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Lack of numerical precision in control software — in particular, related to trajectory computation —
can lead to incorrect results with costly or even catastrophic consequences. Various tools have been
proposed to analyze the precision of program computations. This paper presents a case study on
numerical analysis of an industrial implementation of the fast marching algorithm, a popular path
computation algorithm frequently used for trajectory computation. We briefly describe the selected
tools, present the applied methodology, highlight some attention points, summarize the results and
outline future work directions.

1 Introduction

Numerical precision of algorithms has become an important concern for modern critical software. Ac-
cumulation of rounding errors can lead to serious issues in programs involving floating-point numbers.
Such accumulated errors can significantly affect the accuracy of computations and lead to incorrect
results. Even for a mathematically correct algorithm — considered in real numbers — its computer
implementation can give inaccurate or incorrect results if this implementation does not properly take
into consideration numerical precision aspects of the resulting computation in floating-point numbers.
In critical software, in particular in control software related to trajectory computation, lack of numeri-
cal precision can lead to incorrect results with costly or even catastrophic consequences. Well-known
examples include the Patriot missile failure in 19911 and the crash of Ariane 5 in 19962.

The fast marching algorithm [10] is a popular path computation algorithm frequently used for trajec-
tory computation in autonomous systems. It answers the question of which path is optimal between two
given nodes, that is, has the shortest time or, more generally, the smallest weight. The algorithm works in
two steps. A first step performs a forward wave front propagation from the given origin point, computing
the time the wave front will take to reach each point (of the plan, or grid, or graph). A second step uses
the resulting computation to perform a backward propagation from the final point to the origin point in
order to compute an optimal path. This algorithm has various applications for trajectory computation and
image segmentation. The purpose of this work is to investigate the numerical precision of an industrial
implementation by Thales of this algorithm over a discrete grid.

1See https://www-users.cse.umn.edu/~arnold/disasters/Patriot-dharan-skeel-siam.pdf.
2See https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html.

https://www-users.cse.umn.edu/~arnold/disasters/Patriot-dharan-skeel-siam.pdf
https://www-users.cse.umn.edu/~arnold/disasters/ariane5rep.html


2 Numerical Analysis of a Path Computation Algorithm

Numerical analysis of such trajectory computation algorithms is a very challenging and time-consu-
ming task. Execution paths in the code are typically very long and go through many instructions. Each of
them can have an impact on precision and robustness of the algorithm. Indeed, such a path can go through
many unstable branches, that is, branches after a conditional expression for which a small imprecision of
computation or a small variation of input values can change the truth value of the condition and lead to
another branch in the code (ex: else instead of then branch of a conditional statement, or one more loop
iteration), possibly impacting the rest of the algorithm. Rounding a floating-point number to an integer
can have a similar impact when the resulting integer is later used in the code: if a value around 100.0
can be rounded to 99 or 100, it can potentially have a significant impact. Moreover, since the algorithm
simulates a continuous real space by a discrete grid, a deviation at one node can easily involve different
nodes and thus lead to a quite different result.

Various techniques and tools have been proposed to analyze the precision of program computations.
They include dynamic analysis and static analysis techniques. In this work, we use three popular nu-
merical analysis tools: Cadna [7] and Verrou [6] realizing (possibly unsound) dynamic analysis, and
FLDLib [12] performing a combination of sound abstract interpretation and dynamic path exploration.

Contributions. This paper presents a case study on numerical analysis of an industrial implementation
of the fast marching algorithm. While the considered implementation is currently not publicly available,
the underlying algorithm is classic, therefore we believe that the presented methodology and findings can
be of interest for other implementations of similar (and possibly other) algorithms. We briefly describe
the selected tools, present the applied methodology combining several tools, highlight some attention
points, summarize the results and outline ongoing and future work directions.

Outline. Section 2 presents the considered algorithm. Section 3 describes the verification methodol-
ogy, the selected tools and our findings. Section 4 provides a conclusion and future work perspectives.

2 The Verification Target: the Fast Marching Algorithm

This section provides a simplified presentation of the problem and the implemented algorithm without
giving all technical and theoretical details (which are not mandatory for understanding the paper). For a
more thorough description of theory behind the Fast Marching Algorithm, one may refer to [11].

The problem under consideration for the study is named the minimum-cost path problem. On a
finite graph with weighted edges, this problem can be stated as follows: which path to take between
two specified vertices so that the sum of weights along this path is the lowest among all possible paths
between the two nodes. When the weight is (seen as) the distance between the nodes, this problem is
also called the shortest path problem, and the cost is (seen as) the time to reach the point. Different
algorithms exist to solve the shortest path problem (e.g. Dijkstra, Bellman-Ford).

In our case, we are interested in the definition of the minimum-cost path problem in the continuous
case: let us consider the problem in Rn. A cost density function τ : Rn → (0,∞) gives the cost at each
point of the space. The minimum-cost path problem between A and B, two points in Rn, is to find a path
c(s) : [0,∞)→ Rn that minimizes the cumulative cost (often interpreted as the arrival time) from A to B.
The cumulative cost for a path c between A and M is:

Tc(M) =
∫ l

0
τ(c(s))ds
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where l is the length of path c between A and M, c(0) = A and c(l) = M. Therefore, csol is a solution to
the problem if and only if csol ∈ C where C is the set of all paths c between A and B with the minimum
Tc(B).

As stated in [10], if csol is a solution to the problem, it satisfies the equation below, named the Eikonal
equation, for all M ∈ csol:

||∇Tcsol (M)||= τ(M)

where ∇ denotes the gradient, and || · || denotes the Euclidean norm. This equation is, in particular, a
way to describe the propagation of a wave front initiated in point A. The front speed at point M is given
by 1/τ(M), and Tcsol (M) is the time of arrival of the front from point A to point M.

In the presented definition of the problem, the value of τ at a given point depends only on the point’s
location. This case is qualified as isotropic. If τ also depends on the direction of the path at the point,
the cost function is anisotropic. A method to solve this equation in the case of an isotropic problem
discretized on a Cartesian grid was proposed by Sethian in 1995 [10] and has become the starting point
for many extensions. This method, named fast marching method (FMM), shares many aspects with
Dijsktra’s algorithm. Once the equation is solved for all points of the grid, a second step is necessary
to figure out the (or one of the) optimal path solution(s) to the minimum-cost path problem. We will go
over the two steps sequentially.

2.1 First Step: Solving the Eikonal Equation

Basically, given a grid and a starting point A of the grid, Sethian’s method allows one to calculate the
arrival time Tc(M) to any point M of the grid over a minimum-cost path c starting from point A. Each
point M of the grid has 4 neighbors as shown in Fig. 1. Based on a relevant approximation scheme, Tc(M)
is calculated considering the possibilities that the wave about to reach the point M comes from North-
East (with a contribution from the neighbors above and on the right), or South-East (with a contribution
from the neighbors below and on the right), or South-West (with a contribution from the neighbors below
and on the left, as shown in Fig. 1) or North-West (with a contribution from the neighbors above and on
the left). Starting the algorithm with Tc(A) = 0 and Tc(M) = ∞ for all M ̸= A, and picking the next point
M to study in an appropriate order, the process progressively computes the arrival time Tc(M) (or more
precisely, its approximation due to the discretization) for all points M of the grid.

We can further explain the process using the interpretation of the equation with a wave front, illus-
trated in Fig. 2. The black points of the grid have their final value Tc(M) computed, the gray ones have a
tentative value Tc(M) computed, and the white ones still have Tc(M) = ∞, as set at the initialization step.

The set of gray points is named the narrow band. Intuitively, at each step of the algorithm, the
black points have already been reached by the wave, and at least one of the gray points will be reached
next, before any of the white points will be reached. Just like in a classic implementation of Dijkstra’s
algorithm, a priority queue is used to store the gray points. When a point M is selected from the queue, its
neighbors M′ enter the queue (if they were not already part of it) and get their arrival time values Tc(M′)
calculated or updated based on Tc(M). The next point M to be selected in the queue is the one with the
lowest tentative arrival time Tc(M). When selected, such a gray point gets its tentative value Tc(M) turned
to the final one, and the point itself is removed from the queue and labeled as black. Intuitively, since
the tentative arrival time of the wave to this point is the smallest one among the gray nodes, it cannot be
reached even faster through some other node (for which the arrival time will necessarily be bigger) hence
the computed arrival time to it is final. At the beginning of the algorithm, the priority queue is initialized
with A.

The fast marching method has two interesting features:
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Figure 1: Neighbors selected for calculation of Tc(M)

• It is efficient in terms of computational complexity. Indeed, its complexity is similar to that of
Dijsktra’s algorithm, and is of O(n lg(n)), with n being the number of points of the grid.

• It can be proven that the FMM produces a solution that satisfies everywhere the discrete version
of the Eikonal equation, leading to an approximation of its so-called viscosity solution (see for
example [4] on viscosity solutions). So when the grid spacing tends to 0, the solution provided by
the FMM algorithm tends to the continuous solution of the equation.

Though, as Tc(M) is calculated based on the Tc of the neighbors of M, the calculation errors may
propagate over the entire grid. Added up, these errors may lead to a discrepancy for points far from
point A and impact the precision of the global result expected from using FMM. Studying the order of
magnitude of this discrepancy is of great interest to be confident in the implementation of the algorithm.

2.2 Second Step: Finding an Optimal Path by a Backward Propagation

The theory provides a way to find an optimal path, thanks to a property of such a path: its direction
is always normal to the wave front [1]. To produce the result, a so-called back-propagation from the
final point (supposed to be on the grid) is realized, based on a gradient descent following the direction
perpendicular to the wave front curve.

Though, once the arrival time values Tc(M) are calculated for each point of the grid, we are still
in a discrete space and the gradient calculation is not straightforward. The gradient descent can be
approximated by selecting for each point its predecessor among the neighbors, the appropriate one being
the (or one of the) neighbor(s) with the lowest Tc(M). But this approach leads to a path made of following
segments that can be perpendicular one to the next. Moreover, aggregating the length of each segment of
the path will generally lead to a value overestimated compared to the optimal path length in a continuous
space. It would be preferable to provide a visually smooth path with its length approximating the length
of the viscosity solution of the Eikonal equation.

Such an alternative can be implemented with the following approach: starting from the final point of
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Figure 2: Propagation of the wave front

the path, a pseudo-gradient is calculated on each segment around this point, as shown in Fig. 3. The best
point on the segments, i.e. the point (or one of the points) minimizing ∆Tc/distance (that is, maximizing
the speed of the wave) is selected as the previous point of the approximated path. A similar approach is
taken to find out the best point when the gradient is calculated from any point in the middle of a segment.
This leads to a much smoother path, whose length provides a good approximation of the expected length
of the viscosity solution.

Just as in the case of the fast marching algorithm, the calculation is made one point after the other.
Therefore, the calculation errors due to the implementation can lead to an aggregated discrepancy. An
analysis of sensitivity of the implementation to these errors is thus required.

2.3 Applications of These Algorithms

Many fields of application exist for these algorithms. The first is of course related to path calculation
leading to the shortest time between two points, considering the speed of the mobile agent depending
on its position in an area. A less obvious application could be image segmentation [3]. To allow for
different and more specific situations, many extensions to the method have been developed. To name a
few: the possibility to deal with anisotropic costs [8], or with time-dependent costs with no restriction
on sign [2], or the extension taking into consideration constraints like minimum turning radius of the
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Figure 3: Calculation of pseudo-gradient on a segment

moving agent [9].
In our case, the fast marching method is a general approach to produce paths optimizing any kinds of

criteria (or a mix of criteria). The most straightforward situation would be to aim at minimizing time to
reach a location, while the area through which we can move is made of danger-free zones where the speed
can be high, and others surrounded by dangers (mountains, ...) where the velocity should be reduced.
Let us consider another example where time is not the criterion to optimize: the pilot of a plane wishes
to avoid turbulence areas ahead (considered as static). He may want to find a good balance between
disturbance due to very strong winds and the additional distance incurred by avoiding these areas. If the
plane has a steady cruising speed, by defining the cost function τ with high values in the center of the
turbulence areas and decreasing values towards the outside, the fast marching method can provide an
appropriate path to follow (see Fig. 4).

For use cases where a lack of precision can generate additional risks (e.g. air traffic, autonomous
drones), aggregated calculation errors can significantly impact the result of the computation. This con-
cern motivated the current study.

3 The Verification Approach and Results

The target implementation of the path computation algorithm contains more than 6,200 lines of C++
code and provides several test cases. They include realistic test cases over a square grid with 200x200
nodes and obstacles simulated by higher weights, as illustrated by Fig. 4. Internally, the code uses some
C++ STL (Standard Template Library) containers, like vectors, maps and priority queues. So, formal
numerical analysis of this implementation and its adequacy with respect to the underlying mathematical
formulas within a short period of time requires concentrating on successive research questions:

RQ1: What is the accuracy of the computed path cost?

RQ2: Is the computation robust (meaning that a small perturbation of inputs leads only to a small varia-
tion of outputs)?
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Figure 4: Result of calculation of a path avoiding turbulence areas

RQ3: How does the computed path compare to the path obtained on a more or less precise grid (say, with
twice more or twice fewer points on each side)?

This paper focuses on RQ1 and RQ2, while RQ3 is left for future work. To address these questions,
we decided to apply the following methodology that was successfully applied earlier on some simpler
numerical use-cases, except the last item that is more related to deductive verification:

• instrument the tests with different numerical analysis libraries to identify the difficulties in obtain-
ing relevant analysis results and then refine the verification objectives, such as accuracy require-
ments;

• enlarge the tests into analysis scenarios to check whether the analysis scales up and still provides
precise results. Fine-grained analysis scenarios typically replace concrete input values by very
small input intervals and then apply conservative interval operations; larger analysis scenarios can
also be considered;

• apply modular formal verification to the components of the target implementation and assemble
the reasoning results to provide a proof of global correctness.

After presenting the common instrumentation in the next section, we will apply Cadna to address
RQ1, Verrou to address RQ1 and RQ2 by comparing with Cadna results, and FLDLib to address RQ1
and RQ2 to investigate the unstable branches that may have a significant impact on the robustness results.

3.1 A Common Instrumentation Mechanism for Different Verifications

The mechanism for building the target implementation of the fast marching algorithm uses the cmake
tool; so a slight modification of the file CMakeLists.txt enables adding some new executable targets
compiled with specific compilation flags. This feature enables the source code to be easily compiled with
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analysis libraries into a single executable. For the verification purposes, this instrumentation mechanism
competes with abstract interpreters when the abstractions to be used are generic (intervals, affine forms).
But our case study also requires the elaboration of specific abstractions. So, to quickly explore and debug
these newly created abstractions, an instrumentation based on C++ operator overloading and template/-
macros mechanisms seemed to us more efficient than using an existing generic abstract interpreter.

Our default instrumentation mechanism replaces double and float types with data structures car-
rying analysis information like accuracy, as it is often done by instrumentation libraries [7, 12]. Such
data structures implement an overload for the arithmetic operations (+, -, *, /, pow) to infer numerical
properties like the accumulation of round-off errors in numerical computations. Integer types like int
or unsigned int are not instrumented by default. But, the source code can use explicit intrumenta-
tion for these types by replacing int by EnhancedInteger<int> whenever it makes sense for some
EnhancedInteger template class to define. The C++ compiler helps then to statically propagate these
custom types on the source code since an operation manipulating int and EnhancedInteger<int>
generates an error if its result is assigned to an int and not to an EnhancedInteger<int>.

For each analysis target, the file CMakeLists.txt adds specific compilation flags like
-I.../analysis_include -include std_header.h -DFLOAT_MY_ANALYSIS to build the target.
The directory .../analysis_include contains the file std_header.h that conditionally loads the
appropriate analysis data structures for the flag FLOAT_MY_ANALYSIS and replaces the double type with
the macro double defined by #define double EnhancedFloatingPoint<double>.

The research questions stated in the beginning of this section systematically compare two or more
executions. These executions can (and do) follow different control flows (that is, different execution
paths) in the target program. In our experiments, we instrument the code with three different strategies:

1. A single run of a synchronous analysis with a single control flow: this single analysis run prop-
agates complete analysis information for every variable at every point of the execution path until
the end of the program.

2. Multiple runs of asynchronous analyses with a single control flow: a run propagates partial analysis
information until the end of the program. With multiple runs, the user can compute the analysis
result as a model from the correlated input/output data.

3. A single run of a synchronous analysis with multiple control flows: this single analysis run prop-
agates complete analysis information and thanks to additional local loops, it covers all possible
execution paths (which corrects a weakness of Strategy 1 with an additional instrumentation and
execution cost).

For the last strategy, we use SPLIT/MERGE macros introduced and used by FLDLib [12]. A pair of such
macros (SPLIT and MERGE) define a so-called SPLIT/MERGE section: it expands into a local loop that
iterates over all the reachable control flows of the SPLIT/MERGE section in order to analyze them one
after another. A local memory defined in the SPLIT macro saves the memory before the section and
restores it at the beginning of the loop body for an exploration of a new control flow. SPLIT also saves
a control flow identifier for an exploration of a new execution path of the section. It then increments
this identifier to cover another execution path in the next loop iteration. At the end of the loop, MERGE
incrementally synchronizes the results of the local analyses to create a single analysis summary per
variable. The analysis is then continued with this summary until the end of the program.

Beyond these generic principles, the instrumentation may encounter some problems listed below,
which may require minor adaptations to the source code for analysis purposes. In practice, the first two
problems are absent in the modern C++ implementation of the fast marching algorithm.
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• dynamic allocations with C functions malloc and free should be replaced by C++ new operator
with smart pointers (or delete): EnhancedFloatingPoint often has non-trivial constructor and
destructor and the malloc and free functions do not call them unlike new and delete.

• C functions with variable number of arguments and specialized format specifiers (such as scanf
and printf(“%e”, ...)) should be replaced with std::cout, std::cin calls because “%e”
does not recognise EnhancedFloatingPoint.

• In a divide-and-conquer analysis approach, we typically instrument certain parts of the code and
leave others unchanged. But, replacing int with EnhancedInteger<int> also generates many
other replacements. In the case of the fast marching algorithm, the forward propagation part
(Sect. 2.1) and the backward propagation for path generation (Sect. 2.2) share some common meth-
ods. However, replacing int with EnhancedInteger<int> is only required in the backward path
generation. In this case we rename the original method as a template method in the private section
of the class. Then, we duplicate the public method, one with int arguments and the other with
EnhancedInteger<int> arguments. The bodies of the original method and its duplication just
call the template private method. From the caller’s perspective, the C++ “name lookup” generally
generates correct calls.

• The second argument of binary operators whose first argument is of type EnhancedInteger<int>
may be int, unsigned, double, EnhancedFloatingPoint<double>. The instrumentation needs
precise overloaded operators to be called by all the constructs of the source code. In C++-03, pro-
viding an interface for this instrumentation that correctly connects the source operator with the
correct overloading for all type combinations was a very complex task and ultimately produced a
resulting interface that was difficult to manage. That is probably the reason why Cadna 2.1 does
not support long double. Then, the SFINAE (Substitution failure is not an error) [14] feature
allows the definition of such a robust interface, but this remains very technical with maintainance
difficulties. Our libraries use recent C++-20 concepts to manage this class interactions, which
makes the instrumentation more robust.

3.2 Results of the Approach based on Dynamic Analyses

To address RQ1, the objectives of the first analyses are
• ensuring that the code can be instrumented with dynamic analysis libraries (that are generally

simple to use from the instrumentation point of view),

• obtaining initial quantitative accuracy properties to be refined later with more complex analyses,

• evaluating the robustness of the implementation: a small perturbation of input data should generate
a small deviation in the outputs. If the implementation is not robust, we have no chance of proving
formal functional properties, such as “the results depend in a limited way on the size of the grid”.

Dynamic analysis with stochastic arithmetic meets these goals; that is why we use it as a first ap-
proach. To do this, we couple the instrumentation mechanism described in the previous section with
stochastic analysis libraries in order to obtain accuracy and robustness results without any modification
to the source code. Such analyses only require a test case and explore the impact of minor perturbations
on the results after execution of the test scenario.

The Cadna3 [7] library evaluates the accuracy of a code by propagating three executions in a single
run (synchronous analysis with single control flow). This leads to maintaining three values (v0, v1, v2 in

3See https://www-pequan.lip6.fr/cadna

https://www-pequan.lip6.fr/cadna
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Figure 5: (Simplified) trace of the execution with Cadna (in green), where the cost of the path is evaluated
by three values v1, v2, v3.

Fig. 5) for each computed variable var instead of one. To evaluate potential impact of rounding errors,
with this library each floating-point computation involving var is dispatched over v0, v1 and v2. The ideal
results are randomly rounded up or down — with a probability of 50% for up or 50% for down — instead
of using the deterministic IEEE-754 rules implemented in the processor. The average of the three values
provides the expectation of the computed result, while the standard deviation provides an estimate of the
accumulation of round-off errors [13]. Such analysis is synchronous: the three executions are forced to
follow the same control flow (shown in green in Fig. 5) and do not evaluate unstable branches, for which
a possible imprecision can impact the result of a conditional test (and therefore the branch taken after it).
Let us consider a comparison, say d < d′ between two double values d and d′ instrumented by Cadna.
It compares each of the three values v0, v1, v2 obtained for the first value d with the corresponding value
of the three values v′0, v′1, v′2 obtained for the second value d′. Suppose that the first two comparisons
return true and the last returns false. Cadna just reports an “UNSTABLE BRANCHING” and propagates the
last execution into the then branch as well, even if it would naturally execute the else branch.

The instrumentation quickly succeeds on the target code with Cadna (thus fulfilling the first objec-
tive). The algorithm computes (in 0.556s) a path of 322 points as well as the cost of the path, stored
in variable cost. Since cost is the value that the algorithm attempts to optimize, we expect it to be
robust. The cost has an average of 0.392 and a relative error of 1.323×10−15 due to the accumulation
of round-off errors. Cadna also reports the following warnings:

CRITICAL WARNING: the self-validation detects major problem(s). The results are NOT guaranteed.
There are 977194 numerical instabilities
1687 UNSTABLE MULTIPLICATION(S), ...
482538 UNSTABLE BRANCHING(S), 260343 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

The execution of the test case takes 0.182s and generates a shorter path of 320 points with a cost of
0.393257, that is outside the error range computed by Cadna. That confirms — as suggested by the
warnings — that the Cadna results are not conclusive: unstable branches (not evaluated by Cadna)
probably have a major impact on the path computation and therefore on the robustness of the algorithm.

The second analysis uses the Verrou4 [6] tool5. Verrou evaluates the accuracy of a code during
multiple runs by randomly rounding up or down every floating-point computation (asynchronous analysis
with single control flow). Unlike Cadna, Verrou does not need additional memory: since the execution
of the program perturbed by Verrou is non-deterministic, multiple runs provide multiple output values
(see Fig. 6, where we show only four traces for readability). The average and the standard deviation
of the output respectively provide the expected stochastic result and an error that is representative of

4See https://github.com/edf-hpc/verrou
5The Verificarlo [5] tool (see https://github.com/verificarlo/verificarlo) can be expected to produce similar

results, but it was not used in this study.

https://github.com/edf-hpc/verrou
https://github.com/verificarlo/verificarlo
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Figure 6: Four (simplified) traces (in green) from the 10 executions with Verrou. Each trace leads to
computing a (possibly different) path and its cost
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Figure 7: (Simplified) trace of the FLDLib analysis, in which the code of a SPLIT/MERGE section is
executed several times for all executable control flows inside it and the results are consolidated at the end

the accumulation of round-off errors. With ten runs (performed in 16.123s), Verrou provides different
lengths for the optimized path: 324, 307, 308, 307, 315, 315, 314, 317, 312, 300. The average of the ten
values of cost is evaluated to 0.3922 and its standard deviation to 2.68×10−4.

The error produced by Verrou seems to be more consistent than that of Cadna with respect to the
original IEEE-754 floating-point execution. The multiple runs nevertheless do not contain the value of
cost produced by the test case execution since 0.393257 ≫ 0.3922+0.000268. We relaunch the Verrou
analysis several times and we systematically obtain an average and a standard deviation close to these
values. That means that the floating-point execution takes a control path that is distinct from other control
paths in terms of their impact on the cost value. At this point, the use of formal methods appears relevant
to further investigate the relative instability of the floating-point execution.

3.3 Evaluating the Impact of Perturbations on the Control Flow and the Resulting Path

To further address RQ1 and investigate RQ2, the third analysis relies on the FLDLib6 library [12] to
provide a sound over-approximation of the accumulation of round-off errors by maintaining the ideal (in
practice, a very precise machine) computation and the floating-point computation in parallel. FLDLib
relies on SPLIT/MERGE sections (presented above) to analyze unstable branches by exploring each of
the different control flows using abstract interpretation and by consolidating the observed results at the
end. This analysis propagates affine forms for rounding errors and for the possible values on the test case.
The mathematical representation of an affine form is α0+∑

n
i=1 αi×εi, where αi are constant coefficients

in R (approximated by floating-point values with a large mantissa) and εi are free variables in the interval
[−1.0,+1.0]. The error symbols εi represent unknown values due to basic approximations of complex
computations. The program variables can share some εi, which creates linear relationships between some
of these variables. FLDLib also offers advanced features to reduce the size of the re-executed code with
local synchronization annotations (see the FLDLib library documentation and [12] for more detail).

6See https://github.com/fvedrine/fldlib

https://github.com/fvedrine/fldlib
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1 double jm _r e s = ( y − yMin ) / dy ;
2 unsigned i n t jm = ( unsigned i n t ) jm _r e s ;

Figure 8: First unstable branch identified with FLDLib

In practice, we activate the FLDLib analysis after initialization of the mesh. Therefore, the grid is
composed of points with floating-point coordinates considered exact, i.e. without any numerical error.
With this assumption, the analysis only propagates affine forms over 4 execution paths. A simplified
version of an execution trace of FLDLib is illustrated by Fig. 7. After several attempts, we have found
the right settings: 319 bits for the internal mantissa of the coefficients of the affine forms and a limit of 30
shared symbols per expression. With an internal mantissa of 255 bits, the intervals representing the ideal
computations are too wide at the end of the forward wave propagation (see Sect. 2.1). Therefore, the
cost associated with the resulting path is too strongly over-approximated with the interval [−∞,+∞]: the
algorithm performs at some moment a division by the distance between two points, and if the localization
of these points is imprecise, a potential division by zero due to interval arithmetic gives this result. This
first FLDLib experimentation (internal mantissa of 255 bits) is nevertheless interesting because, like with
Cadna and Verrou before, it also produces a resulting path (with 278 points) that is different from the
path produced by the floating-point execution of the test case (with 320 points).

FLDLib quickly identifies the location in the source code of a first unstable branching, for which
it explores both branches in floating-point and ideal computation. It concerns the computation of the
second instruction of Fig. 8 with the values y=0.5, yMin=0, dy=0.005.

In floating-point semantics, the value of jm_res is 100. In the ideal semantics, the value of dy is
5×10−3 +1.0408×10−18 since all the constants take the same floating-point value for both semantics;
therefore, the analysis shows that the ideal value of jm_res belongs to the small interval [100−2.082×
10−16,100− 2.081× 10−16]. The value of jm is then 100 in floating-point semantics and 99 in ideal
semantics, which creates an unstable branching. The analysis then separates the joined control flow of
both semantics into two control flows and explores them separately. These control flows merge at the
end of the source code after the computation of the path and its cost. The merge operation computes
the numerical error from the substraction between the floating-point value and the ideal small interval of
the cost, each value being inferred by the corresponding control flow. The result of this second FLDLib
experimentation (internal mantissa of 319 bits) shows an interesting finding: the unstable branch has no
impact on the cost and on the points of the path, even if the sorted priority queue (see the gray points
of Fig. 2) is organized differently in the two control flows. Therefore, the resulting paths both have 320
points, like the floating-point execution and they return a relative error of 7.058×10−16 for the cost.

The duration of this second FLDLib analysis is 114 min after a limited exploration of only 4 execu-
tion flow paths. For one control flow path, the analysis encounters 351296 unstable branches. Therefore,
the estimated time for the complete analysis would be 2351296 ×114min/4. Nevertheless, these prelim-
inary results allow us to identify the first unstable branches and to show their absence of impact on the
computed path and its cost.

As another finding, this second FLDLib analysis also provides the complete list of locations in the
source code of the unstable branches encountered. This list has only 5 locations (which are executed
multiple times due to loops), each with a unique calling context. The calling contexts show that the
first 4 locations (one of which is the unstable branch of Fig. 8) belong to the forward wave propagation
(Sect. 2.1) and that the last location belongs to the backward propagation dedicated to the path generation
(Sect. 2.2).
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Figure 9: Trace of the FLDLib analysis forgetting unstable branches related to unsigned int conversion

To investigate the impact of other unstable branches, we modify the analysis with an analysis library
that only targets the last unstable branch: the one that has a direct impact on the outcome of the path.
The reason is that the first unstable branches listed potentially concern all the cells of the grid of Fig. 2
(as they are part of the forward wave propagation); therefore, they have little chance of having an impact
on the final path, whereas the last unstable branch directly concerns the cells crossed by the resulting
path (as it belongs to the path generation step). Concretely, the new analysis forces the ideal computation
of the unstable branch created by the unsigned int conversion of Fig. 8 to be equal to the floating-
point point computation. Indeed, we observe in Fig. 9 that for the first branches of the analysis paths,
the control flow of ideal computations follows the floating-point control flow, which was not the case in
Fig. 7. The duration of the new analysis increases significantly: 17 h 20 min instead of 114 min to cover
four different branches7.

The first iteration of this third FLDLib analysis follows a joined control flow for both semantics until
the path and cost are computed, which was not the case in the previous analysis. The reported error
for this iteration on cost is 4.71× 10−13, which is consistent with the Cadna results (1.323× 10−15)
since FLDLib provides a guaranteed over-approximation while Cadna returns a stochastic estimation of
the error. Then, as expected, the first unstable branch is found during the backward path generation.
The second analysis iteration follows only the floating-point control flow and it gives the same result
for cost as the reference execution. The third analysis iteration follows only the ideal control flow and
the MERGE macro at the end of the main function creates an error of 4.66× 10−13 as the maximum
difference between the ideal cost and the floating-point cost. An important finding here is that this small
error satisfies a sufficient stability criterion for our optimization algorithm, even if there are only two
unstable branches evaluated.

The robustness of this conservative analysis, if it is confirmed on all paths despite the unstable branch-
ings encountered by Cadna and qualified by Verrou, suggests that certain computations are redone in dif-
ferent parts of the algorithm, notably between the forward wave propagation (Sect. 2.1) and the backward
propagation for path generation (Sect. 2.2). This would be another interesting finding for such kinds of
algorithms, where some small steps are recomputed several times. Indeed, the stochastic analysis does
not ensure the introduction of exactly the same perturbation if exactly the same computation is performed
several times. Suppose such a redundant computation evaluates to a value res the first time, the stochastic
analysis evaluates it to res+δ the second time, since the pertubations introduced by the analysis are not

7Here is an explanation for this time difference. The first analysis very early encounters an unstable branch that separates
the floating-point control flow from the ideal control flow. The analysis of the floating-point control flow then propagates only
constant values and the analysis of the ideal flow stops propagating affine forms related to the difference between the float and
the ideal value since the floats are no longer present. Conversely, the new analysis has to propagate constants for floating-point
values and affine forms for ideal values and for errors during longer execution fragments, which is costly, including the reduced
product between the inferred error and the subtraction of ideal value and floating-point value.
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Cadna Verrou FLDLib: 4 paths
over 2351296

instrumentation time 10 min 0 s 3 h
analysis time 0.556 s 16.123 s 17 h 20 min

cost error 1.323e-15 2.68e-4 4.71e-13

error of mean cost value
wrt. reference execution

1.25e-3 1.27e-3 4.71e-13

indicative confidence
in results (/10)

4 6 7

reason of error unstable branching original float no inconsistency
inconsistency not evaluated execution not reached for 4 paths

Figure 10: Analysis summary (the floating-point reference execution time without analysis being 0.182 s)

the same. Hence, the branch taken after the first computation may be different from the one taken after
the second, whereas the deterministic IEEE-754 computation guarantees that it will be the same branch.
This issue also occurs for FLDLib analysis in case of over-approximations. In this case, the evaluation
result is res+[a,b], but the analysis cannot guarantee that it is the same branch because the value chosen
in [a,b] the first time may be different from the value chosen in [a,b] the second time. Since the intervals
for the ideal values are very very small (319 bits of mantissa is equivalent to a precision of 4.68×10−97)
and since the main linear relationships are preserved between the variables, the analysis is likely to avoid
certain over-approximations that would consider unreachable branches and generate false negatives.

Figure 10 shows a summary of our first experiments, which required little investment in annotations
of the source code, but a lot of effort in the definition and configuration of the analyses. It gives an
indicative (and subjective, based on our experience) level of confidence for the results of each tool. The
instrumentation time corresponds to the time that was required for the authors to instrument the code. The
analysis time shows the tool execution without the compilation steps. The cost error is the error output
directly produced by the tools for the cost variable. It concerns the standard deviation of the cost values
for the stochastic tools (Cadna and Verrou) and the conservative error for the formally guaranteed tool
(FLDLib). The error of mean cost value is the difference between the mean of the cost values computed
by the tools and the original floating-point evaluation of the variable cost computed by the code without
any instrumentation. The indicative confidence in the corresponding analysis increases when both errors
become closer. The reason of error inconsistency is given in the last line.

3.4 Ongoing Work on Formal Verification for Thin Numerical Scenarios

The aforementioned results are promising and make us believe that a complete formal robustness analysis
for this case study is possible. But we need to cover all of the 351296 unstable branches identified by
the FLDLib analysis to know if the accuracy of the cost is rather close to 1.27×10−3 or 4.71×10−13 for
this test case (cf. Fig. 10). This section presents our ongoing work in this direction.

For this purpose, we add local synchronization annotations around the detected unstable branches
(see the resulting trace in Fig. 11). That means that the unsigned int variable receiving the conver-
sion of the floating-point computation in Fig. 8 is conditionally defined. For instance, the evaluation
of jm_res with the values y=0.5, yMin=0, dy=0.005 can be seen as producing an integer defined as
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Figure 11: (Simplified) trace of the FLDLib analysis with local synchronization points

if b0 then 100 else 99, where b0 is a fresh and free logical variable in {true, false}. For this unstable
branch, b0 evaluates to true in the floating-point semantics and false in the ideal semantics. Further
unstable branches have a more complex evaluation in ideal semantics.

For this propagation, we define a new conditional domain8 in FLDLib that contains cascading con-
ditional expressions or a simple integer value. This domain is implemented as an instantiation of
EnhancedInteger template mentioned in Sect. 3.1. Therefore, it can represent domains like

if b0 then (if b1 then . . . else . . .) else ((if b2 then . . . else . . .))

The conditional domain also propagates to floating-point computations.
The initial code contains integer and floating-point values. Our automatic instrumentation (see

Sect. 3.1) preserves floating-point constants but replaces floating-point variables with the default floating-
point domain containing an affine form for the ideal computation and the accumulation of round-off er-
rors, and an interval for the floating-point computations. Thus, each new domain potentially interacts
with 3 different domains (conditional integer, conditional floating-point, affine forms) and the concepts
of C++-20 are very useful for handling these interactions — adding the conditional domains to FLDLib
required 12 kloc of C++ code.

A finalization of these new domains and their application for the robustness analysis of the case study
is still ongoing. It will require a manual instrumentation of the code (that will probably take more than 8
hours) but can be expected to help analyze the target code.

Robustness analysis is a mandatory requirement before attempting to verify functional properties,
such as the relative independence of the results with respect to the size of the grid (cf. RQ3). Checking
these properties follows the same methodology as checking robustness. We proceed first with simple
tests, then with formal analysis. We start by using the same test case, before attempting later a modular
verification approach based on deductive methods.

4 Conclusion

Numerical analysis of software is important for critical programs, in particular related to trajectory com-
putation used in autonomous systems. It is also a very challenging and time-consuming task. Indeed,
precision and robustness of the algorithm can be impacted by many instructions, especially for programs
with long execution paths and/or simulating a continuous real space by a discrete grid, for which a small
perturbation of data can naturally lead to another behavior.

8This domain is not yet available in the public repository of FLDLib, but we plan to integrate it into the open-source
repository of the tool in the near future.
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This case study paper describes an industrial application of several modern numerical analysis tools
to a real-life path computation algorithm with a realistic test case. We present the applied methodology
and results. An important first step of the study is to ensure code instrumentability and to compare var-
ious analysis results to qualify the impact of unstable branches with stochastic methods (with tools like
Cadna and Verrou). Next, we investigate unstable branches and formally ensure robustness with a formal
analysis (using a tool like FLDLib). The results we obtained seem very promising: we managed to iden-
tify the unstable branches and the corresponding locations on the code that constitute important attention
points for numerical analysis. Dynamic analysis tools (Cadna and Verrou) show that the relative error
in the path computation is sufficiently small, and the algorithm is sufficiently robust. This conclusion
should be confirmed by a formal analysis. A representative subset of unstable branches coming from
different parts of the algorithm has been formally shown (with FLDLib) to ensure expected robustness
properties, while the study for other branches is still in progress. So far, the analysis confirmed that the
algorithm meets the user expectations in terms of accuracy and robustness.

Future Work. This case study suggests numerous future work perspectives. One perspective is to
finalize the investigation of unstable branches. We plan to use the new conditional domains that were
recently integrated into FLDLib and will be evaluated on this case study. Considering other realistic test
cases and replaying the analyses for them is another work direction. Applying the described methodology
on other industrial use cases is another perspective.

As a more ambitious long-term research objective, proving that the result does not depend on the size
of the grid (RQ3) is a much more complex problem. Our plan is to apply a component-based divide-and-
conquer approach on the source code. For each component, this requires formal instrumentation in order
to propagate logical formulas instead of abstract domains. The starting point is the previous instrumen-
tation of the code with its annotations for the synchronization of unstable branches. The methodology
is inspired by the approach used in deductive verification, by first replacing the data structures of the
code with classes representing formal properties. C++ operator overloading will propagate these prop-
erties across components using carefully designed verification unit scenarios. The engineer’s objective
will be to design unit scenarios (such as the postcondition/output invariant of a method/class is formally
contained in the precondition/input invariant of the method/class that takes its results).
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