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Abstract. Combinations of static and dynamic analysis techniques make it possible to detect the risk of out-of-

bounds memory access in C programs and to confirm it on concrete test data. However, this is not directly 

possible for input arrays/pointers in C functions. This paper presents a specific technique allowing the 

interpretation and execution of assertions involving the size of an input array (pointer) of a C function. We show 

how this technique was successfully exploited in the SANTE tool where it allowed potential out-of-bounds access 

errors to be detected and classified in several real-life programs. 
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1. INTRODUCTION 

The C programming language is paradoxically both the most commonly used for development of system 

software with various critical components, and one of the most poorly equipped with adequate protection 

mechanisms. The C developer is responsible for correct allocation and deallocation of memory, pointer 

dereferencing and manipulation (like casts, offsets, etc.), and even for the validity of indices in array access 

operations. Detecting potential errors in C programs remains one of the most challenging topics in modern 

software verification. 

Among the most recent research advances in this domain, various combinations of static and dynamic 

analysis tools were shown to be advantageous for verification of C programs. One of them, SANTE (Static 

ANalysis and TEsting) [5] combines abstract interpretation and test generation. It uses the value analysis plugin 

[4] of FRAMA-C [7] to detect and report potential runtime errors in a C program, that are then classified (i.e. 

confirmed or infirmed) by the dynamic symbolic execution (DSE) based test generation tool PATHCRAWLER [3]. 

A frequent cause of errors in C programs is an invalid pointer or array access. It may result in particularly 

dangerous faults, such as runtime errors and buffer overflows, often exploited in attacks. Some simple protection 

mechanisms, e.g. involving the size of input arrays and pointers in C functions, are impossible to introduce or 

even ignored according to the C norm (cf. Sec. 2). This paper focuses on the problem of detection of this kind of 

errors by combined static-dynamic analysis tools like SANTE, trying to automatically confirm a detected risk by 

concrete execution of a test. This problem has not been addressed in previous publications and experiments on 

SANTE. 

Contributions of this paper. We present the problem of expressing and executing assertions to prevent out-

of-bounds access for input arrays (pointers) in C functions, that appears in particular when combining static and 

dynamic analyses (Sec. 2). We describe the solution implemented in the SANTE tool that makes it possible to 

express the assertions involving the size of an input array (pointer), to interpret and to execute them in a dynamic 

analysis tool (Sec. 3). A short experience report illustrates how this technique allowed potential out-of-bounds 

access errors to be detected and classified with SANTE in real-life programs (Sec. 4). 
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2. INEXECUTABLE ASSERTIONS PREVENT THE CONFIRMATION OF ERRORS 

As said earlier, the validity of pointers is very difficult to check dynamically. Indeed, languages with pointers, 

such as C or C++, do not allow the developer to check for their validity. The developer is supposed to know 

when a pointer is valid or not, possibly by using well-known conventions. These conventions include the use of a 

unique special value for invalid pointers, for instance, (void*)0 or NULL. However, such conventions can be 

difficult to enforce, and do not address the problem of out-of-bounds access. 

An existing verification approach in combined static-dynamic analysis tools uses first static analysis to detect 

a threat (i.e. a potentially invalid array access or pointer dereference), and marks it with an annotation specifying 

the condition that should be met to avoid the error. Then the dynamic analysis step tries to confirm this threat on 

a concrete test. If the threat is a false alarm, it cannot be confirmed. 

int a1[10]; //global array 

void f1(int i){ 

    ... 

//@ assert i>=0 && i<10; 

    a1[i]=0; 

    ... } 

void f2(int i){ 

    int a2[10]; //local array 

    ... 

//@ assert i>=0 && i<10; 

    a2[i]=0; 

    ... } 

Fig. 1. Examples where the array size is known and can be used to express the precise assertion. 

//input array 

void f3(int a3[10],int i){ 

    ... 

//@ assert \valid(a3+i); 

    a3[i]=0; 

    ... } 

//input pointer 

void f4(int *p4,int i){ 

    ... 

//@ assert \valid(p4+i); 

    p4[i]=0; 

    ... } 

int *p5; //global pointer 

void f5(int i){ 

    ... 

//@ assert \valid(p5+i); 

    p5[i]=0; 

    ... } 

Fig. 2. Examples where the array size is ignored or unknown. The assertion cannot use it. 

Suppose that, in each example of Fig. 1, the array access may be potentially out-of-bounds. In the SANTE 

tool, the value analysis step detects the threat and inserts an annotation specified in ACSL specification 

language [2] by the assert keyword. For global or local arrays, the array dimension is known and the generated 

annotation explicitly gives the condition of error-free behavior. The error condition is easily obtained by 

negation. It can be both executed and used as a test objective to guide PATHCRAWLER. 

Let us now consider the programs of Fig. 2, where each array (pointer) access is supposed to be potentially 

out-of-bounds. Although the size of the input array a3 is provided in f3, it is ignored according to the C 

norm [11, Sec. 6.7.5.3.7]. In other words, the declaration int f3(int a3[10], int i) is equivalent to int f3(int *a3, 

int i), so the array size is lost. At runtime, sizeof(a3) returns the size of a pointer. Nothing guarantees that a3 

really refers to an array with 10 elements. In this case, the value analysis step in SANTE generates a general 

annotation \valid(a3+i) requiring the validity of the array access. It is impossible to be more explicit since we 

cannot specify the allowed interval of values for the index i. The examples f4 (with an input pointer) and f5 (with 

a global pointer) have a similar problem. In all these cases, the annotation provides an inexecutable condition 

and cannot be directly used to guide test generation and to confirm the potential error on some generated test 

data. Global variables being seen as generalized inputs in unit testing, we group the three cases of Fig. 2 together 

under the term input array (pointer). 

3. THE METHOD 

This section presents the technique allowing us to express and to interpret, both symbolically and concretely, the 

number of elements referred by an input array (pointer). We will represent this number using a special function 

pc_length. Inexecutable assertions that needed this size can now be expressed, executed and tested in a DSE 

testing tool like PATHCRAWLER. Our technique contains three distinct parts: first, threats have to be translated 

into program statements; second, the program launcher is modified accordingly to allow dynamic checking of 

array bounds involving pc_length; third, the same statements are given a particular symbolic interpretation, 

allowing the testing tool to search for test inputs violating the assertion. The three following subsections detail 

these three parts. 
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Fig. 3 shows our running example. This program compares the first n numbers in the two given arrays of 

integers with respect to the lexicographic order. At line 5, the program accesses t1[i] and t2[i]. We assume that 

static analysis detects a threat for both expressions and inserts the corresponding assertion at line 4. 

1 void tuplecmp(size_t  n, const int* t1, const int* t2) { 

2     size_t  i; 

3     for (i = 0; i < n; i++) { 

4         /*@ assert \valid(t1+i) && \valid(t2+i) */ 

5         if (t1[i] > t2[i]) return 1; 

6         else if (t1[i] < t2[i]) return -1; 

7     } 

8     return 0; 

10 } 

Fig. 3. Function tuplecmp compares the first n elements of given arrays t1, t2 

3.1. From threats to statements 

The first step consists in translating an inexecutable ACSL annotation assert \valid(p+j) for an input array 

(pointer) p into a C statement using a function call pc_length(p) supposed to return the size of p. The annotation 

assert \valid(p+j) is translated as  

if ( j < 0 || j >= pc_length(p) ) { 

    pc_assertion_error(); 

} 

If the error condition is true, the function pc_assertion_error reports the error and exits; otherwise the 

execution continues normally. This new decision (branch) with the explicit error condition adds a test objective 

in PATHCRAWLER so that test generation will try to confirm the threat. For example, the line 4 in Fig. 3 is 

replaced by  

if ( i < 0 || i >= pc_length(t1) || i >= pc_length(t2) ) { 

    pc_assertion_error(); 

} 

3.2. Backing the concrete execution of pc_length 

To obtain meaningful information from concrete execution, PATHCRAWLER combines a specifically 

instrumented version of the program under test and a program launcher. The instrumentation consists in injecting 

special statements to track the execution flow in the program. The program launcher is in charge of initializing 

communication streams and executing the instrumented function under test on each test. While the 

instrumentation does not require any modification, the memory initialization has to be modified. 

Memory initialization. Fig. 4 shows (a simplified version of) the launcher generated by PATHCRAWLER for the 

function of Fig. 3. The launcher consists of a loop that allows PATHCRAWLER to execute multiple tests in a 

single run of the launcher. At each iteration, the launcher receives from the generator the input values of a test 

and calls the function under test on these values. For non-pointer parameters, values are transmitted directly to 

the function as actual parameters. However, for input arrays (pointers), sufficient memory must be allocated. 

That is why the launcher first expects the size of the array to allocate. Then, after allocating required memory 

space with pc_array_alloc, it reads a value for each cell of this memory block. Fig. 5 illustrates the values sent 

to the launcher for a test and their meaning, as well as the corresponding function call. 

Keeping track of length. The key modification allowing pc_length(p) to obtain the size of an input array 

(pointer) p during concrete execution is made in the function pc_array_alloc. This function shall now keep 

track of the memory size for each pointer allocated. We introduce a global dictionary D recording each pointer 

allocated with its size. Each call p=pc_array_alloc(l,e) for an array of l elements of size e first allocates the 

required memory space (l×e bytes) for p using a standard malloc and records p with its size in D. The function 

pc_length(p) has simply to query the dictionary D in order to find the number of elements associated with p. 
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1 int main () { 

2     int n; // scalar parameter 

3     int *t1 , *t2; // array parameters 

4     int _len, _i; // launcher variables 

5     pc_init_streams (); 

6     while (! pc_check_if_finished ()){ 

7         pc_scan(INT, &n); // receiving test data 

8         pc_scan(INT, &_len); 

9         if (_len == 0) t1 = pc_null (); 

10         else { 

11             t1 = pc_array_alloc(_len, sizeof(int)); 

12             for (_i = 0; i < _len ; i++) 

13                 pc_scan(INT, &t[_i]); 

14          } 

15         pc_scan(INT , &_len); 

16         if (_len ==0) t2 = pc_null (); 

17         else { 

18             t2 = pc_array_alloc(_len, sizeof(int)); 

19              for (i = 0; i < len ; i++) 

20                  pc_scan(INT, &t2[_i]); 

21         } 

22         tuplecmp(n, t1, t2); // calling function under test 

23         pc_call_oracle (); // calling the oracle 

24          pc_free(t1); // deallocating memory 

25         pc_free(t2); 

26     } 

27 } 

Fig. 4. Generated launcher for the function tuplecmp of Fig. 3 

Test data received by the launcher  Function call 

 

Value  Meaning 

3 n 

2 size of t1 

0 t1[0] 

1 t1[1] 

3 size of t2 

5 t2[0] 

-2 t2[1] 

7 t2[2] 
 

 

 

 

 

 

 

→ 

 

 

 

 

 

 

tuplecmp(3, ●, ●) 

 
 

0 1 

5 -2 7 

 Fig. 5. Launching the function tuplecmp of Fig. 3 on a test with input arrays 

3.3. Backing the symbolic execution of pc_length 

Arrays and pointers are known to be hard to handle in constraint-based test generation [12, 17]. In forward 

symbolic execution, used in most implementations of DSE, it is usually possible to transform input pointer 

dereferences into indexed array accesses. Consequently, if we can handle arrays in constraints, input pointers can 

be for the most part handled as arrays. However, conditions on array lengths are still challenging. Indeed, these 

conditions require that array lengths are modeled, which may sometimes not be the case like in the theory of 

arrays with extensionality [13, 16]. 

Fortunately, a frequently adopted solution (used in PATHCRAWLER) is to associate each array a with a 

logicial variable lena representing its length. Thanks to the length variables, symbolic execution of calls to 

pc_length is straightforward: pc_length(a) is simply replaced with lena and its implementation is ignored. For 

instance, the condition i >= pc_length(t1) can be translated by the constraint i >= lent1. 
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4. EXPERIMENTS WITH SANTE 

This section provides a short experience report illustrating how the technique presented in Sec. 3 allows the 

SANTE tool to treat threats involving input arrays (pointers). Our recent experiments on several real-life programs 

show that such threats are very widespread. Fig. 6 presents five examples. Its columns provide the example 

number, module and function name, its size in lines of code, the number of threats reported by value analysis, the 

number of threats involving input arrays (pointers) and the number of known bugs. It shows that out of 41 

reported threats, 37 (90%) involve input arrays (pointers). For Ex. 2, 3 and 4, all reported threats are out-of-

bounds accesses in input arrays or pointers. All bugs are related to input arrays (pointers). 

№ (module /) function size (LOC) reported threats threats involving pointers bugs 

1 libgd / gdImageString-FTEx 705 12 10 1 

2 Apache / get_tag 696 12 12 3 

3 polygon 202 10 10 2 

4 rawcaudio / adpcm_decoder 365 2 2 0 

5 eurocheck 154 5 3 1 

   Total 41 37 7 

Fig. 6. Number of threats, threats involving pointers and bugs in our experiments  

Let us illustrate the SANTE results on the open-source program
1
 eurocheck. This program validates serial 

numbers of European bank notes. It takes an input string str representing the serial number. str can be NULL or 

a zero-terminated string with variable length. The value analysis step in SANTE reports 5 threats of potential 

runtime errors. In Fig. 7a, we give a simplified version of the program with the assertions added by the value 

analysis at lines 60, 130, 150, 170 and 200. Fig. 7b presents the program after the translation of ACSL annotations 

into C statements.  

The assertion at line 170 reports that writing in checksum[i] might be an out-of-bounds access. In this case, 

the array bounds are known since checksum is a local array. The error condition (line 171) is directly obtained 

by negating the error-free condition given by the assertion. The threat at line 20 is treated in the same way. 

The situation is different for threats at lines 6,13,15 related to the input pointer str. At line 6, we read the first 

character without verifying if the string is NULL or not. The reported threat indicates that str+0 may be invalid. 

The dynamic analysis step will try to generate a test where str+0 is invalid. Here we need the array size to 

express the error condition (line 61). In this case, PATHCRAWLER is able to generate a test case where 

str = NULL violating this assertion. For 130 and 150, the error condition added by SANTE is i<0 || 

i>=pc_length(str). PATHCRAWLER detects that all paths violating these assertions are infeasible and, therefore, 

these threats are false alarms. 

[5] gives other experimental results and compares the results of SANTE to static analysis and test generation 

used separately. Notice that, over 41 threats, only 6 remain unclassified, i.e. SANTE cannot determine whether a 

threat is a real bug or a false alarm. SANTE appeared to be in average 43% faster than test generation alone. The 

number of remaining unclassified threats with SANTE decreases by 82% with respect to test generation alone, and 

by 86% with respect to value analysis alone. 

5. RELATED WORK AND CONCLUSION 

We presented an original solution filling the gap between a static analysis tool, being able to report (by an 

inexecutable annotation) a potential out-of-bounds access operation in input arrays (pointers) in C functions, and 

a DSE testing tool, requiring a more precise and executable assertion in order to guide test generation and to 

confirm the erroneous behavior. We illustrated how the combined tool SANTE essentially relies on this solution 

that efficiently serves for a very frequent type of threats.  

In the security context, out-of-bounds array accesses have been previously investigated in C, notably to 

prevent buffer overflow exploits. For instance, some authors propose to secure each and every array or pointer 

access by adding dynamic checks using either a dedicated C compiler [1], or specific program 

                                                             
1
 http://freshmeat.net/projects/eurocheck 
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transformations [8, 14]. Others like Necula et al. [15] propose to use static analysis to detect safe pointer access 

to skip some dynamic checks. As in these later approaches, our approach does not consider every pointer access, 

but allows us to treat only those threats that are not discarded by static analysis. However, the use of a general-

purpose specification language like ACSL allows much more choice in the kind of static analysis being used. In 

addition, our approach uses dynamic symbolic execution to classify the detected threats. 

 

0    int eurocheck( char *str ){ 

1        unsigned char sum; 

2        char c[9][3] = { "ZQ", "YP", "XO", 

3            "WN", "VM", "UL", "TK", "SJ", "RI"}; 

4        unsigned char checksum[12] ; 

5        int i = 0, len = 0; 

60       //@assert \valid( str+0 ); 

 

6        if( str[0]>=97 && str[0]<=122) 

7            str[0]−=32; 

8        if( str[0]< 'I' || str [0]> 'Z' ) 

9            return 2; 

10      if( strlen( str ) != 12) 

11          return 3; 

12      len = strlen( str ); 

130     //@assert \valid( str+i ); 

 

13      checksum[i] = str[i] ; 

14      for ( i =1; i<len ; i++){ 

150         //@assert \valid( str+i ); 

 

15          if ( str[i]<48 | | str[i]>57) 

16              return 4; 

170         //@assert 0<=i && i<12; 

 

17          checksum[i] = str[i]−48;} 

18      sum=0; 

19      for( i=(len -1); i>=1; i--) 

200         //@assert 0<=i && i<12; 

 

20      sum+=checksum[ i ]; } 

21      while( sum>9) 

22          sum = ( ( sum/10 ) + ( sum%10) ) ; 

23      for( i=0; i<9; i++) 

24          if ( checksum [0] == c[i][0] 

25              || checksum [0] == c[i][1] ) 

26             break ; 

27      if( sum != i ) 

28          return 5; 

29      return 0;} 

0    int eurocheck( char *str ){ 

1        unsigned char sum; 

2        char c[9][3] = { "ZQ", "YP", "XO", 

3            "WN", "VM", "UL", "TK", "SJ", "RI"}; 

4        unsigned char checksum[12] ; 

5        int i = 0, len = 0; 

61       if(0<0 || 0 >= pc_length( str ) ){ 

62           pc_assertion_error(); } 

6        if( str[0]>=97 && str[0]<=122) 

7            str[0]−=32; 

8        if( str[0]< 'I' || str [0]> 'Z' ) 

9            return 2; 

10      if( strlen( str ) != 12) 

11          return 3; 

12      len = strlen( str ); 

131     if( i<0 || i >= pc_length( str ) ){ 

132         pc_assertion_error(); } 

13      checksum[i] = str[i] ; 

14      for ( i =1; i<len ; i++){ 

151        if( i<0 || i >= pc_length( str ) ){ 

152            pc_assertion_error(); } 

15          if ( str[i]<48 | | str[i]>57) 

16              return 4; 

171         if (!(0<= i && i <12)){ 

172             pc_assertion_error(); } 

17          checksum[i] = str[i]−48;} 

18      sum=0; 

19      for( i=(len -1); i>=1; i--) 

201         if (!(0<= i && i <12)){ 

202             pc_assertion_error(); } 

20      sum+=checksum[ i ]; } 

21      while( sum>9) 

22          sum = ( ( sum/10 ) + ( sum%10) ) ; 

23      for( i=0; i<9; i++) 

24          if ( checksum [0] == c[i][0] 

25              || checksum [0] == c[i][1] ) 

26             break ; 

27      if( sum != i ) 

28          return 5; 

29      return 0;} 

a) Assertions generated by value analysis b) After translation of assertions into C 

Fig. 7. Simplified version of eurocheck before and after assertion translation 

In code-based test generation, handling pointers is still considered as a challenge. Much research has been 

done to model pointer accesses. For instance, Elkarablieh et al. [9] propose a very precise modelization of 

pointer operations. Another approach, proposed by Xu et al. [18], is to abstract such operations to keep only the 

most relevant operations to detect buffer overflows. Our approach relies on a classical memory model, but it 

exposes symbolic array lengths to permit the symbolic execution of assertions involving array sizes. This 

complements the specific concrete execution and allows us to benefit from an efficient DSE test generation. 

In existing specification languages, dynamic checking of assertions related to pointer validity is usually 

impossible. Indeed, since Java does not have pointers and allows array bound checking, such conditions do not 
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occur in JML [6]. In .NET, if code contracts allow specifying behaviors of “unsafe code” (a mode without 

memory management), conditions related to pointer validity are not executable [10]. To the best of our 

knowledge, SANTE is the only tool using such a translation of annotations for input arrays (pointers) from a 

specification language into executable code and applying DSE to confirm or infirm the threats. 
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