finite-state Concurrent Systems Using Temporal Logic Specifications.

11https://cordis.europa.eu/project/rcn/105816/brief/en
12https://www.vessedia.eu/
13https://www.flinder.hu
14http://lcamtuf.coredump.cx/afl/
15see http://www.frama-c.com/download.html

Transactions on Programming Languages and Systems (1986).
[13] Loïc Correnson. 2014. Qed. Computing What Remains to Be Proved. In NASA

Formal Methods (NFM’14).
[14] Loïc Correnson and Julien Signoles. 2012. Combining Analyses for C Program

Verification. In Int. Conf. on Formal Methods for Industrial Case Studies (FMICS’12).
[15] Pascal Cuoq, David Delmas, Stéphane Duprat, and Virginia Moya Lamiel. 2012.

Fan-C, a Frama-C plug-in for data flow verification. In Embedded Real Time
Software and Systems (ERTS’12).

[16] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial
invariants by linear algebra. In Automated Technology for Verification and Analysis
(ATVA’16).

[17] Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. 2013. Local Shape
Analysis for Overlaid Data Structures. In Int. Symp. on Static Analysis (SAS’13).

[18] Rovedy Aparecida Busquim e Silva, Nanci Naomi Arai, Luciana Akemi Burgareli,
Jose Maria Parente de Oliveira, and Jorge Sousa Pinto. 2016. Formal Verification
With Frama-C: A Case Study in the Space Software Domain. Transactions on
Reliability (2016).

[19] Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila. 2019. Journey to a RTE-
free X.509 parser. In Symp. sur la sécurité des technologies de l’information et des
communications (SSTIC’19).

[20] Daniel Fava, Julien Signoles, Matthieu Lemerre, Martin Schäf, and Ashish Tiwari.
2015. Gamifying Program Analysis. In Int. Conf. on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’15).

[21] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 – Where Programs
Meet Provers. In European Symp. on Programming (ESOP’13).

[22] Jean-Christophe Filliâtre and Claude Marché. 2004. Multi-prover Verification of C
Programs. In Int. Conf. on Formal Methods and Software Engineering (ICFEM’04).

[23] Alexis Fouilhé, David Monniaux, and Michaël Périn. 2013. Efficient Generation
of Correctness Certificates for the Abstract Domain of Polyhedra. In Int. Symp.
on Static Analysis (SAS’13).

[24] Alwyn Goodloe, César A. Muñoz, Florent Kirchner, and Loïc Correnson. 2013. Ver-
ification of Numerical Programs: From Real Numbers to Floating Point Numbers.
In NASA Formal Methods (NFM’13).

[25] Maxime Jacquemin, Sylvie Putot, and Franck Védrine. 2018. A Reduced Product
of Absolute and Relative Error Bounds for Floating-Point Analysis. In Int. Symp.
on Static Analysis (SAS’18).

[26] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C: A software analysis perspective. Formal Asp. Comput.
(2015).

[27] Florent Kirchner, Franck Sadmi, Sébastien Flanc, Lucas Duboc, Hélène Marteau,
Virgile Prevosto, and Franck Vedrine. 2016. Safer Marine and Offshore Software
with Formal-Verification-Based Guidelines. In Embedded Real Time Software and
Systems (ERTS’16).

[28] K. Rustan M. Leino. 2005. Efficient weakest preconditions. Information Processing
Letters (2005).

[29] Mikhail U. Mandrykin and Alexey V. Khoroshilov. 2015. High-level memory
model with low-level pointer cast support for Jessie intermediate language. Pro-
gramming and Computer Software (2015).

[30] Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract Inter-
pretation Based Static Analyzers. In European Symp. on Programming (ESOP’05).

[31] Bertrand Meyer. 1991. Design by Contract. Prentice Hall.
[32] Benjamin Monate and Julien Signoles. 2008. Slicing for Security of Code. In

Trusted Computing and Trust in Information Technologies (TRUST’08).
[33] Alain Ourghanlian. 2015. Evaluation of static analysis tools used to assess

software important to nuclear power plant safety. Nucl. Eng. Technol. (2015).
[34] Dillon Pariente and Julien Signoles. 2017. Static Analysis and Runtime Assertion

Checking: Contribution to Security Counter-Measures. In Symp. sur la Sécurité
des Technologies de l’Information et des Communications (SSTIC’17).

[35] Guillaume Petiot, Nikolai Kosmatov, Bernard Botella, Alain Giorgetti, and Jacques
Julliand. 2018. HowTestingHelps to Diagnose Proof Failures. Formal Asp. Comput.
(2018).

[36] Virgile Prevosto, Jochen Burghardt, Jens Gerlach, Kerstin Hartig, Hans Werner
Pohl, and Kim Völlinger. 2013. Formal specification and automated verification of
railway software with Frama-C. In Int. Conf. on Industrial Informatics (INDIN’13).

[37] Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le
Gall. 2019. MetAcsl: Specification and Verification of High-Level Properties. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’19).

[38] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. 2017. E-ACSL, a
RuntimeVerification Tool for Safety and Security of C Programs. Tool Paper. In Int.
Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation
for Runtime Verification Tools (RV-CuBES’17).

[39] Arnaud Venet. 2012. The Gauge Domain: Scalable Analysis of Linear Inequality
Invariants. In Computer Aided Verification (CAV’12).

[40] Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger. 2005.
PathCrawler: Automatic Generation of Path Tests by Combining Static and
Dynamic Analysis. In European Dependable Computing Conf. (EDCC’05).

https://cordis.europa.eu/project/rcn/105816/brief/en
https://www.vessedia.eu/
https://www.flinder.hu
http://lcamtuf.coredump.cx/afl/
http://www.frama-c.com/download.html

	Abstract
	1 Introduction
	2 Overview of the Platform
	2.1 Different Plug-ins for Different Analyses
	2.2 Plug-in Collaboration
	2.3 Platform Architecture

	3 ACSL Specification Language
	4 Core Analyses of the Platform
	4.1 Chasing Undefined Behaviors with Eva
	4.2 Proving Functional Properties with Wp
	4.3 Checking Properties at Runtime with E-ACSL
	4.4 Generating Test Cases with PathCrawler

	5 Tell Frama-C What You Want to Verify
	5.1 Verify Sequences of Events: Aoraï and CaFE
	5.2 Verify Relational Properties: RPP
	5.3 Enforce Global Properties: MetACSL
	5.4 Prove Concurrent Programs: Conc2Seq
	5.5 Specify Test Objectives: LAnnotate

	6 Go Beyond Raw Analyses Results
	6.1 Counter-Examples for Unproven Annotations: StaDy
	6.2 Infeasible Test Objectives: LUncov
	6.3 Program Simplification: Slicing
	6.4 Information Flow: SecureFlow

	7 More than a Toolset: an Ecosystem
	7.1 Frama-C Community
	7.2 Teaching with Frama-C
	7.3 Collaborations and Industrial Applications

	8 Conclusion
	References

