
Execution at RISC: Stealth JOP Attacks on

RISC-V Applications

Loïc Buckwell[0009−0001−4848−1478], Olivier Gilles[0000−0002−3776−2071],
Daniel Gracia Pérez[0000−0002−5364−8244], and

Nikolai Kosmatov[0000−0003−1557−2813]

Thales Research & Technology, Palaiseau, France
{loic.buckwell,olivier.gilles,daniel.gracia-perez,

nikolai.kosmatov}@thalesgroup.com

Abstract. RISC-V is a recently developed open instruction set architec-
ture gaining a lot of attention. To improve the security of these systems
and design e�cient countermeasures, a better understanding of vulner-
abilities to novel and future attacks is mandatory. This paper demon-
strates that RISC-V is sensible to Jump-Oriented Programming, a class
of complex code-reuse attacks. We provide an analysis of new dispatcher
gadgets we discovered, and show how they can be used together to build a
stealth attack, bypassing existing protections. We implemented a proof-
of-concept attack on an embedded web server compiled for RISC-V, in
which we introduced a vulnerability allowing an attacker to read an ar-
bitrary �le from the remote host machine.

Keywords: Control-Flow Integrity · Code-Reuse Attacks · Embedded
Systems · RISC-V.

1 Introduction

The RISC-V Instruction Set Architecture (ISA)1 is a novel open Reduced In-
struction Set Computer (RISC) ISA, which is often used for embedded systems.
While RISC ISAs innately have a smaller attack surface than Complex Instruc-
tion Set Computer (CISC) ISAs, many of them run critical systems, including
industrial control systems or cyber-physical systems, whose failure may have
dramatic consequences (environmental disasters, loss of human lives...). Using a
novel open ISA has several bene�ts. Its novelty brings security advantages by
taking past failures into experience. Even more important is its open status, as
trust in the architecture relies on community review. This also enables national
independence in microchip supplies; a very important feature as target systems
may be strategical and export restrictions become more common.

While most RISC-V architectures allow a satisfying level of security com-
pared to similar classes of systems [15], they will increasingly become the target
to complex attacks as their relevance in the industrial and strategical �eld in-
creases. Eventually, state-backed attackers are bound to attack them. In order

1 https://riscv.org

https://riscv.org
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to anticipate this threat, security researchers face the challenge to �nd poten-
tial vulnerabilities and imagine suitable protection mechanisms. Code-Reuse At-
tacks (CRA), and speci�cally Jump-Oriented Programming (JOP), are among
the most complex attacks to realize, but also to prevent. They can be very power-
ful when successful, as they can allow the attacker to run an arbitrary sequence
of instructions within the corrupted application. In this article we adopt the
attacker's point of view and try to perform a JOP attack, with the intent of
(1) getting a better understanding of RISC-V systems vulnerabilities, and (2)
ultimately designing better countermeasures to prevent these attacks.

Contributions. We summarize our contributions as follows:

� a �rst analysis of vulnerabilities to JOP attacks on the RISC-V architecture;
� a description of new dispatcher gadgets enabling JOP attacks to bypass
modern mitigations on the RISC-V architecture while increasing its attack
surface;

� a demonstration of feasibility by implementing and testing a stealth JOP
attack on a vulnerable RISC-V application.

Outline. Section 2 introduces code-reuse attacks, countermeasures against
them and the limitations of the latter. Section 3 introduces a new kind of dis-
patcher gadget we found, increasing functional gadgets availability to the level
of ROP attacks. Section 4 describes a stealth attack we developed against a
vulnerable RISC-V application using techniques described in previous sections.
Section 5 compares our approach to other e�orts related to Jump-Oriented Pro-
gramming and RISC-V security. Finally, Section 6 provides a conclusion.

2 Code-Reuse Attacks Overview

The aim of a Code-Reuse Attack (CRA) � in opposition to code injection at-
tacks � is to reuse existing code in a target application in order to perform
unintended and often malicious actions. It is not in itself a vulnerability, but
relies on an earlier memory corruption allowing to hijack the execution �ow.
Such vulnerabilities are well-known, but still prevalent in many systems [23].
An example of a CRA is return-to-libc [21], where the execution �ow is redi-
rected to a single function after manipulation of arguments within the stack of
the corrupted function. More sophisticated attacks with the same principle of
stack corruption have emerged, among which the Return-Oriented Programming

(ROP) technique [19,4]. It consists in chaining gadgets, i.e. code snippets com-
posed of a few instructions and ending with a linking instruction. In the case of
ROP, the linking instructions are "return to caller" which pop and jump to the
next gadgets' addresses stored in the corrupted stack. Using this approach, the
attacker can run an arbitrary sequence of legit instructions.

2.1 Countermeasures

Multiple methods were proposed and used in order to defend against return-to-
libc and ROP. Address Space Layout Randomization (ASLR) randomizes base
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addresses of memory mappings. Stackguard [6] introduced the notion of canaries
to protect the integrity of the stack. Yet solutions relying on secrets depend much
on the system entropy, which tends to decline as the system uptime increases �
an important issue for embedded systems that can run for decades without
reboot. Both ASLR and Stackguard are even weaker on 32-bit systems [20], and
several techniques have been proposed to bypass them.

Abadi et al. [1] �rst formally identi�ed a process property named Control-

Flow Integrity (CFI), de�ned by the adherence of the runtime execution �ow
to its intended behavior. In order to ensure this property against attackers,
they proposed two complementary protections: shadow stack and landing pads2.
Shadow stack protects backward-edge jumps by pushing procedure return ad-
dresses to a memory protected stack at call time. When a procedure returns,
its return address is popped from both stacks and compared. If they di�er, a
memory corruption is detected. Landing pads are special instructions protecting
forward-edge jumps. When implemented, each jump destination must be one of
these instructions. However, even if an application is compiled with landing pads,
it can still use shared libraries that are not, e�ectively loosing bene�ts for the
corresponding code. Nevertheless, this protection makes theoretically all kinds
of CRA nearly impossible to implement, and do indeed stop most return-to-libc
and ROP attacks, although often leading to signi�cant fall of performances [3],
as opposed to shadow stacks which can be e�ciently implemented in hardware,
particularly in systems with limited dynamicity such as many embedded and/or
critical systems. Hence, landing pads are less likely to be fully implemented in
these systems.

2.2 Jump-Oriented Programming

Much like ROP, JOP consists in assembling functional gadgets containing useful
instructions present in the target application in order to perform a malicious
action. However JOP attacks do not rely on a corrupted stack: the chaining
mechanism is done by a dispatcher gadget. Its role is to load (see b in Figure 1)
and jump (cf. c ) to the next functional gadget from a dispatch table, generally
injected into a bu�er. Each functional gadget must then end with a jump to the
dispatcher gadget (cf. d ). To do this, at least two registers need to be reserved:
one for the dispatcher gadget (dispatcher gadget register) and one for the dis-
patch table (dispatch table register). The initializer gadget is responsible to set
these registers and to pass control to the dispatcher gadget (cf. a ). Figure 1
illustrates this mechanism with an example, where s1 and a5 are reserved reg-
isters (respectively, for the dispatch table and the dispatcher gadget), and a6

is used to branch to functional gadgets. In this example, the initializer gadget
sets a reserved register from the current stack frame, assuming it is under the
attacker's control.

2 A speci�cation of shadow stack and landing pads for RISC-V is currently under
rati�cation, see https://github.com/riscv/riscv-cfi/.

https://github.com/riscv/riscv-cfi/
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0x00f188a0

0x0af15dab

0xc1afd6b8

0x14526fde

0x00ffe9bd

...

lw a6, 0(s1)
addi s1, s1, 4
jr a6

Dispatch tableDispatcher gadget

Functional gadgets

...

...
jr a5

b

c

d

lw a5, 8(sp)
lw s1, 12(sp)
jr a5

Initializer gadget

a

Fig. 1. JOP mechanic principle.

Building a JOP attack is far more complex than building a ROP attack for
several reasons. First, initializer and dispatcher gadgets operating on the same
registers need to be found to maintain the JOP chain. Although patterns leading
to these gadgets are quite simple, there are very few of them in practice, and
viable combinations of both gadgets are even more scarce. In addition to this
di�culty, for any viable pair, there must be enough compatible functional gad-
gets in order to build the actual attack code (i.e. gadgets ending with a jump to
the dispatcher gadget register). However, the vast majority of functional gadgets
are procedure returns3 but using them would trigger shadow stack detection if
there is one. Argument registers are also a bad option for the dispatcher gadget
register as it would prevent argument passing in the JOP chain. Other registers
must be used but are less common, reducing the attack surface. Last but not
least, side-e�ects in functional gadgets must also be considered as they can break
the gadget chain management by clobbering the reserved registers.

Table 1 shows the number of available gadgets per register in the GNU libc
2.34 compiled for RISC-V 32 bits with M, A and C extensions (RV32IMAC).
These statistics has been gathered with RaccoonV4, an open-source tool we
developed to �nd RISC-V JOP gadgets.

Register ra a5 t1 t3 tp a4 s0 s2 a2 a0 sp s1 a3 t5 s8

Available gadgets 4557 810 318 255 239 184 183 157 147 106 97 86 83 79 68

Table 1. Gadget availability per register in libc (top 15).

For these reasons, JOP attacks remain mostly theoretical. To our knowledge,
there is no publicly known example of a JOP attack. In the following sections,
we demonstrate the feasibility of JOP attacks on applications compiled for the

3 For the RISC-V architecture, it corresponds to gadgets ending with a jump to ra.
4 https://github.com/lfalkau/raccoonv.

https://github.com/lfalkau/raccoonv
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RISC-V architecture, and introduce a new kind of dispatcher gadgets enabling
the use of procedure epilogues as functional gadgets without triggering shadow
stack detection, allowing to craft stealth attacks with a greater attack surface.

3 Autonomous Dispatcher Gadget

In a previous work [10], we managed to build a JOP attack on a RISC-V applica-
tion but because of the aforementioned limitations, we did not succeed to chain
several syscalls, limiting our results. From this experience, we started to search
for more suitable dispatcher gadgets, and found a new kind of them that we
called Autonomous Dispatcher Gadget (ADG). Figure 2 shows an ADG example
and illustrates the JOP principle when using it.

lw a5, 0(s1)
addi s1, s1, 4
jalr ra, a5, 0
bltu s0, s1, -0x10

Functional gadgets

...

...
jr ra

a

b

c

Autonomous Dispatcher Gadget

Fig. 2. JOP mechanism with an autonomous dispatcher gadget.

Unlike classic dispatcher gadgets, an ADG links to functional gadgets through
a JALR instruction, which stores the next instruction's address in its �rst
operand register (ra) and jumps to the target register (see a in Figure 2).
Regarding the speci�cation, this is a procedure call. For this reason, functional
gadgets ending in a jump to ra (procedure returns) can � and must � now
be used in order to avoid shadow stack detection. When they return, control is
given back to the saved return address, which is the instruction right after the
JALR in the ADG (cf. b ). This brings us to the second key point that makes the
ADG's mechanic suitable: the instruction right after the JALR is a branching
instruction that self-links the ADG to itself (cf. c ). From our experience, this
branching instruction is always conditional, but as we will show in Section 4,
ensuring the condition remains true is quite easy.

Reserved registers. In order to craft a JOP attack using an ADG, only one
reserved register is required: the dispatch table register. The dispatcher gadget
register is no longer required as the ADG links back to itself with a branching
instruction. As a consequence, the initializer gadget can use any register to jump
to the dispatcher gadget the �rst time (except ra � this would trigger shadow
stack detection). Reducing the reserved registers constraint between these two
gadgets considerably increases the probability to �nd a compatible pair. More-
over, it also increases the amount of available functional gadgets as only one
register is to be preserved from side-e�ects in order to avoid breaking the chain.
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Code pattern. The �rst autonomous dispatcher we found was in the GNU
libc 2.34, compiled with the second GCC level of optimization (-O2). It seems
to be located in the __call_tls_dtors function (which runs the destructors
in sequence when the program exits), but we cannot con�rm it as the library
is stripped on our system. We also managed to reproduce several ADGs with
simple and realistic code patterns, each involving function pointer calls inside a
loop. Figure 3 shows one of them, and the corresponding generated ADG.

extern void (*states[])();

void run() {
    void (**state)() = states;
    do {
        (*state)();
    } while (*state++);
}

    lw a5, 0(s0)
    addi s0, s0, 4
    jalr a5
    lw a5, -4(s0)
    bnez a5, 0x542

Fig. 3. ADG code pattern and resulting gadget.

From our experience, generated ADGs often use the �rst available saved reg-
isters (s0-11) as the dispatch table register, which is convenient because there
is a good balance of gadgets loading them from the stack (potential initializer
gadgets) and gadgets which do not clobber them, making them compatible func-
tional gadgets. In a similar way, the �rst available argument register starting from
a5 seems to be used by GCC to hold function pointers. This is also convenient
as it allows an attacker to pass at least 4 arguments between functional gadgets
to perform syscalls.

4 Attacking Real-World RISC-V Applications

In order to prove the feasibility of JOP on the RISC-V architecture using an
ADG, we implemented a proof-of-concept attack against a well-known embedded
application: the Mongoose web server; and more precisely their provided http-
server, in which we introduced a memory corruption vulnerability. Mongoose is
a target of choice because it exposes a remote service on the network and is
widely available in many embedded products for con�guration purpose.

In this section, we show how we were able to remotely read the root's private
SSH key stored on disk with a JOP exploit by crafting a malicious HTTP request,
thanks to an ADG.

Attack model. Mongoose is developed in C. We compiled it for a Linux RISC-
V 32-bit system using GCC. The binary and linked libraries have been compiled
with modern protections, using -fstack-protector-all -D_FORTIFY_SOURCE=2.
The second level of optimization (-O2) has also been used for libraries. However,
we disabled ASLR on the target system since it can be bypassed by di�erent
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techniques [11] [9], and is out of scope of this research. Position Independent
Code (PIE) has also been disabled on the target binary. Both operating system
and target application were executed and validated on a RISC-V CVA6 32-bit
softcore design5 [24] running Linux, deployed on a Genesys2 FPGA.

We also made the hypothesis that the attacker is able to access an exact
twin of the target application (either by rebuilding it with the same options
and environment, or by acquiring a device running said application), so static
analysis can be performed both on target binary and linked libraries.

Attack vector. As a �rst step the attacker must identify a memory vulnera-
bility allowing to hijack the execution �ow toward an initializer gadget. In our
experiment, we introduced a format string vulnerability within the HTTP re-
quest handler of the target application: the body of the HTTP request is passed
as the �rst printf argument, which permits an attacker to perform arbitrary write
operations. Figure 4 shows the di� of the introduced vulnerability.

Fig. 4. Mongoose introduced vulnerability di�.

Gadgets research. The identi�cation of available gadgets in the application is
very important as it decides which assets can be targeted by the attack. Too few,
or not diverse enough gadgets will reduce the attack surface in the best case, or
make the attack impossible in the worst case.

We decided to exclusively use gadgets we found in the GNU C library (libc),
as (1) it contains a lot of code and supposedly o�ers a great amount of gadgets
and (2) almost all binaries are linked to it, making the attack more portable.

To identify gadgets, we used RaccoonV, which accepts queries to �nd gadgets
based on their characteristics.

Figure 5 shows a simple query output, where we searched for gadgets in the
libc, that loads the immediate 0 (--op=li --imm=0) in the register a2 (--rr=a2),
and is at most 1 (--max=1) instruction long (excluding the �nal linking instruc-
tion).

5 https://github.com/openhwgroup/cva6.

https://github.com/openhwgroup/cva6
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$ rv libc.so.6 --op=li --wr=a2 --imm=0 --max=1
0x0006f082      01 46   li a2, 0
0x0006f084      82 80   jr ra

0x000d4244      01 46   li a2, 0
0x000d4246      02 94   jalr s0

0x000a1fbc      01 46   li a2, 0
0x000a1fbe      82 97   jalr a5

----------
Found 3 unique gadgets.

Fig. 5. RaccoonV output with a query on libc.

As the dispatcher gadget is among the hardest to �nd, it is strongly advised
to �nd one �rst and to build the attack around. As said previously in Section 3
we found an ADG, shown in Figure 6. Its self-linking instruction is conditional,
and in order to use it without breaking the chain, we must ensure s0 remains
inferior than s1.

0x0002ec74  lw a5, 0(s0)
0x0002ec76  addi s0, 4
0x0002ec78  jalr a5
0x0002ec7a  bltu s0, s1, 0x2ec74

Fig. 6. Autonomous dispatcher gadget found in libc.

Finding an initializer gadget is not an easy task either but thanks to the
ADG, we had less constraints on loaded registers and managed to �nd the one
illustrated in Figure 7. While it contains some side-e�ects we will need to handle
later (stack pointer increment), it allows us to load both s0, s1 and a5 from the
current stack frame before jumping to r5.

0x000d4706   lw a5, 0(s0)
0x000d4708   lw a0, 4(s0)
0x000d470a   lw s0, 8(sp)
0x000d470c   lw ra, 12(sp)
0x000d470e   lw s1, 4(sp)
0x000d4710   addi sp, sp, 16
0x000d4712   jr a5

Fig. 7. Initializer gadget found in libc.

Using these two gadgets together to build our JOP attack allows using func-
tional gadgets ending in ra without triggering shadow stack detection, bringing
the attack surface to the same level than ROP attacks.
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De�nition of the attack objective. The objective of the attack is to be
decided from the number of available functional gadgets identi�ed. Having a large
number of compatible functional gadgets (4557 in our case) gives the attacker
enough freedom to build complex attack code, as long as it does not involve
control-�ow operations.

In our experiment, the objective is to read the root's private SSH key �le used
to administrate the server without being detected, and to return to original code,
so that the web server still runs �ne afterwards. We de�ne the attack code as
equivalent to the C code shown in Figure 8.

void attack_code() {
   int fd = openat(0, "/home/root/.ssh/id_rsa", O_RDONLY);
   read(fd, buf, 3000);
   write(5, buf, 3000);
}

Fig. 8. C formalization of the attack objective.

The �rst openat argument is unused when the path is absolute so we can
ignore it. We used 5 as the �le descriptor to write the key as it turned to be the
�rst �le descriptor assigned to clients by the HTTP server. If the �le descriptor
is free when the attacker sends the malicious request, the communication socket
will use it; otherwise, the attack will fail, but can be retried anytime later (or
immediately, setting the �rst write argument to another value).

JOP chain design. Once the objective of the attack is de�ned, the actual
gadget chain can be crafted. In our case, it consists in a sequence of 3 syscalls
and a cleanup step allowing to return to the nominal application code without
crashing. Using RaccoonV, we managed to build the gadget chain shown in
Figure 9, where �. . . � represents instructions that are not useful to understand
the attack.

li a0, 0
jr ra

mv a1, s1
lwsp s1, 0x14
addi sp, sp, 0x20
jr ra

li a2, 0
jr ra

li a7, 0x38
ecall
...
addi16sp sp, 0x30
jr ra

li a2, 0
jr ra

addi a2, 4
...
jr ra

li a7, 0x3f
ecall
...
jr ra

li a0, 5
jr ra

li a7, 0x40
ecall
...
jr ra

addi sp, sp, -0x1e0
jr ra

addi sp, sp, 0x180
jr ra

...
lw s3, 604(sp)
lw s4, 600(sp)
lw s5, 596(sp)
addi sp, sp, 0x270
ret

openat read write cleanup

1

4

3

2

6

5

Fig. 9. JOP chain.
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Several details are of interest in this gadget chain:

� Some gadgets have side-e�ects e.g. modifying the stack pointer or loading
registers from the stack. While the former is �xed by the cleanup part of the
JOP chain, the latter needs to be considered while forging our payload. For
instance, s1 is loaded from the stack (see 1 in Figure 9) but we have to
ensure it remains superior than s0.

� The gadget that subtracts sp (cf. 2 ) is not present in the original code: it
is a valid instruction starting at an unexpected o�set, often called shifted
o�set of misaligned instruction.

� For read and write syscalls, we need a2 to be big enough to process the
whole �le (≈3 kB). However, we only found a gadget that increments a2 by
4 (cf. 3 ). We used this gadget 651 times to suit our needs.

� For each system call, we found gadgets in the libc that set a7 to the right
identi�er, and perform the syscall e.g. the openat one (cf. 4 ).

� After the cleanup step, we need to return to original code by inserting some
address belonging to the Mongoose application (cf. 5 ). However, this ad-
dress will be called as a regular gadget, thus pushing a new shadow stack
entry. In order to avoid shadow stack detection, we must return to some
point in the code that "never returns", e.g. in an in�nite loop.

� As part of the cleanup step (and after having �xed the stack pointer), we used
the entire epilogue of the function from which we hijacked the execution-�ow
as a gadget (cf. 6 ). This allowed to restore saved registers before returning
to original code outside of this function. This gadget is the only one we used
that comes from Mongoose. The same goal could have been achieved with
gadgets found in the libc, but using the epilogue of the function we hijacked
to pop its stack frame is very convenient. Moreover, the same technique could
easily be applied while attacking other binaries.

Once the JOP chain has been designed, it can be encoded as a dispatch table,
which is a sequential table containing the address of each gadget. In case of a
gadget repetition, its address is included as many times as needed.

Running the attack. The last step is to assemble everything we have seen so
far to craft the body of our malicious HTTP POST request, that we will send
to the Mongoose web server in order to exploit it. This subsection describes the
fully-�edged attack, which is also illustrated in Figure 10.

To hijack the execution-�ow, we used the format string vulnerability to over-
write the Global O�sets Table (GOT) entry of the �ush function � called right
after the vulnerable printf � with the address of our initializer gadget. Doing
so, our initializer gadget will be given control when the program will make the
�ush call.

Although the stack frame could be under the attacker's control for several
reasons, in our case we also used the write-anything-anywhere primitive o�ered
by the format string vulnerability to set the values loaded from the stack by the
initializer gadget, e.g. we set the stack address that will be loaded into s1 to
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void handle_req(http_req_t *req) {
    char buf[16384];
    /* ... */
    snprintf(buf, 16384, "%s", req->body);
    printf(buf);
    fflush(0);
}

format string dispatch table path

fflush@got ⟶ init gadget
  [s0 + 0] ⟶ dispatcher gadget
  [sp + 4] ⟶ ssh key path
  [sp + 8] ⟶ dispatch table

"/home/root/.ssh/id_rsa"
lw a5, 0(s0)
lw s0, 8(sp)
lw s1, 4(sp)
...
addi sp, sp, 16
jr a5

init gadget

lw a5, 0(s0)
addi s0, 4
jalr a5
bltu s0, s1, 0x2ec74

dispatcher gadget

open

read

write

cleanup

Malicious HTTP request body

return

Fig. 10. Mongoose stealth JOP attack.

the path address in the request body. We then append the dispatch table and
the path of the �le we want to read next to the format string and perform the
HTTP request.

While not related with JOP, in order for the attack to be stealth, we need
to restore the �ush GOT entry we modi�ed. To do so, a second HTTP request
triggering the same vulnerability does the job. We can either patch the �ush
GOT entry with the actual �ush address if we know it, or set it back to the
default Procedure Linkage Table (PLT) stub address, to let the dynamic linker
resolve its address again at the next �ush invocation.

4.1 Results and Limitations

By using the techniques presented in this section, we were able to steal the private
SSH key of the root user stored on the target's disk. While not implemented in
our target processor the attack should not trigger the shadow stack detection.
The server still runs �ne after the attack, and other clients can still interact with
it normally.

As of today, it seems that landing pads could not be defeated with these
techniques. To do so, one would need to use bigger gadgets � and eventually full
functions � which may become impractical. However, landing pads come with
a cost in terms of code size and execution time, that make them impractical for
many embedded systems, hence our attack is mostly relevant for these systems.

4.2 Next Steps

As far as we know, there is no publicly available implementation of a standalone
RISC-V shadow stack, without other CFI mitigations such as landing pads. For
this reason, while we can theoretically bypass it, we were not able to test our



12 L. Buckwell et al.

attack against an actual shadow stack implementation. This is left as future
work.

5 Related Work

5.1 Building JOP Attacks

Brizendine et al. [2] proposed and implemented a method allowing building JOP
gadget chains for the x86 architecture. The method relies on prede�ned gagdets
of known characteristics, found in Microsoft Foundation Class (MFC). While
this approach can reliably build JOP chains when known libraries are involved,
it implies to update the tool catalog whenever these libraries are updated, and
to perform in-depth analysis of them.

Other approaches try to build partial gadget chains by analyzing the whole
used code, binary and libraries [22,16]. While some can integrate sub-chains of
JOP gagdets within a ROP chain, none of them can build full JOP chains to our
knowledge, making them easily detected by ROP-targeted countermeasures such
as the shadow stack. Other tools able to help building JOP chains on RISC-V
include ROPgadget6 and radare27, which can search JOP gadgets but not build
gadget chains on RISC-V architectures, as they have no method for discovering
dispatcher gadget or initializer gadget. They are primarily designed to build
ROP chains.

Gu et al. [12] identi�ed a speci�c pattern of instructions allowing linking
functional gadgets in RISC-V architectures, introducing the concept of �self-
modifying gadget chain� to save and restore register values in memory. They also
demonstrated the Turing-completeness of their solution. Adapting self-modifying
gadget chain to JOP is indeed a promising solution to increase our capacity to
build e�ective gadget chains. Jaloyan et al. [14] reached the same result by abus-
ing compressed instructions (overlapping). Our attack also uses this approach,
and applies it to JOP attacks.

Trampolines-based approaches are somewhat a missing link between ROP
and JOP. A trampoline itself (an update-load-branch suite of instructions) is
the ancestor of the dispatcher gadget and, instead of exploiting an arbitrary
memory, uses hardware-maintained registers such as ra (return address register)
to jump to the next functional gadget [5]. While they do not rely on return-
speci�c instructions (which do not exist in RISC-V anyway), they do imply that
large segments of the stack need to be corrupted, hence making them vulnera-
ble to stack canaries and the shadow stack. Erdödi [8] proposed a solution to
�nd classical dispatcher gadgets on x86 for di�erent operating systems. As they
are scarce, and trampolines patterns tend to be more common, the latter are
still used [18]. In addition to providing a solution in RISC-V architecture for
JOP gadget chaining, our discovery of the ADG greatly increases the number
of available JOP gadgets, e�ectively making them as common as ROP gadgets
and eliminating the need for trampolines.

6 https://github.com/JonathanSalwan/ROPgadget.
7 https://github.com/radareorg/radare2.

https://github.com/JonathanSalwan/ROPgadget
https://github.com/radareorg/radare2
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5.2 Defenses from CRA

Austin et al. [13] published the MORPHEUS II solution for RISC-V. This
hardware-based solution aims at defeating memory probes trying to bypass ad-
dress randomization by providing a reactive, �ne-grain, continuous randomiza-
tion of virtual addresses, as well as encryption of pointers and caches. This
solution, while having a low overhead in terms of energy consumption and area,
is quite intrusive in the hardware and may require e�orts for certi�cation in
critical applications. While authors make no claim about stopping JOP attacks,
probe-resistant ASLR may be di�cult to bypass for an attacker.

Palmiero et al. [17] proposed a hardware-based adaptation of Dynamic In-
formation Flow Tracking (DIFT) for RISC-V, with the ability to detect most
function pointers overwriting, whether directly or indirectly, and in any memory
segment, thus allowing blocking the attack at its initialization stage. Although
this approach seems indeed powerful, it implies modi�cation of RISC-V instruc-
tions behavior in I and M extensions for RISC-V 32 bits, as well as in the memory
layout (by adding a bit every 8 bits of memory). Such modi�cations drift away
from the RISC-V ABI.

De et al. [7] implemented a chip compliant to RISC-V, including a Rocket
Custom Coprocessor (RoCC) which extends the RISC-V ISA with new instruc-
tions allowing safe operation on the heap. The authors ensure heap size integrity
and prevent use-after-free attacks, at the cost of an increase of 50% of average
execution time on their benchmarks.

6 Conclusion

Anticipating security vulnerabilities for RISC-V systems in order to identify and
prevent possible attacks is an important challenge. Building attacks is a necessary
step to test platforms and evaluate their attack surface, as adversary actors
(black hat hackers) will eventually attack them. In this article, we contribute
by demonstrating the feasibility and a practical way to realize jump-oriented
programming (JOP) attacks, allowing for more extensive security testing.

We have introduced a new variant of dispatcher gadget, the autonomous dis-

patcher gadget (ADG), which greatly improves the RISC-V JOP attack surface
by enabling the use of ROP gadgets with a JOP mechanism. While its rigorous
validation against a CVA6 implementing a shadow stack is left as future work,
we are convinced that it will be able to bypass shadow stack mitigation.

We have demonstrated a JOP attack on a RISC-V platform using a real
world application commonly used in critical embedded systems: the Mongoose
web server. After adding a single memory vulnerability, we were able to take
control of the application in order to perform an adversary action, sending a
private key to a remote attacker. Thanks to the large number of functional
gadgets available in the libc through the use of the ADG, we were able to make
the attack stealthy by restoring the nominal behavior of the application after
the attack completition.
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Next steps for identifying potentially practical JOP attacks include assistance
in gadget �nding and even automated chain building. There is a very impressive
body of research on ROP chain building [22], that would be a good basis to build
up automated testing frameworks for RISC-V application vulnerabilities to JOP.
Likewise, studies like the one presented in this article will enable the development
of better and more e�cient countermeasures for the RISC-V architecture against
JOP attacks and enhance control-�ow integrity in general.
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agency (ANR) under the grant ANR-21-CE-39-0017. We thank Franck Viguier
for his contribution to a preliminary version of this work.
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