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ABSTRACT
Dynamic symbolic execution (DSE) is a powerful test gener-
ation approach based on an exploration of the path space of
the program under test. Well-adapted for path coverage, this
approach is however less efficient for conditions, decisions,
advanced coverage criteria (such as multiple conditions, weak
mutations, boundary testing) or user-provided test objectives.
While theoretical solutions to adapt DSE to a large set of
criteria have been proposed, they have never been integrated
into publicly available testing tools. This paper presents a
first integration of an optimized test generation strategy for
advanced coverage criteria into a popular open-source testing
tool based on DSE, namely, Klee. The integration is per-
formed in a fully black-box manner, and can therefore inspire
an easy integration into other similar tools. The resulting
version of the tool, named Klee4labels, is publicly available.
We present the design of the proposed technique and evaluate
it on several benchmarks. Our results confirm the benefits of
the proposed tool for advanced coverage criteria.
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1 INTRODUCTION
Automatic test generation techniques have made significant
progress during the past two decades. One of the most re-
markable successes in that area is dynamic symbolic exe-
cution (DSE) [8, 9], an efficient test generation technique
combining symbolic and concrete executions of the program
under test. Several efficient DSE tools have been devel-
oped [6, 7, 13, 15, 28–30, 30, 31], and several case studies
and industrial applications have been reported [4, 6, 7, 15].

Dynamic symbolic execution relies on an exhaustive explo-
ration of the path space of the program under test. Depending
on the tool, several strategies can be available: depth-first
search, breadth-first search, as well as more elaborated heuris-
tics. While DSE is well-adapted for path coverage, it is less
suitable for other coverage criteria, such as conditions, deci-
sions, multiple conditions, weak mutations, boundary testing,
or user-provided test objectives. Indeed, various coverage
criteria require to cover quite different test objectives in the
program code, and the support of different criteria in the
existing tools remains limited. While the all-path criterion is
powerful, it is sometimes too expensive when only decisions
or conditions need to be covered. And the other way round,
the tests generated for the all-path criterion may miss in-
teresting behaviors with respect to such criteria as multiple
conditions, weak mutations, or limit values. In practice, vali-
dation engineers aim at satisfying a given coverage criterion
with a test suite of manageable size.

Bardin et al. [2] proposed a framework for specifying cover-
age criteria in a unified way with elementary test objectives,
called (coverage) labels, and proposed theoretical solutions
for an efficient test generation for labels. However, these tech-
niques have never been integrated into any publicly available
DSE tool. The only known implementation of these tech-
niques is a greybox integration [2] inside PathCrawler [31], a
proprietary test generation tool, whose industrial evaluation
was reported to be quite efficient [4].

The use of labels to represent coverage criteria allows for a
very generic approach to criteria-guided test generation. La-
bels provide a lightweight solution to encode various criteria,
which is entirely independent of the underlying test genera-
tion tool. Furthermore, many basic and advanced coverage
criteria can be represented using labels, and even custom
labels can be added by hand when specific test objectives
are needed. The absence of a publicly available DSE tool
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with an efficient support for a large range of coverage criteria
remains a serious barrier for a larger support of coverage
criteria. Addressing this issue is the main motivation of this
work.

Our goal is to demonstrate how a dedicated support for
labels can be integrated into Klee [6], a popular open-source
test generation tool based on DSE. Contrary to the earlier
greybox integration into PathCrawler [2], whose path explo-
ration strategy had to be strongly modified and adapted for
labels, we perform a fully black-box integration, that can
inspire a lightweight integration into other similar tools. The
resulting version of the tool, named Klee4labels, is publicly
available. Finally, we evaluate the proposed version on sev-
eral benchmarks. Overall, those benchmarks demonstrate the
ability of the proposed tool: (i) to drive symbolic execution
towards the test objectives required by a given coverage cri-
terion, (ii) to generate fewer and more meaningful test cases,
(iii) with a reasonable overhead compared to the original
version of the tool.

Contributions. The contributions of this work include:
∙ a lightweight black-box integration of an efficient sup-

port for various coverage criteria expressed by labels
in a popular publicly available tool Klee, making it
possible to support a large panel of coverage criteria;

∙ a detailed description of the integration as a generic
approach that is expected to be reproducible with other
similar tools;

∙ an evaluation of the extended version of Klee on several
benchmarks, and a detailed analysis of their results
in comparison with other approaches, confirming the
benefits of the proposed technique.

Outline. Section 2 presents necessary background on dy-
namic symbolic execution, the Klee tool, and on expressing
test coverage criteria with coverage labels. Some motivating
examples are given in Section 3. The design of our optimized
test generation technique for Klee is presented in Section 4.
Section 5 provides a detailed evaluation of the proposed tech-
nique in comparison to other approaches for dealing with
labels. Related work is discussed in Section 6. Finally, Sec-
tion 7 gives a conclusion and some directions for future work.

2 BACKGROUND
2.1 Dynamic Symbolic Execution
Symbolic execution [9, 17] is a powerful approach to auto-
matic test generation, based on systematic path exploration.
It consists in computing, for each path of the program under
test, its path condition, that is, the set of conditions on the
program parameters that must hold to ensure that the pro-
gram executes along this path (under the assumption that the
program is deterministic). If this path condition is satisfiable,
then a solution gives concrete values to the parameters, and
thus a test case that executes this path. If it is not satisfi-
able, then the path is called infeasible, meaning that it does
not correspond to any possible execution of the program. In
practice, the path may contain statements about which it is

difficult to reason symbolically, for example, calls to exter-
nal functions, which can lead to an under-approximation of
the path constraint. Dynamic symbolic execution [8] inter-
leaves concrete and symbolic execution and uses the gathered
information to better approximate path constraints.

2.2 Klee
Klee [6] is a popular test-case generation tool for C programs
based on dynamic symbolic execution, developed and main-
tained at Imperial College London. Klee is open-source, has a
large community of contributors, and a large user base, both
in industry and in academia. Klee operates on LLVM bitcode,
which is an intermediate representation of the executable
program: this enables it to mix concrete and symbolic exe-
cutions. Klee internally makes use of various (configurable)
strategies to explore the path space of the program under
test, and is able to produce a test case for each path found to
be feasible. Such a test case consists of concrete input values
on which the program executes along this path. By design,
Klee’s only coverage criterion is all-path: as a result, the user
often must configure a timeout or specify preconditions to
the program in order to ensure Klee’s termination within rea-
sonable time bounds. More precisely, Klee aims at covering
all paths of the LLVM bitcode, which means in particular
that compound conditions are decomposed according to lazy
evaluation semantic of Boolean operators in C.

Concretely, when launched on a given program, Klee tries
to produce a test case for each executable path that reaches
a return statement of the main function, an assertion, or an
instruction that may raise a runtime error (RTE), e.g. division
by 0, overshift, invalid pointer access. A path that reaches
a return statement is called a complete path, whereas other
paths are called partially completed paths. In Klee’s output
directory, a test case generated for a partially completed path
comes with an additional file that ends with .xxx.err, where
xxx gives information about the premature end of the path,
e.g. assert (for assertion failure), or ptr (for pointer error).
Klee can replay generated test cases in a separate step.

Since Klee aims at covering all paths of the LLVM bitcode,
it sometimes produces more test cases than needed to cover
only decisions or conditions for example. Its path-oriented
approach is not directly adapted to more advanced coverage
criteria like multiple conditions, boundary tests or weak
mutations (cf. Section 2.3). The purpose of this work is to
adapt and optimize Klee for a large range of coverage criteria
expressed using coverage labels.

2.3 Coverage Labels
Bardin et al. [2] introduce a generic approach to represent
coverage criteria as source code annotations. They propose
to represent the test objectives required to be covered to
satisfy a given coverage criterion as a set of annotations
named coverage labels (that we often abbreviate as labels).
A coverage label ℓ is defined as a pair loc, 𝑝, where 𝑝 is a
predicate attached to some program location loc. Such a label
is covered by a test if the execution of this test reaches the
location loc and satisfies the predicate 𝑝 at this location. In
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this way, when the underlying test generation tool produces
test cases covering all labels corresponding to a given coverage
criterion, it builds a test suite satisfying the corresponding
criterion.

Previous work proposed LTest [3], a toolset dedicated to
labels. It is developed as a set of plugins of Frama-C [18], a
verification platform for C code. The LTest toolset notably
comprises the LAnnotate tool that, given a C program and
a coverage criterion, automatically annotates that program
by adding the corresponding labels. More precisely, given a
coverage criterion C and the C source code of a program
𝑃 , it automatically outputs a C program 𝑃 ′ with additional
coverage labels with respect to C , i.e. such that a test suite
satisfies C iff it covers all the added labels.

Basic coverage criteria can be simulated by coverage labels:
for example, instruction coverage (IC), decision coverage (DC)
or condition coverage (CC, where all atomic conditions of
each decision, and their negations, must be covered). Each
label encodes an elementary test objective required to be
covered.

Coverage labels can additionally encode more advanced
criteria on conditions, boundary (that is, limit) values or
mutations. Multiple condition coverage (MCC) requires to
cover all combinations of truth values for all atomic conditions
of each decision. For a chosen set of mutation operators, weak
mutation coverage (WM) requires to cover (or, as it is often
called, to kill) each mutant program. A mutant is killed by a
test execution if the mutation point is reached and, after the
mutated instruction, some variable has a different value in the
mutant compared to the original program. This can typically
be encoded by a label with a predicate ensuring non-equality
between the original and mutated expressions. If such a label
is covered by a test, this test kills the corresponding mutant
(in the aforementioned sense). Many common weak mutation
operators, such as ABS (absolute value insertion), ROR
(relational operator replacement), AOR (arithmetic operator
replacement), and COR (logical operator replacement), can
be simulated with labels.

Boundary testing requires to cover limit values of variables
or conditions. For example, in the condition limit coverage
criterion, for a condition a<b with two integer variables a and
b, the boundary test objective is a-b+1==0. Since the exact
boundary value can be unreachable, test engineers may want
to get sufficiently close to the boundary, up to a chosen
distance value 𝑁 . This is the purpose of the criterion LIMIT-
N of LAnnotate. For example, for a condition a<b, this requires
to cover the boundary test objective abs(a-b+1)<=N.

Figure 1 shows label annotation for MCC, for weak mu-
tations WM-ABS and WM-AOR with mutation operators
ABS and AOR, and for LIMIT-N. Finally, custom labels can
be added by test engineers when specific test objectives are
needed.

Test generation for labels. Once coverage labels have been
inserted into the program under test, they are transformed in
order to be used by the underlying DSE test generation tool.
Such a transformation (typically realized by program instru-
mentation) determines a modified path exploration strategy

statement1;
if (x==y && a<b)

{...}
statement2;

−→

statement1;
// l1: x==y && a<b
// l2: !(x==y) && a<b
// l3: x==y && !(a<b)
// l4: !(x==y) && !(a<b)
if (x==y && a<b)

{...}
statement2;

MCC

statement1;
x = a+b;
statement2;

−→

statement1;
// l1: a != abs(a) (ABS)
// l2: b != abs(b) (ABS)
// l3: a+b != a-b (AOR)
// l4: a+b != a*b (AOR)
// l5: a+b != a/b (AOR)
x = a+b;
statement2;

WM-ABS and WM-AOR

statement1;
if (a<b)

{...}
statement2;

−→

statement1;
// l1: a<b && abs(a-b+1)<=N
if (a<b)

{...}
statement2;

LIMIT-N
Figure 1: Label annotation for some coverage criteria.

and therefore represents a key element of the resulting test
generation technique.

Bardin et al. [2] propose theoretical solutions to optimize
test generation for labels. First, they present two instrumen-
tations, called direct and tight. Given a label ℓ = loc, 𝑝 with
location loc and predicate 𝑝, direct instrumentation replaces
ℓ with a new branching instruction if (𝑝) {}. Tight instru-
mentation replaces ℓ with a non-deterministic choice leading
to a new assertion on 𝑝 and an exit: if (nondet){ assert
(𝑝); exit (0); }.

Direct instrumentation is shown by Bardin et al. [2] to ex-
ponentially increase the number of paths in the instrumented
program, contrary to the tight one. Indeed, with direct in-
strumentation, for each path traversing a label location loc
in the initial program, there are two paths going through
loc (with 𝑝 being either true or false) in the instrumented
program. This multiplication of paths becomes even more
significant when some paths in the initial program traverse
location loc several times (e.g. because of loops or function
calls). As a consequence, a DSE tool generates a test for
each path traversing a label location, even if this label is
already covered by a previously generated test. To reduce
such redundancy in test generation, a first proposed opti-
mization is tight instrumentation. For each path leading to a
label location, tight instrumentation adds a unique path that
leads to the label condition verification and exits the program
immediately after that, otherwise the program ignores the
label and continues.

The idea of the second optimization, called iterative label
deletion (ILD), is to replay tests as soon as they are generated
to mark all labels that are covered during test execution.
This is used to prevent test generation from attempting to
cover those labels anymore. Indeed, the execution of a test
generated to cover a given label ℓ may cover other labels,
for which it is no longer necessary to generate a test. Tight
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Listing 1: power.c
int power (int X, int N) {

int S = 1, Y = X, P = N;
while (P >= 1) {

if (P % 2 != 0) {
P = P - 1;
S = S * Y;

}
Y = Y * Y;
P = P / 2;

}
return S;

}

instrumentation and iterative label deletion are expected to
lead to a very efficient way for dynamic symbolic execution
to handle label coverage. This is confirmed by Bardin et al.
[2] after a dedicated gray-box integration of these approaches
into a proprietary tool PathCrawler [31]. Until now, however,
these optimizations have never been integrated into a publicly
available testing tool, nor have they been realized in a fully
black-box manner. In this work, we propose to leverage the
genericity of this approach to a renowned publicly available
testing tool, and to do it in a fully black-box manner. In doing
so, we effectively extend the label-agnostic test generation
tool Klee to all coverage criteria that can be expressed with
labels.

3 MOTIVATING EXAMPLES
The program power of Listing 1 takes two integer inputs

X and N and computes XN when N is non-negative1. In this
program, each path corresponds to exactly one value of N.
For example, the path entering the loop twice, the first time
with an even value for P and the second time with an odd
value for P, only executes if N=2. When N is bounded between
0 and a maximum value 𝐵, with 𝐵 > 1, Klee explores 𝐵 1
paths to always generate three tests2: one with N=0, one with
an even value for N and one with an odd value for N. As one
increases the value of 𝐵, the exploration time grows, even if
only the three same tests are produced in the end.

For this kind of programs consisting of a very simple
control flow with a large set of different paths, Klee spends
a lot of time exploring all the paths: 8.3 s for 𝐵 = 100, 52 s
for 𝐵 = 1000, 553 s for 𝐵 = 5000, to give a few examples.
However, only a few paths are necessary to cover basic criteria
like instructions, decisions or conditions. We will show how
the support of labels can drastically improve the exploration
time of such programs while still producing a relevant test
set of a small size.

As another example, consider the function search of List-
ing 2. For a fixed maximal length 𝐿 > 1 of tab, and n assumed
to be between 0 and 𝐿, Klee generates 3 tests covering all
branches, for instance: (1) n=0, (2) n=1, tab[0]=0 and val=0,
(3) n=2, tab[0]=42, tab[1]=0, and val=0. We observe that deci-
sions and conditions are covered, but the multiple condition
!res && i<n is never evaluated with the combination !res

1For simplicity, we ignore arithmetic overflows for this example.
2We use the option –only-output-states-covering-new so that Klee
only generates test cases covering yet uncovered code.

Listing 2: search.c
int search (int *tab , int n, int val) {

int res = 0, i = 0;
while (! res && i < n) {

if (tab[i] == val)
res = 1;

i++;
}
return res;

}

and !(i<n). Indeed, in the three tests generated, the searched
value is found in the array. The execution exits the loop be-
cause res=1 and not because the end of the array is reached.
Therefore, the test suite generated by Klee does not satisfy
multiple condition coverage.

We observe that for coverage criteria that are not subsumed
by all-path (like multiple conditions, weak mutations, or
condition limits), the test suites generated by Klee may be
incomplete. We will show how the support of labels helps
to achieve a high coverage of such criteria with a reasonable
overhead.

4 DESIGN OF AN OPTIMISED APPROACH
Before delineating our optimized approach for targeting labels
in Klee, we first describe a naive approach and illustrate the
overall test generation process. Along with informal notation
for labels of the form // lid: expr used in the examples of
Figure 1, we will use a macro cov_label(expr, id) to denote
labels in annotated C programs, where id is a unique integer
identifier associated with the label, and expr is the C expres-
sion of its predicate 𝑝. The macro is practical to define the
required behavior, which can vary between the different test
generation approaches and for test replay.

4.1 Naive Approach
The naive approach to the problem corresponds to direct
instrumentation (cf. Section 2.3), where each label adds an
additional branching instruction whose both branches lead
back to the next statement. Instrumenting the program to
achieve this consists in replacing each label cov_label(expr,
id) by a new branching instruction if (expr){}, as illustrated
in Figure 2. In this way, we effectively instruct Klee to try to
generate at least one test case that covers the empty branch,
i.e. where expr holds and the label is covered.

In practice, Klee currently does not handle empty code
blocks (e.g. inserted by a statement that cannot be optimized
out by a C compiler, like __asm__ volatile ("");). To circum-
vent this limitation, we implement the empty branch using a
call to an external function nop that returns immediately3.

Measuring Coverage. Executing Klee on the instrumented
program produces a set of test cases 𝑇 . Measuring the cover-
age of 𝑇 w.r.t. a given criterion boils down to replaying each
test case from 𝑇 and recording all covered labels. We replay
all generated test cases using a specific instrumentation of the
3This function is given in a separate library, and its implementation is
therefore not subject to Klee’s scrutiny: it is only called when Klee’s
concrete execution traverses this branch.
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statement1;
cov_label(expr, id)
statement2;

−→

Figure 2: Naive (direct) instrumentation of labels
program under test. A coverage status for each label (covered
or uncovered) is recorded in a shared, persistent store that
we denote by 𝜎.

More concretely, we construct an executable version of the
program called the replayer, where each label cov_label(expr,
id) is replaced with a call to a function set_covered guarded
with expr, i.e. if (expr){ set_covered (id); }. The role of
set_covered (id); is to register into 𝜎 that the label identi-
fied with id has been covered. After replaying every test case
using the replayer, the coverage achieved by 𝑇 is recorded in
𝜎 and can be measured.

Runtime Errors. Notice that, as mentioned in Section 2.2,
one of Klee’s goals is to produce test cases that trigger runtime
errors (RTEs). Yet, we need to take special care regarding
such test cases for the two following reasons. First, our objec-
tive is not to find test cases that trigger RTEs: instead, we
want to achieve label coverage. If RTEs are detected, they
should be reported, analyzed and fixed separately (e.g. by
adjusting the preconditions or fixing possible bugs in the
code). This task is outside the scope of this work. Second,
RTEs actually correspond to undefined behaviors, hence, by
nature, label coverage achieved after an undefined behavior
cannot be considered as firmly achieved.

We have thus chosen to keep only tests generated for
complete paths, and to ignore tests with an .err file (for
assertions or RTEs). In practice, to correctly record label
coverage, we redefine the role of the set_covered function
used by the replayer, and make it insert new label statuses
into a temporary buffer �̃�. Then, at the end of its execution,
if it is successful (i.e. the test execution terminates normally),
the replayer commits the contents of �̃� into the store 𝜎. In
this way, when a test case 𝑡 triggers an RTE after having
covered a label ℓ, the replayer does not effectively update
the status of ℓ in the persistent store 𝜎, and the coverage
induced by 𝑡 is thus not accounted for: 𝑡 is removed from
𝑇 without compromising the consistency of the reported
coverage measures. This gives us the set of test cases 𝑇 ′, with
𝑇 ′ ⊆ 𝑇 .

4.2 Optimized Approach
While it is capable of achieving label coverage in theory, sev-
eral drawbacks cripple the naive approach delineated above in
practice. First, direct instrumentation induces an exponential
explosion in the number of paths that must be explored. Sec-
ond, the constraints (path conditions) that are accumulated
during the symbolic execution of a path grow in complexity
each time the path traverses the branching instruction added
for a label. This can be observed in Figure 2, where every
path reaching statement2 traverses the guard if (expr).

Tight Instrumentation. In their quest for a more efficient
test case generation for label coverage, Bardin et al. [2] first
designed tight instrumentation by observing that: (i) the
expression expr in cov_label(expr, id) is only relevant to
covering the label; and (ii) the expression !expr is irrelevant
in any path. Tight instrumentation “cuts” the branch that
covers a label, and prevents the propagation of !expr into
path conditions for longer paths. To design a practically
applicable version of the general idea of Bardin et al. [2], we
guard the condition on expr for a label cov_label(expr, id)
with a non-deterministic choice encoded using an additional
symbolic variable whose unique name is built using id. Since
it is never assigned anywhere in the program, this variable
is effectively an additional input used to simulate the non-
deterministic choice for the label: either the label is to be
considered, or it is ignored.

Klee provides several primitives that allow us to achieve
this. First, we can force the generation of a test case with
expression e being null by using a statement klee_assert
(e);. Second, a statement klee_silent_exit (0); stops any
further exploration from its location, and does not generate
any test case. Finally, klee_int ("varname") represents the
value of a symbolic integer variable (of C type int) with name
varname. As a result, tight instrumentation can be achieved
by replacing any label cov_label(expr, id) with

if ( NONDET (id)) {
klee_assert (! (expr));
klee_silent_exit (0);

}

where NONDET(id) defines a symbolic integer variable as
klee_int ("nondet_"TOSTRING (id)). If the non-deterministic
choice indicates that the label is to be considered (i.e.
NONDET(id) holds), then Klee tries to generate a test with
a failure of klee_assert ( !(expr)) (that is, the label being
covered). Otherwise the assert (and, therefore, the label) is
ignored.

Contrary to the naive approach where the set of test cases
𝑇 consists of test cases generated by Klee for complete paths,
in the optimized approach we are only interested in keeping
tests that violate a newly inserted assertion statement. We
achieve this straightforwardly by only considering tests for
which a file with an .assert.err extension exists. As a simple
additional optimization, we insert a call klee_silent_exit
(0); at the very end of the tested program: in this way, we
instruct Klee to ignore every complete path that covers yet
uncovered code, but covers no label.

Iterative Label Deletion. Iterative label deletion (ILD) con-
sists in preventing symbolic execution from trying to cover
a label that has already been covered. Our optimized ap-
proach implements ILD by making use of an external function
covered4 that, given the identifier id of a label, returns a
non-null integer if the label has already been covered. This
function simply queries the persistent store 𝜎 for the status
of label id.

4Similarly to nop, the function covered is defined in a separate library.
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Figure 3: Iterative label deletion

Our implementation of ILD is illustrated by Figure 3,
where solid arrows indicate the main test generation flow and
dashed arrows show the replay steps performed in parallel.
Note that our implementation of ILD is slightly different from
the theoretical approach of Bardin et al. [2]. In fact, they
propose to replay each test as soon as it is generated, while
the path exploration is suspended and waits for the results of
the replay before continuing. We do not record that a label
is covered in 𝜎 as soon as the corresponding assertion fails
on a test case, but only during its replay. Moreover, we only
replay a test case when we detect that Klee outputs a new
test file that leads to a failure of the assertion — i.e. the name
of its associated file is suffixed with .assert.err. The path
exploration of Klee continues in parallel in the meantime, as
it is illustrated by the dashed lines in Figure 3. This means
that the result of subsequent calls to covered may depend
on the timing of system-level operations. An integration à
la Bardin et al. (where the path exploration is suspended
during the replay) may require altering the source code of
Klee, to insert specific code to launch and wait for a replayer
sub-process as soon as a test case is generated. This solution
would delay the path exploration of Klee by extra waiting
time and would not be compatible with our goal to perform
a black-box integration into Klee.

Our combination of tight instrumentation and ILD (illus-
trated in Figure 4) is achieved by replacing each cov_label(expr,
id) with:

if ( NONDET (id)) {
if (! covered (id))

klee_assert (! (expr));
klee_silent_exit (0);

}

By guarding the assertion with a call to covered, we cut any
branch leading to an already covered label, and instruct Klee
to ignore the potentially complex expression of the label
predicate.

An attentive reader will notice that this version is slightly
different from the proposal of Bardin et al. [2, Fig. 7] that was
suboptimal. Indeed, in their proposal (and contrary to their
declared intention), in the case where a non-deterministic
choice indicates that the label must be considered but it is
marked as already covered, the program does not exit and
symbolic execution continues the exploration of the rest of
the program. Hence the following branches can be explored
in a redundant way, when a non-deterministic choice is true
and false. This apparently small issue was rather tricky to

statement1;
// label id: expr
statement2;

−→

Figure 4: Optimized instrumentation of labels

find and to fix. This confirms that it is important to validate
a theoretical approach by a working tool implementation.

Measuring Coverage. An essential feature of the optimized
approach is that the code instrumented for the path explo-
ration in Klee is not the same as for measuring the coverage
of test cases. Thanks to the intrumentation presented above,
during the path exploration, the condition of a label is con-
sidered only when necessary: at most once on a program
path and only if the label is not yet covered. The coverage
computation relies again on the replayer described in Sec-
tion 4.1. Therefore, during the replay of a test case, all labels
are checked for being covered.

5 EVALUATION
Thanks to adopting a black-box approach, the effort to imple-
ment our approach as a front-end for Klee is limited. Indeed,
our tool prototype Klee4labels mostly consists of about 700
lines of OCaml code, along with about 300 lines of C for
instrumentation macros and the library of external functions.
This prototype is publicly available5.

To help us in evaluating our approach, we have also de-
signed an extended version of Klee4labels, with a more ad-
vanced implementation of the label coverage store (whose
optimized implementation is proprietary), an automated gen-
eration of test harnesses, and further treatment of generated
tests to produce readable C code for instance. Nevertheless,
the main optimization feature is the instrumentation of labels,
which is the same in both versions of the tool. The rest of
this section shows evaluation results based on the extended
version of Klee4labels. We consider the following research
questions:
RQ1 Label coverage: does the support for labels lead to a

high coverage of labels by Klee?
RQ2 Size of the test suite: does the label-guided generation

lead to test suites of reasonable sizes?
RQ3 Efficiency: what is the time overhead that is due to the

exploration of labels by Klee?
To answer these questions, we chose to evaluate our op-

timized front-end for Klee on the same programs as in [2],
plus a few demonstrative toy examples: tritype is a well-
known program widely used for test generation; power is the
program presented in Section 3; selection_sort is a classic
implementation of a sorting algorithm; modulus comes from
TestComp’22 [5]; fourballs comes from [26]; tcas and replace

5https://github.com/OCamlPro/klee4labels hosts the full source code
of Klee4labels, along with several Klee drivers that correspond to the
examples of this section.

https://github.com/OCamlPro/klee4labels
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come from the Siemens test suite [12]; get_tag and full_bad
come from the Verisec benchmark [20]; and gd comes from
MediaBench [22]. Experiments were performed on a laptop
computer with 16 GB of RAM and a 1.8 GHz Intel Core i7
CPU running GNU/Linux. We used the latest development
version of Klee available6 with its default options, on our
benchmark programs compiled to LLVM bitcode using De-
bian clang version 14 (with default optimization settings).
The results7 are presented in Table 1.

To evaluate our tool in terms of label coverage, test suite
size and execution time, we ran it on the same programs with
four different modes: a mode without label instrumentation,
and three modes supporting labels in different ways. In the
first mode, called the ignore mode in Table 1, each label is
replaced with an empty instruction block. Thus, this mode
corresponds to what Klee does on its own, and is used as a
witness. The second mode implements the naive instrumen-
tation described in Section 4.1. The third mode uses tight
instrumentation but does not replay test cases as soon as
they are generated, thus performing a full exploration of the
instrumented program. The last mode, called optim, corre-
sponds to our optimized implementation, with tight label
instrumentation and iterative label deletion, and where the
generated test cases are replayed in parallel. In the three first
modes, generated tests are replayed after the termination of
Klee in order to measure the reached coverage and to elimi-
nate redundant tests in terms of coverage (with no guarantee
of minimality).

We ran each mode on each program, with various coverage
criteria: DC, CC, MCC and WM. For two programs having
sufficiently relevant conditions (check and gd), we also used
the LIMIT coverage criterion, which is LIMIT-N with 𝑁 = 0.
For each experiment, we limited the execution time of Klee to
60 s. Along with the total number of labels (#labels) added
to express the selected criterion and the number of covered
labels (#covered), we recorded the following measures. As
reported by Klee, we have the number of LLVM instructions
(#instr.) and the number of paths symbolically executed by
Klee (#paths)8. We report the number of tests kept after
replay (#tests, i.e. |𝑇 ′|) and the total number of tests gener-
ated by Klee (gen, i.e. |𝑇 |). They may differ a bit even in the
optimized mode9. Finally, we only report the total execution
time of Klee as its execution time dominates every other
computation of the whole front-end, including automated
coverage label annotation by LAnnotate, and replays. We
denote timeouts with ‘t.o.’, and also denote with ‘—’ the
absence of any usable measure obtained from Klee after a
timeout.

6We built Klee from its latest sources available at https://github.com/
klee/klee on the the 25th June 2022 (commit 667ce0f1), with STP
2.3.3 as default solver.
7More detailed results can be found the long version of the paper on
https://doi.org/10.48550/arXiv.2211.14592.
8The number of paths is the sum of “complete paths” and “partially
completed paths” reported by Klee.
9Tests reaching RTEs are filtered out as explained in Section 4.1. More-
over tests that only differ in the values assigned to non-deterministic
inputs — the symbolic variables prefixed with "nondet_" — are unified.

RQ1. For simple criteria like DC or CC, the all-path cov-
erage of Klee is sufficient to cover all labels. However, when
aiming at complex criteria like MCC, WM or LIMIT, all-path
coverage misses some behaviors most of the time. The need
to help the exploration of the program with test objectives
is prominent for these criteria. Comparing the results of the
instrumented modes to the ignore mode, the label coverage
is improved in 16 out of 27 experiments. With the optimized
mode, the improvement spreads from 1,5% up to 600% (for
power with WM), with a median of 14% and an average of
70%. This shows that label-guided test generation effectively
leads to a better coverage of labels.

The coverage obtained in the ignore mode is on average
69% of the chosen criterion, while reaching 80% in the naive
mode and 81% in the tight and optimized modes. In 10 out
of 27 experiments, a coverage of more than 90% is achieved
with the optimized mode. More accurate measures could be
performed if we ruled out uncoverable labels (also called
infeasible), since a coverage of 100% is not always possible.
However, we have no immediate way to perform this analysis
so far, and we leave the treatment of uncoverable labels as
future work.

RQ2. Since each instrumentation mode adds paths to the
original program, and Klee aims at covering all paths, the
size of the generated test suite grows with the size of the
path space. For example, on tcas with WM, as the number of
explored paths grows from 44 (ignore), to 1484 (× 34, naive),
to 2598 (× 59, tight), the number of generated tests grows
from 18 (ignore), to 37 (× 2, naive), to 52 (× 2.9, tight). On
some examples, the size of the test suites generated by the
naive or the tight modes grows up to 7 (checkutf8 or tritype
with WM) and even 10 times (fourballs with WM).

On the contrary, with the optimized mode, the size of the
generated test suite (i.e. |𝑇 |) is better controlled. For the
examples mentioned above, the optimized mode generates 18
tests for tcas (× 1), 56 tests for checkutf8 (× 2.4), 22 tests
for tritype (× 1.6), 7 tests for fourballs (× 1.8). This grows
up to × 4 for power with WM. Interestingly, the optimized
mode does not lead to a larger test suite than the ignore
mode in 17 cases out of 27, and it leads to a strictly smaller
one in 8 cases, for a resulting coverage that is at least equal.
The iterative deletion of labels that reduces the exploration
to only yet uncovered labels proves to drastically limit the
growth of the generated test suite.

As explained above, the generated test suite is filtered to
eliminate tests reaching RTEs, as well as redundant tests that
Klee may generate due to non-deterministic inputs. Therefore
the number of tests actually kept in the resulting test suite
(i.e. |𝑇 ′|) is even smaller. The final test suite in the optimized
mode is on average 0.98 times smaller than the one obtained
with the ignore mode, and strictly smaller in 14 cases out of
27.

RQ3. The exploration time of Klee grows with the size
of the path space, and as explained above, the path space
grows with each instrumentation. This leads to an overhead

https://github.com/klee/klee
https://github.com/klee/klee
https://doi.org/10.48550/arXiv.2211.14592
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𝒞 (#labels) measure ignore naive tight optim

po
w
er

(1
8
lo
c) DC (4) #covered 4 4 4 4

#instr. 4692 8230 16 279 2192
#paths 101 101 829 111
#tests /gen 3 /3 3 /3 3 /4 2 /4
time (s) 8.3 7.6 7.9 1.2

MCC (4) #covered 4 4 4 4
#instr. 4692 8230 16 279 1783
#paths 101 101 829 91
#tests /gen 3 /3 3 /3 3 /4 3 /5
time (s) 7.9 8.4 9.0 1.2

WM (25) #covered 3 22 21 21
#instr. 10 284 — 58 957 69 195
#paths 101 — 3358 3525
#tests /gen 3 /3 9 /— 10 /26 7 /12
time (s) 8.4 t.o. t.o. 27.0

tr
it
yp

e
(2
2
lo
c) MCC (38) #covered 27 38 38 38

#instr. 473 2389 2711 2366
#paths 14 27 172 152
#tests /gen 14 /14 27 /27 26 /38 24 /24
time (s) 0.8 1.7 1.7 1.7

WM (101) #covered 59 29 92 92
#instr. 757 — 6955 5220
#paths 14 — 363 272
#tests /gen 14 /14 11 /— 33 /92 22 /22
time (s) 0.5 t.o. 4.0 1.3

se
l_
so
rt
(2
4
lo
c) DC (8) #covered 8 8 8 8

#instr. 43 820 70 289 121 484 8413
#paths 238 238 4200 322
#tests /gen 6 /6 5 /5 4 /8 4 /6
time (s) 9.6 9.3 15.0 1.2

MCC (8) #covered 8 8 8 8
#instr. 43 820 70 289 121 484 8347
#paths 238 238 4200 321
#tests /gen 6 /6 5 /5 4 /8 4 /6
time (s) 9.0 9.3 13.9 1.2

WM (40) #covered 27 31 31 31
#instr. 71 784 388 367 287 329 382 183
#paths 238 760 12 007 17 714
#tests /gen 5 /5 9 /9 7 /31 6 /6
time (s) 8.4 t.o. t.o. 44.6

m
od

ul
us

(2
5
lo
c) DC (8) #covered 8 8 8 8

#instr. 8042 13 717 22 654 1222
#paths 159 166 1184 60
#tests /gen 5 /6 5 /6 5 /10 3 /6
time (s) t.o. t.o. t.o. 1.2

MCC (8) #covered 8 8 8 8
#instr. 8870 14 099 24 844 1131
#paths 172 171 1294 54
#tests /gen 5 /6 5 /6 5 /10 3 /6
time (s) t.o. t.o. t.o. 1.2

WM (28) #covered 7 14 7 7
#instr. 12 286 9720 28 679 28 790
#paths 156 75 1212 1220
#tests /gen 5 /6 4 /6 5 /18 5 /14
time (s) t.o. t.o. t.o. t.o.

fo
ur
ba
lls

(3
0
lo
c) MCC (6) #covered 6 6 6 6

#instr. 262 319 384 376
#paths 4 4 16 14
#tests /gen 4 /4 4 /4 4 /6 4 /4
time (s) 0.1 0.1 0.1 0.1

WM (68) #covered 39 43 43 43
#instr. 392 2846 2355 1788
#paths 4 42 103 79
#tests /gen 4 /4 22 /22 5 /43 4 /7
time (s) 0.1 t.o. 3.9 1.1

fu
ll_
ba
d
(6
5
lo
c) MCC (34) #covered 27 28 28 28

#instr. 10 765 30 815 48 091 36 873
#paths 207 235 2131 1641
#tests /gen 12 /13 13 /15 14 /31 12 /13
time (s) 14.0 24.9 26.5 17.9

WM (86) #covered 65 66 66 66
#instr. 14 435 75 123 104 191 72 554
#paths 207 357 3817 3408
#tests /gen 12 /13 16 /18 13 /69 10 /13
time (s) 12.8 41.2 47.8 23.8

ch
ec
ku

tf
8
(7
4
lo
c) MCC (52) #covered 42 42 42 42

#instr. 10 503 29 169 62 549 50 170
#paths 194 247 2936 2428
#tests /gen 23 /23 24 /24 31 /42 23 /23
time (s) 2.7 3.2 6.7 6.2

WM (178) #covered 80 146 143 143
#instr. 17 801 305 984 169 042 126 977
#paths 194 884 6884 6069
#tests /gen 23 /23 37 /43 50 /159 44 /56
time (s) 2.4 30.8 31.8 18.5

LIMIT (25) #covered 14 25 25 25
#instr. 7963 966 752 33 773 17 803
#paths 194 11 158 1561 853
#tests /gen 23 /23 53 /53 25 /25 25 /26
time (s) 2.0 49.3 6.5 3.7

re
pl
ac
e
(9
6
lo
c) MCC (22) #covered 17 17 17 17

#instr. 21 220 41 908 69 542 60 141
#paths 121 121 2333 2099
#tests /gen 8 /8 8 /8 9 /17 7 /7
time (s) 0.1 0.2 1.2 1.1

WM (40) #covered 23 26 26 26
#instr. 27 124 208 937 151 659 123 351
#paths 121 341 5135 5015
#tests /gen 8 /8 10 /10 9 /26 3 /4
time (s) 0.1 0.6 4.6 4.1

tc
as

(1
10

lo
c) MCC (66) #covered 51 53 53 53

#instr. 8527 20 486 34 057 30 179
#paths 44 68 1456 1363
#tests /gen 23 /23 21 /21 17 /53 13 /13
time (s) 0.4 0.7 1.9 2.2

WM (87) #covered 38 52 52 52
#instr. 9977 861 437 56 147 47 106
#paths 44 1484 2598 2027
#tests /gen 18 /18 37 /37 29 /52 18 /18
time (s) 0.6 22.7 8.3 3.6

ge
t_
ta
g
(1
11

lo
c) MCC (130) #covered 63 63 63 63

#instr. 231 544 1 286 607 460 391 449 894
#paths 3714 3714 27 869 26 494
#tests /gen 32 /32 27 /27 32 /67 27 /30
time (s) 1.1 3.3 t.o. t.o.

WM (208) #covered 129 135 135 135
#instr. 241 482 1 620 399 1 067 978 924 940
#paths 3714 4699 42 314 42 840
#tests /gen 33 /33 36 /36 36 /135 22 /25
time (s) 0.8 5.7 t.o. t.o.

gd
_f
ul
l_
ba
d
(1
56

lo
c) MCC (70) #covered 57 59 59 59

#instr. 541 633 794 240 1 225 078 1 019 620
#paths 4201 4285 41 011 32 337
#tests /gen 35 /35 43 /44 43 /61 30 /31
time (s) 3.0 4.2 27.8 24.7

WM (216) #covered 139 159 158 158
#instr. 633 653 5 728 717 1 328 045 1 158 999
#paths 4201 19 401 45 734 46 290
#tests /gen 32 /32 50 /53 40 /166 28 /31
time (s) 3.8 44.5 t.o. t.o.

LIMIT (19) #covered 6 16 16 16
#instr. 492 819 1 609 082 611 393 560 088
#paths 4201 14 435 11 192 7806
#tests /gen 33 /33 46 /46 16 /16 16 /16
time (s) 3.4 11.2 7.8 5.4

Table 1: Selected experimental results, where ‘t.o.’ denotes a timeout (set to 60 s), and ‘—’ denotes the absence of any usable
measure obtained from Klee after a timeout.
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of × 6.3 on average10 for the naive mode (up to × 40 on
tcas with WM), and of × 8.8 on average for the tight mode
(up to × 50 on fourballs with WM). On the contrary, for
the optimized mode, the overhead is better controlled, with
an average overhead of × 4.6 and a maximum of × 30 for
replace in WM.

On some examples, the optimized mode is even faster
than the ignore mode: that is the case on programs with
a lot of different paths but simple control-flow, like power,
selection_sort and modulus. For example on modulus, the
optimized mode ends after 1.2 s, while the ignore mode times
out. On this kind of programs, for criteria like DC, CC or
MCC, targeting labels drastically decreases the exploration
time of Klee, for the same achieved coverage.

Interestingly, the overhead for the optimized mode drops
down to a maximum × 2.2 when the chosen criterion can
be fully satisfied. We noticed that Klee spends a lot of time
on uncoverable labels. In fact, given a coverable label, either
it is covered by the test specifically produced for it, or it is
covered by executing another test, produced for another label.
In the case of an uncoverable label, the latter cannot happen,
so Klee needs to explore all the paths leading to this label,
but finally fails to produce any test for it. This loss of time
is particularly noticeable in the examples where all coverable
labels are covered in less than 60 s (sometimes in the first
ten seconds), but the timeout is reached trying to cover the
uncoverable ones (e.g. get_tag with MCC and WM).

6 RELATED WORK
Test generation for labels. Support for labels was initially

implemented inside the dynamic symbolic execution tool
PathCrawler [2, 3]. This tool supports several control-flow
coverage criteria from instruction to all-path coverage, and
a bounded version of all-path named 𝑘-path coverage [31].
PathCrawler’s depth-first search algorithm was extended to
support labels in such a way that iterative label deletion is
intimately interleaved with symbolic execution. The experi-
ments show the efficiency of the approach with respect to the
standard algorithm, allowing for a better label coverage (from
3% up to 39%) for only a slight overhead (median overhead
of 37%, average overhead of 115%) [3].

Our support of labels for Klee follows a black-box approach,
therefore the efficiency of the two tools cannot be directly
compared. In particular, our instrumentation is totally inde-
pendent of Klee’s search algorithm, while the search algorithm
of PathCrawler was significantly modified to support label
coverage. Moreover, in our tool, the replay of produced test
cases is done using the replay function provided by the API of
Klee, which launches the executable from its very beginning.
This induces an additional cost at each test execution, while
this cost is minimized in the integration to PathCrawler. As
the latter tool is not publicly available, we were not able to
compare its efficiency to that of our implementation. Based

10We only compare experiments ending before the timeout.

on the available evaluation results [2], we achieved compara-
ble results in terms of achieved coverage as well as execution
time.

The PathCrawler extension to labels has been used in in-
dustrial experimentations [4, 21]. The authors designed a
unit test generation tool that combines several formal and
non-formal test generation algorithms to target the MC/DC
criterion. The C program is first annotated with coverage
labels for this criterion, then several tools based on different
techniques are called. After eliminating infeasible labels, they
generate a test suite targetting the remaining labels. The
tool uses a genetic algorithm, CBMC [6], and PathCrawler
sequentially, to finally proceed to a test suite optimization
phase. The authors achieve a coverage of 99% of MC/DC
in about half an hour, on a case study of 82,000 lines of C
code with integer data. This work gives interesting directions
for improving efficiency and scalability. In particular, the
detection of infeasible labels prior to test generation, and
the collaboration between different tools, are the key to the
scalability of the approach.

DSE enhanced with coverage criteria. Several work ex-
tended white-box testing techniques and tools to coverage
criteria, for different programming languages. For example,
in the Apex [16, 25] tool, which is an extension of Pex [30],
coverage criteria like mutation or condition boundaries are
added as constraints in the path conditions computed by the
dynamic symbolic execution. Another extension of Pex for
mutation testing, PexMutator [32], instruments the program
under test with weak-mutant-killing constraints. Each of these
constraints is wrapped as a conditional statement, and Pex is
then called on the resulting program. This approach compares
to what we call naive instrumentation in Section 4.1. Another
comparable approach is adopted for white-box testing for
Java by Papadakis and Nicos [27], where weak mutations are
encoded as new branching conditions in the source code, of
the form original expression ≠ mutated expression. None of
these works tackle the path explosion problem caused by the
addition of branching conditions.

Assertion and RTE checking. Besides traditional coverage
criteria, users often want to test given properties of their
programs, like the absence of certain runtime errors and the
satisfaction of assertions. This is the aim of assertion-based
testing [10, 14, 19], where the analysis of the program is
reduced to the scope of the targeted property. Godefroid
et al. [14], in particular, uses dynamic symbolic execution
to compute the set of all the paths reaching the targeted
property: if none of the resulting path conditions is satisfiable,
the unreachability of the property is proven; otherwise, a
counterexample gives a test case.

In a similar way, CBMC [11] performs bounded model-
checking on a C source code, in order to check for reachability
properties (hand-written or known runtime errors). The tool
is also able to perform test case generation along different
coverage criteria, automatically encoded as reachability prop-
erties in the code [1]. This instrumentation of the code with
extra assertions to encode criteria makes it very close to our
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annotation with labels. However, since model-checking does
not explore program paths one by one, no extra instrumenta-
tion is needed and the BMC algorithm is very efficient when
treating these additional assertions.

7 CONCLUSION AND FUTURE WORK
A larger support of various coverage criteria in test generation
tools remains a challenging research topic. Coverage labels
offer a unified framework for specifying coverage criteria in a
generic way. However, labels are still not supported in popular
test generation tools. Inspired by a previous theoretical pro-
posal for an efficient test generation technique for labels by
Bardin et al. [2], in this work we show how to integrate a ded-
icated support for labels into Klee [6], a popular open-source
test generation tool based on dynamic symbolic execution.
We perform a lightweight black-box integration, which does
not need to modify the underlying test generation strategy
and can therefore directly benefit of various strategies and
optimizations of the tool. We expect that this work will fa-
cilitate and guide a lightweight integration of this technique
into other similar tools. Experiments with our version of
the tool on several benchmarks confirm the benefits of the
proposed approach. In particular, our approach efficiently
achieves basic criteria while generating fewer and more tar-
geted test cases than when Klee is used directly. On more
advanced criteria like multiple conditions, weak mutations,
and condition limits, our approach is capable of efficiently
achieving high coverage with a reasonable overhead.

Future work includes a large industrial evaluation of the
proposed approach on real-life code. Detecting infeasible
objectives before running test generation is another promising
perspective, since it can avoid the waste of time and effort
of test generation tools trying to cover test objectives that
cannot be covered. It can rely on tools like CBMC [11] and the
LUncov module of LTest [3]. Another future work direction is
a further extension of the proposed approach to other criteria
not expressible with labels [23, 24]. Finally, integration of
the proposed approach into other tools, based on dynamic
symbolic execution or other test generation techniques like
fuzzing, can be an interesting extension for these tools.
Acknowledgement. Part of this work was funded by the French
Defense Innovation Agency via RAPID project TAGAda.
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