
Combining Deductive Verification
with Shape Analysis

Téo Bernier1[0009−0003−4834−7126], Yani Ziani1,2[0009−0000−8540−1273], Nikolai
Kosmatov1[0000−0003−1557−2813], and Frédéric Loulergue2[0000−0001−9301−7829]

1 Thales Research & Technology, Palaiseau, France
{teo.bernier,yani.ziani,nikolai.kosmatov}@thalesgroup.com

2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
frederic.loulergue@univ-orleans.fr

Abstract. Deductive verification tools can prove a large range of pro-
gram properties, but often face issues on recursive data structures. Ab-
stract interpretation tools based on separation logic and shape analysis
can efficiently reason about such structures but cannot deal with so large
classes of properties. This short paper presents an ongoing work on com-
bining both techniques. We show how a deductive verifier for C programs,
Frama-C/Wp, can benefit from a shape analysis tool, MemCAD, where
structural and separation properties proved in the latter become assump-
tions for the former. A case study on selected functions of the tpm2-tss
library using linked lists confirms the interest of the approach.

Keywords: deductive verification, shape analysis, abstract interpretation, linked
lists, Frama-C, MemCAD

1 Introduction

Context and Motivation. Deductive verification tools were successfully used in
many case studies [4] to prove a large range of safety, security and functional
properties. Such tools often have issues to conduct automatic proof on code with
recursive data structures (e.g. linked lists, trees, etc.), in particular, due to com-
plex memory models they need. The user has to guide the proof by interactively
proved lemmas, assertions, etc. Abstract interpretation tools based on separation
logic and shape analysis [3] can efficiently reason about such structures but typ-
ically cannot deal with so large classes of properties. This short paper presents
new ideas and emerging results on combining both techniques trying to take the
best of both worlds.

Approach and Results. We present a verification approach combining a popular
deductive verifier for C programs, Frama-C/Wp [6], with a shape analysis tool,
MemCAD [10]. The main idea is to prove structural and separation properties
in MemCAD and then to assume them in Frama-C/Wp in order to increase
the level of automation of the latter and overcome some of its limitations. We

2 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

apply it on a real-life case study using linked lists: a few (slightly simplified)
functions of tpm2-tss3, a popular library for communication with a Trusted
Platform Module (TPM). Recent work [11] demonstrated that deductive verifi-
cation of the library functions manipulating linked lists was relatively hard, and
required many additional lemmas and assertions.

The contributions of this paper include the presentation of a combined verifi-
cation technique using deductive verification and shape analysis, its illustration
with Frama-C/Wp and MemCAD on a function manipulating linked lists, as
well as a successful case study on a set of functions of the tpm2-tss library.

2 Background

2.1 Deductive Verification with Frama-C/Wp

Frama-C [6] is an integrated toolbox built around a kernel offering core ser-
vices and plugins dedicated to specific analysis or verification tasks for C code,
e.g. value analysis, runtime assertion checking and deductive verification. Acsl
(ANSI C Specification Language) [6] is the common specification language of the
plugins. The Wp plugin performs modular deductive verification: each function
is verified independently. It generates verification conditions (VCs) from the C
code with Acsl annotations and requests their proof by the QED simplifier or
by external provers.

We illustrate the main Acsl features on the running example4 of Fig. 1, 3, 4,
5, presented as we go, where Acsl notation (e.g. \forall, integer, ==>, <=, &&)
is pretty-printed (resp., as ∀, Z,⇒, ≤, ∧). Lines 69–85 of Fig. 4 show a contract for
function list_push (detailed below) that adds a new value into a linked list (cf.
Lines 1–2 of Fig. 1), allocating a new cell. The contract includes pre-conditions
(requires clauses) and post-conditions (ensures clauses). The assigns clause is a
special kind of post-condition that indicates the memory locations the function is
allowed to modify. Acsl formulas are mostly multi-sorted first-order logic where
types are either C types or logic types (such as Z, the type of mathematical
integers). Acsl provides built-in constructs such as \result (the value returned
by the function) and predicates such as \valid(p) (stating that pointer p refers
to an allocated memory location, so that *p can be safely read and written) and
\separated(p1,p2,...) (stating that the memory locations referred to by given
pointers do not intersect). Notice that the considered memory locations are here
indicated by pointers. Users can define predicates such as those in Fig. 1, adapted
here from a previous work [1] on verifying linked lists in Wp.

The main predicate is the inductively defined predicate linked_ll (Lines 10–
19) stating that a linked list (segment) of int values (defined on Lines 1–2)
from pointer bl to pointer el (excluded) is a well-formed list represented by
an Acsl logical list ll. In other words, ll contains the pointers to the cells
of that list segment (or the whole list if el is NULL). Acsl lists are similar to

3 https://github.com/tpm2-software/tpm2-tss
4 Available in a companion artifact on http://doi.org/10.5281/zenodo.10458675

Combining Deductive Verification with Shape Analysis 3

1 typedef struct cell_s {struct cell_s* next; int data;} cell;
2 typedef cell* list;
3 /*@
4 predicate ptr_sep_from_list{L}(cell* c, \list<cell*> ll) =
5 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(c, \nth(ll, n));
6 predicate dptr_sep_from_list{L}(cell** c, \list<cell*> ll) =
7 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(c, \nth(ll, n));
8 predicate in_list{L}(cell* c, \list<cell*> ll) =
9 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll , n) == c;

10 inductive linked_ll{L}(cell *bl,cell *el,\list<cell*> ll) {
11 case linked_ll_nil{L}:
12 ∀ cell *el; linked_ll{L}(el, el, \Nil);
13 case linked_ll_cons{L}:
14 ∀ cell *bl, *el , \list<cell*> tail;
15 (\separated(bl, el) ∧ \valid(bl) ∧
16 linked_ll{L}(bl ->next , el, tail) ∧
17 ptr_sep_from_list(bl, tail)) ⇒
18 linked_ll{L}(bl , el, \Cons(bl, tail));
19 }
20 predicate unchanged_ll{L1, L2}(\list<cell*> ll) =
21 ∀ Z n; 0 ≤ n < \length(ll) ⇒
22 \valid{L1}(\nth(ll,n)) ∧ \valid{L2}(\nth(ll,n)) ∧
23 \at((\nth(ll,n))->next , L1) == \at((\nth(ll,n))->next , L2) ∧
24 \at((\nth(ll,n))->data , L1) == \at((\nth(ll,n))->data , L2);
25 axiomatic cell_to_ll {
26 logic \list<cell*> to_ll{L}(cell* beg , cell* end)
27 reads {node ->next | cell* node;
28 \valid(node) ∧ in_list(node , to_ll(beg , end))};
29 axiom to_ll_nil{L}: ∀ cell *node;
30 to_ll{L}(node , node) == \Nil;
31 axiom to_ll_cons{L}: ∀ cell *beg , *end;
32 (\separated(beg , end) ∧ \valid{L}(beg) ∧
33 ptr_sep_from_list{L}(beg , to_ll{L}(beg ->next , end))) ⇒
34 to_ll{L}(beg , end) ==
35 \Cons(beg , to_ll{L}(beg ->next , end));
36 }
37 */
38 #include "lemmas_min.h"

Fig. 1. Types and Acsl predicates for linked lists.

lists in functional programming. In the inductive case (linked_ll_cons) over-
lapping list cells (or cyclic lists) are avoided by requiring that the first cell bl
is separated from all the other cells in the list including el, so the list is well-
formed. The predicates on Lines 4–9 use predefined functions: \length and \nth

that returns the nth element of a logic list. Predicates can take one or several
program points (C labels plus some Acsl labels: Pre and Post). The built-in
\at(e, L) specifies the value of an expression e at a label L. Using these fea-
tures, unchanged_ll states that a logic list does not change between two program
points (Lines 20–24). Finally, Lines 25–36 define an axiomatic function to_ll

that constructs a logic list from a C linked list. While it would be possible to
write requires ∃\list<cell>ll; linked_ll(*pl, NULL, ll); instead of Line 72
of Figure 4, the scope of the existential quantifier is just this line. Therefore, ll
cannot be used in the post-conditions, hence the need for to_ll.

Let us now detail the contract of list_push (its code is detailed below).
The pre-conditions state that pl is a valid pointer to a list (Line 70), separated
from every element in the list (Line 71), and refers to a linked list verifying the

4 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

a ll_cell<0,0> :=
b | [0]
c - emp
d - this = 0
e | [2 addr int]
f - this ->0 |-> $0 * $0.ll_cell () *
g this ->4 |-> $1
h - alloc(this , 8) & this ̸= 0.
i

j plist<0, 0> :=
k | [1 addr]
l - this ->0 |-> $0 * $0.ll_cell ()

m - alloc(this , 4) & this ̸= 0.

n cell<0,0> :=
o | [0]
p - emp
q - this = 0
r | [2 addr int]
s - this ->0 |-> $0 * this ->4 |-> $1
t - alloc(this , 8) & this ̸= 0.
u

v cell_plist<0,0> :=
w | [2 addr addr]
x - this ->0 |-> $0 * $0.cell() *
y this ->4 |-> $1 * $1.plist()
z - alloc(this , 8) & this ̸= 0.

Fig. 2. Inductive predicates for MemCAD.

inductive predicate linked_ll (Line 72). Line 73 specifies that the only locations
the function is allowed to modify are *pl, the head pointer of the list, and
\at(**pl, Post), the first element of the list at the exit point, i.e. the freshly
allocated cell. We cannot reference the new list cell at the entry point because it
is not allocated yet. In post-conditions, the returned value indicates whether or
not the allocation is successful (Line 76). Regardless of the success, we expect the
list invariants to hold (Lines 74–75). In case the allocation fails, we expect the
pointer *pl and the list contents to be unchanged (Lines 77–79). If it succeeds,
we expect the list to be composed of the new cell followed by the old list (Lines
80–81), the old list being unchanged (Lines 82–83), and the fields of the new
cell, next and data, resp., to point to the old list (Line 84) and to contain the
expected value (Line 85).

2.2 Shape Analysis with MemCAD

The purpose of MemCAD [10] is to automatically infer precise invariants about
programs manipulating complex data structures. It is based on shape analysis [3],
a static code analysis technique that discovers and verifies properties of recursive,
dynamically allocated data structures. It relies on separation logic and abstract
interpretation. Unlike in Wp, the analysis is global.

To use MemCAD on linked lists defined on Lines 1–2 of Fig. 1, the user
first defines an inductive predicate expressing a structural invariant of a well-
formed linked list, such as predicate ll_cell on Lines a–h of Fig. 2. A list, i.e.
a pointer to a list cell, satisfies the predicate in two cases. Each case defines
a memory separation formula and additional constraints. In the first case, the
pointer is null (Line d) and no specific memory separation is required (Line c).
This case has no additional arguments (cf. [0] on Line b). The second case has
two (existentially quantified) arguments: an address and an integer (Line e),
denoted, resp., by $0 and $1 in the rest of the case. The pointer is non null
and refers to a valid memory block of 8 bytes (Line h), assuming a 32-bit sys-
tem. Lines f–g define the values of the fields next and data (at offsets 0 and 4)
as $0 and $1, and require separation between those fields and the rest of the
list. The separation is expressed by the separating conjunction “*” [10]. Notice

Combining Deductive Verification with Shape Analysis 5

40 //@ assigns \nothing;
41 void mc_chk_plist(list* pl) {
42 _memcad("check_inductive(pl,plist)");
43 }
44

45 typedef struct {cell* c; list* pl;} cell_plist;
46

47 //@ assigns \nothing;
48 void mc_chk_sep_cell_plist(cell* c, list* pl) {
49 cell_plist tmp;
50 tmp.c = c; tmp.pl = pl;
51 cell_plist* ptmp = &tmp;
52 _memcad("check_inductive(ptmp ,cell_plist)");
53 }

Fig. 3. Auxiliary MemCAD checks for linked lists.

that “...*$0.ll_cell()*...” on Line f specifies separation recursively, for all
list cells reached by the predicate via the inductive case. The user can insert
the instruction _memcad("add_inductive(l,ll_cell)"); to assume that list l re-
spects predicate ll_cell, or _memcad("check_inductive(l,ll_cell)"); to check
the same property in MemCAD.

Predicate cell on Lines n–t is very close to predicate ll_cell except that
it only defines one list cell without recursion. Predicate plist on Lines j–m
expresses that a double pointer to a list cell (i.e. of type list*) is valid, refers
to a well-formed list and is separated from its cells. Predicate cell_plist is
explained below.

3 Combined Approach

3.1 Shape Analysis Assisted Verification

To prove complex memory-related annotations withWp on real-life code [11], the
user typically has to manually annotate the code with many additional carefully
chosen assertions establishing structural invariants and separation properties at
several intermediate program points, and to add numerous lemmas to facilitate
reasoning about them (whose proof must usually be done manually in Coq, an
interactive proof assistant). Our approach proposes to let MemCAD deal with
the structural invariants of recursive data structures and separation properties,
and to admit them in Wp at some key points.

In order to use both tools simultaneously in this way, we first need to show the
equivalence between MemCAD and Wp inductive predicates. For MemCAD,
predicate ll_cell (Lines a–h of Fig. 2) specifies that each element of the list
is a valid cell, is separated from every other cell of the list and the list is null-
terminated. This is equivalent to the linked_ll predicate for Wp (Lines 10–
19 of Fig. 1) when we consider the whole list. Indeed, when el is NULL, this
predicate also means that every list cell is valid and separated from any other list
cell, and the list is null-terminated. Explicit separation conditions in the Acsl
predicate for Wp are expressed by the separating conjunction in the MemCAD

6 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

59 /*@
60 assigns \nothing;
61 ensures \result ̸= NULL ⇒ (\valid(\result) ∧
62 \result ->next == NULL ∧ \result ->data == 0); */
63 cell* calloc_cell () {
64 cell* c = malloc(sizeof(cell));
65 if (c) { c->next = NULL; c->data = 0; }
66 return c;
67 }
68

69 /*@
70 requires \valid(pl);
71 requires dptr_sep_from_list(pl ,to_ll (*pl , NULL));
72 requires linked_ll (*pl , NULL , to_ll(*pl, NULL));
73 assigns *pl , \at (**pl, Post);
74 ensures dptr_sep_from_list(pl , to_ll(*pl , NULL));
75 ensures linked_ll (*pl, NULL , to_ll(*pl, NULL));
76 ensures \result \in {0, 1};
77 ensures \result == 0 ⇒
78 unchanged_ll{Pre , Post}(to_ll(*pl , NULL));
79 ensures \result == 0 ⇒ *pl == \old(*pl);
80 ensures \result == 1 ⇒
81 to_ll(*pl , NULL) == ([|*pl|] ^ to_ll(\old(*pl), NULL));
82 ensures \result == 1 ⇒
83 unchanged_ll{Pre , Post}(to_ll(\old(*pl), NULL));
84 ensures \result == 1 ⇒ (*pl)->next == \old(*pl);
85 ensures \result == 1 ⇒ (*pl)->data == data; */
86 int list_push(list* pl, int data) {
87 cell* c = calloc_cell ();
88 if (!c) return 0;
89 mc_chk_sep_cell_plist(c, pl);
90 //@ admit ptr_sep_from_list(c,to_ll(*pl ,NULL));
91 //@ admit \separated(pl, c);
92 //@ ghost Alloc:;
93 c->next = *pl;
94 //@ assert unchanged_ll{Alloc ,Here}(to_ll{Alloc }(*pl,NULL));
95 c->data = data;
96 //@ ghost Link:;
97 *pl = c;
98 /*@ assert unchanged_ll{Link ,Here}(
99 to_ll{Link}(\at(*pl ,Pre),NULL)); */

100 mc_chk_plist(pl);
101 //@ admit dptr_sep_from_list(pl ,to_ll (*pl,NULL));
102 //@ admit linked_ll (*pl,NULL ,to_ll(*pl,NULL));
103 return 1;
104 }

Fig. 4. Functions calloc_cell and list_push with contracts.

counterpart. (Notice that separation of bl with NULL on Line 15 is trivial.) The
sequence of list elements, expressed by a logic list in Acsl and used to prove
functional properties about the contents of the list (cf. Lines 80–81) in Wp,
does not need to be specified for MemCAD, which we only use to reason about
structural properties.

To check if invariants hold in MemCAD, we define check functions shown
in Fig. 3. These functions are specified to be side-effect-free (cf. Lines 40, 47) to
prevent interference with the proof in Wp.

Combining Deductive Verification with Shape Analysis 7

The first function, mc_chk_plist (Lines 41–43), checks that pl respects the
plist predicate, i.e. is a valid pointer to a well-formed list from which it is
separated (Line 42, see also Lines j–m of Fig. 2).

The goal of the second function, mc_chk_sep_cell_plist, is to check that
c refers to a list cell, pl respects the plist predicate, and the corresponding
pointer and the list cells are separated from the cell referred to by c. To do that
in MemCAD, we introduce an ad-hoc structure cell_plist with both pointers
(Line 45). The function initializes a local structure (Lines 49–50) and takes its
address (Line 51) in order to express the required check (Line 52). This check
relies on the predicate cell_plist (Lines v–z of Fig. 2) stating that the given
pointer is non-null and refers to a structure with two pointers at offsets 0 and 4,
denoted $0 and $1, referring, resp., to a cell and to a double pointer to a well-
formed list, which are separated (between them and from the list cells). Notice
that “...*$1.plist()” on Line y specifies separation recursively, that is, from
all locations considered in separation constraints reached via plist (and hence
via ll_cell).

An important benefit of using MemCAD is its capacity to automatically
handle dynamic memory allocation, which is not yet supported in Wp. Thus,
we define a custom allocator that simulates the behavior of calloc for list cells
on Lines 59–67 of Fig. 4. Wp uses its contract, which is simple but currently
unprovable by Wp since dynamic allocation is not supported (it should become
provable when this support is added into Wp).

3.2 Proof of Function list push

We illustrate our approach on function list_push of Fig. 4. It tries to allocate
a new cell (Lines 87–88), and, in case of success, puts it on top of the list with
the given data (Lines 93, 95, 97, 103). Lines 92, 96 define ghost labels (that is,
labels used only in annotations).

Lines 89–91 show how we use MemCAD to verify that the new cell (referred
to by c) is separated both from the list cells and the pointer referred to by pl

(Line 89), and introduce these properties as assumptions for Wp (admit clauses
on Lines 90–91). They help Wp to prove in an assert clause on Line 94 that
the list remains unchanged since label Alloc (i.e. Line 92) despite writing into
the new cell on Line 93, and a similar assertion for the old list on Lines 98–99
despite the assignment on Line 97.

Instead of reasoning about the modified list directly in Wp—which often
presents another difficulty for deductive verification—we let MemCAD check
the list invariants on Line 100 and admit them on Lines 101–102 for Wp to
prove the post-conditions. Thanks to those assumptions, Wp successfully proves
this function. Notice that the check instruction for MemCAD and the admit
instructions for Wp are placed (for the moment, manually) at the same program
location to ensure the soundness of the global verification.

In order to have a full proof, we also need to run MemCAD to verify all the
checks in list_push. For this purpose, we define a wrapper in Fig. 5 to analyze

8 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

106 int mc_verify_list_push(void) {

107 list* pl; int i; _memcad("add_inductive(pl,plist)");

108 list_push(pl , i);

109 }

Fig. 5. Wrapper to verify list_push in MemCAD.

the call to list_push on Line 108 with an arbitrary list respecting the given pre-
conditions (which correspond in MemCAD, as we explained above, to assuming
predicate plist for pl, cf. Lines 70–72, 107). MemCAD also succeeds in its
analysis, hence, we can conclude that our function respects its Acsl contract.

While the annotation step is done manually in the current work, it can be
better automated in the future. A coordinated generation of checks and as-
sumptions for a given recursive data structure for both tools will facilitate the
verification and the justification of soundness of the combined approach. An
early idea consists in defining a domain-specific language for the description of
the target recursive data structure that is then used for the generation of neces-
sary predicates for MemCAD and for Wp as well as necessary assumptions and
checks. The investigation of this research direction is left for future work.

4 Case study on the tpm2-tss library

We tested our approach on a few (slightly simplified) functions of the tpm2-tss
library, a widely used open-source implementation of the TPM Software Stack
(TSS)5 designed to access the Trusted Platform Module (TPM). The library
uses a linked list to store and use TPM resources, such as objects sent to and
received from the TPM. List cells are dynamically allocated. Simplifications were
applied to data structures used for list cells (and their treatment).

We consider two functions, to add an object and to look for an object in a list,
with one called function, and apply MemCAD to verify separation properties
for a newly allocated cell that Wp is currently not able to deduce. A recent
study [11] demonstrated that deductive verification with Wp of these functions
required many additional lemmas and assertions, as well as the replacement of
the dynamic memory allocation by a static allocator. Interestingly, the difficulty
to verify real-life code was not caused by complex operations on lists—these
operations are in reality quite simple in the target code—but by the difficulty
to reason about the recursive data structure itself.

The proposed approach combining deductive verification with shape analysis
allows us to perform a complete proof with less effort and without replacing dy-
namic allocator by a static allocator. On the considered functions, the proof with
Wp alone [11] required 14 lemmas, leading to the generation of 241 proof obli-
gations, one of which required a manually created Wp script, and took 4m50s.
Thanks to combining Wp and MemCAD in our work, we could remove ∼45

5 https://trustedcomputinggroup.org/work-groups/software-stack/

Combining Deductive Verification with Shape Analysis 9

auxiliary Acsl annotations and 5 lemmas, so the proof required only 9 lemmas,
leading to 194 proof obligations using no scripts, and took 1min47s in total for
Wp and MemCAD (the latter taking less than 1 sec.).

5 Related Work and Conclusion

Related Work. Various tools based on separation logic were proposed, such as
VeriFast [8], Viper [7], VerCors [2]. He et al. [5] extract functional specification
from imperative programs using a memory-safe type system and insert dynamic
checks into the specification. GRASShopper [9] combines separation logic with
an SMT-based verifier. Unlike in our work, GRASShopper does not integrate
abstract interpretation based shape analysis (which allows us to infer structural
invariants with MemCAD without having to provide loop invariants for this
tool). Issues reported in a recent study [11] motivate such combinations for com-
plex real-life code with recursive data structures. Our work continues previous
efforts by proposing a combination of weakest-precondition based deductive ver-
ification with abstract interpretation based shape analysis on the source-code
level, which, to the best of our knowledge, was not studied and evaluated before.

Conclusion and Future Work. This short paper has presented an approach com-
bining deductive verification with Frama-C/Wp and shape analysis with Mem-
CAD. Separation properties and structural invariants for linked data structures
can be more easily proved by the latter, and then used as assumptions in the for-
mer, thus allowing it to focus on other properties. This work is still ongoing and
opens interesting research questions and perspectives: automation of the pro-
posed verification technique including a coordinated generation of checks and
assumptions, proof of its soundness, design of a common (higher-level) specifi-
cation mechanism for recursive data structures with automatic translation into
suitable definitions for MemCAD and Frama-C, as well as evaluation on other
relevant case studies.

Data-Availability Statement. Code examples used in this paper are available on-
line as a companion artifact on http://doi.org/10.5281/zenodo.10458675. The
artifact includes a Virtual Machine containing the installed tools and code ex-
amples used, and can be used to reproduce the results of this paper.

Acknowledgment. Part of this work was supported by ANR (grants ANR-22-
CE39-0014, ANR-22-CE25-0018) and French Ministry of Defense via a PhD
grant of Yani Ziani. We thank Allan Blanchard, Laurent Corbin, Löıc Correnson,
Daniel Gracia Pérez and Xavier Rival for fruitful discussions, and the anonymous
referees for helpful comments.

References

1. Blanchard, A., Kosmatov, N., Loulergue, F.: Logic against ghosts: Comparison
of two proof approaches for a list module. In: 34th Symp. on Applied Comput-

10 T. Bernier, Y. Ziani, N. Kosmatov, F. Loulergue

ing, Software Verification and Testing Track (SAC-SVT’19). pp. 2186–2195. ACM
(2019)

2. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verifica-
tion of parallel and concurrent software. In: 13th Int. Conf. on Integrated Formal
Methods (iFM’17). LNCS, vol. 10510, pp. 102–110. Springer (2017)

3. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: 12th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’06). LNCS, vol. 3920, pp. 287–302. Springer (2006)

4. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science - State of the Art
and Perspectives, LNCS, vol. 10000, pp. 345–373. Springer (2019)

5. He, P., Westbrook, E., Carmer, B., Phifer, C., Robert, V., Smeltzer, K., Stefanescu,
A., Tomb, A., Wick, A., Yacavone, M., Zdancewic, S.: A type system for extract-
ing functional specifications from memory-safe imperative programs. Proc. ACM
Program. Lang. 5, 1–29 (2021)

6. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015)

7. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: 17th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation (VMCAI’16). LNCS, vol. 9583, pp. 41–62. Springer
(2016)

8. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: Industrial case studies. Science of Computer
Programming 82, 77–97 (2014)

9. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with
mixed specifications. In: 20th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’14). LNCS, vol. 8413, pp.
124–139. Springer (2014)

10. Sotin, P., Rival, X.: Hierarchical shape abstraction of dynamic structures in
static blocks. In: 10th Asian Symposium on Programming Languages and Systems
(APLAS’12). LNCS, vol. 7705, pp. 131–147. Springer (2012)

11. Ziani, Y., Kosmatov, N., Loulergue, F., Gracia Pérez, D., Bernier, T.: Towards for-
mal verification of a TPM software stack (2023), http://arxiv.org/abs/2307.16821

