
Combining Static Analysis and Test Generation

for C Program Debugging

Omar Chebaro1,2, Nikolai Kosmatov1, Alain Giorgetti2,3, and Jacques Julliand2

1 CEA, LIST, Software Safety Laboratory, PC 94, 91191 Gif-sur-Yvette France

firstname.lastname@cea.fr
2 LIFC, University of Franche-Comté, 25030 Besançon Cedex France

firstname.lastname@lifc.univ-fcomte.fr
3 INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-lès-Nancy France

Abstract. This paper presents our ongoing work on a tool prototype called

SANTE (Static ANalysis and TEsting), implementing a combination of static anal-

ysis and structural program testing for detection of run-time errors in C pro-

grams. First, a static analysis tool (Frama-C) is called to generate alarms when

it cannot ensure the absence of run-time errors. Second, these alarms guide a

structural test generation tool (PathCrawler) trying to confirm alarms by acti-

vating bugs on some test cases. Our experiments on real-life software show that

this combination can outperform the use of each technique independently.

Keywords: all-paths test generation, static analysis, run-time errors, C pro-

gram debugging, alarm-guided test generation.

1 Introduction

Software validation remains a crucial part in software development process. Soft-

ware testing accounts for about 50% of the total cost of software development. Auto-

mated software validation is aimed at reducing this cost. The increasing demand has

motivated much research on automated software validation. Two major techniques

have improved in recent years, dynamic and static analysis. They arose from differ-

ent communities and evolved along parallel but separate tracks. Traditionally, they

were viewed as separate domains.

Static analysis examines program code and reasons over all possible behaviors

that might arise at run time. Since program verification is in general undecidable, it

is often necessary to use approximations. Static analysis is conservative and sound:

the results may be weaker than desirable, but they are guaranteed to generalize to all

executions. Dynamic analysis operates by executing a program and observing this

execution. It is in general incomplete due to a big (or even infinite) number of pos-

sible test cases. Dynamic analysis is efficient and precise because no approximation

or abstraction needs to be done: the analysis can examine the actual, exact run-time

behavior of the program for the corresponding test case.

The pros and cons of the two techniques are apparent. If dynamic analysis de-

tects an error then the error is real. However, it cannot in general prove the absence

of errors. On the other hand, if static analysis reports a potential error, it may be a

false alarm. However, if it does not find any error (of a particular kind) in the overap-

proximation of program behaviors then the analyzed program clearly cannot contain

such errors. Static and dynamic analysis have complementary strengths and weak-

nesses and can be both applied to program verification. Static analysis is typically

used for proofs of correctness. Dynamic analysis demonstrates the presence of er-

rors and increases confidence in a system.

Recently, there has been much interest in combining dynamic and static meth-

ods for program verification [1–6]. Static and dynamic analyses can enhance each

other by providing valuable information that would otherwise be unavailable. This

paper reports on an ongoing project that aims to provide a new combination of

static analysis and structural testing of C programs. We implement our method us-

ing two existing tools: Frama-C, a framework for static analysis of C programs, and

PathCrawler, a structural test generation tool.

Frama-C [7] is being developed in collaboration between CEA LIST and the ProVal

project of INRIA Saclay. Its software architecture is plug-in-oriented and allows fine-

grained collaboration of analysis techniques. Static analyzers are implemented as

plug-ins and can collaborate with one another to examine a C program. Frama-C is

distributed as open source with various plug-ins. Developed at CEA LIST, PathCrawler

[8] is a test generation tool for C functions respecting the all-paths criterion, which

requires to cover all feasible program paths, or the k-path criterion, which restricts

the generation to the paths with at most k consecutive iterations of each loop.

Contributions. This paper presents our ongoing work combining static analysis

and structural test generation for validation of C programs, in particular, for detec-

tion of run-time errors. We call this technique alarm-guided test generation. Our on-

going implementation of this method, called SANTE, assembles two heterogeneous

tools using quite different technologies (such as abstract interpretation and con-

straint logic programming). We evaluate our method by several experiments on real-

life C programs, and compare the results with static analysis alone, test generation

alone, and test generation guided by the exhaustive list of alarms for all potentially

threatening statements. In all cases, our method outperforms the use of each tech-

nique independently.

The paper is organized as follows. Section 2 gives an overview of our method and

its implementation in progress. Section 3 presents initial experiments illustrating the

benefits of our approach. Section 4 briefly presents related work and concludes.

2 Overview of the Method

This section presents our method combining static analysis and test generation, and

its ongoing implementation in a tool prototype SANTE
4 (Static ANalysis and TEsting)

which uses Frama-C and PathCrawler tools. Our implementation choice was to con-

nect PathCrawler and Frama-C via a new plug-in, and adapt PathCrawler to accept

information provided by other plug-ins.

Algorithm 1 shows an overview of the method. SANTE takes as input the C pro-

gram P to be analyzed and the test context (denoted by Context) defining the func-

tion to be analyzed, domains of its input variables and preconditions. We denote by

αi , i ∈ I the statements of the program P . SANTE starts by analyzing the program with

4 The French word “santé” means “health”, and sometimes also “cheers!”

the value analysis plug-in of Frama-C. Based on abstract interpretation, this plug-in

computes and stores supersets of possible value ranges of variables at each state-

ment of the program. Among other applications, these over-approximated sets can

be used to exclude the possibility of a run-time error. The value analysis is sound: it

emits an alarm for an operation whenever it cannot guarantee the absence of run-

time errors for this operation. It starts from an entry point in the analyzed program

specified by the user, and unrolls function calls and loops. It memorizes abstract

states at each statement and provides an interface for other plug-ins to extract these

states.

The abstract states make it possible to extract Ψ= {Ψi | i ∈ I }, where Ψi is the con-

dition restricting the state before the statement αi to an error state, in other words,

describing the states leading to a possible run-time error at αi . For instance, for the

statement x=y/z; the plug-in emits “Alarm: z may be 0!” and returns Ψi ≡ (z = 0)

if 0 is contained in the superset of values computed for z before this statement. For

the last statement in int t[10]; . . . t[n]=15; the plug-in emits “Alarm: t+n
may be invalid!” and returns Ψi ≡ (n < 0∨n > 9) when it cannot exclude the risk of

out-of-range indexn. Forint* p; . . . *(p+j)=10; the plug-in emits “Alarm:p+j
may be invalid!” if it cannot guarantee that p+j refers to a valid memory location.

In the current version, the extraction of Ψi is supported for division by 0 and out-of-

range array index, and not yet fully supported for invalid pointers or non-initialized

variables. If value analysis sees no risk of a run-time error at αi , then Ψi ≡ false.

If all Ψi ≡ false, i.e. no alarms were reported, then all possible program execu-

tions are error-free and the program is proved to contain no run-time errors. If some

Ψi is not trivial, we use the following technique called alarm-guided test generation

(lines 5–6 in SANTE). We realize a specific instrumentation of P represented here by

the function ADDERRORBRANCHES. It takes as inputs the original program P and

the alarms Ψi , i ∈ I for its statements, and returns a new program P ′ = {α′
i
| i ∈ I }.

ADDERRORBRANCHES iterates over the statements αi of P and, if there is no alarm

for αi , keeps α′
i
=αi . Otherwise it replaces the statement αi by the statement

if(Ψi) storeBugAndExit(); else αi

In other words, if the alarm condition is verified, a run-time error can occur, so the

function storeBugAndExit() reports a potential bug and stops the execution of

the current test case. If there is no risk of run-time error, the execution continues

normally and P ′ behaves exactly as P .

Next, PathCrawler is called for P ′. The PathCrawler test generation method [8] is

similar to the so-called concolic, or dynamic symbolic execution. The user provides

the C source code of the function under test. The generator explores program paths

in a depth-first search using symbolic and concrete execution. The transformation

of P into P ′ adds new branches for error and error-free states so that the PathCrawler

test generation algorithm will automatically try to cover error states. It returns the list

of detected bugs B with error paths and inputs which confirms some alarms. Other

alarms may remain unconfirmed due to various reasons: (1) this is a false alarm, (2)

test generation timed/spaced out or (3) incomplete test selection strategy was used

e.g. k-path.

Algorithm 1 Algorithm of the method

SANTE(P,Context)

1: Ψ := VALUEANALYSIS(P,Context)

2: if ∀i ∈ I ,Ψi ≡ false then

3: return proved /* no alarms */

4: else

5: P ′ := ADDERRORBRANCHES(P,Ψ)

6: B := PATHCRAWLER(P ′,Context)

7: return B

8: end if

ADDERRORBRANCHES(P,Ψ)

1: for all i ∈ I do

2: if Ψi ≡ false then

3: α
′
i

:=αi /* no alarm for αi */

4: else

5: α
′
i

:= if(Ψi) storeBugAndExit(); else αi

6: end if

7: end for

8: return P ′ = {α′
i
| i ∈ I }

3 Experiments

In this section, we compare our combined method with static analysis and with two

test generation techniques used independently. The first testing technique is run-

ning PathCrawler with various strategies but without any information on threatening

statements. The second one, denoted all-threats, runs PathCrawler in alarm-guided

mode like SANTE, but for the exhaustive list of alarms for all potentially threatening

statements (i.e. with potential risk of a run-time error).

We use five examples shown in Fig. 1 extracted from real-life software where bugs

were previously detected. All bugs are out-of-range indices or invalid pointers. Ex-

amples 1–4 come from Verisec C analysis benchmark [9], example 5 from [10]. The

columns of Fig. 1 respectively present the example number, its origin, the name of

the analyzed function, the size of each example in lines of code, the total number of

potential threats, the number of known bugs among them, and the results of value

analysis. Fig. 2 compares SANTE to other test generation techniques. Its columns re-

spectively show the example number, the PathCrawler strategy (test selection cri-

terion) and the results for each method. The column ’safe’ provides the number of

threats proven unreachable by value analysis or by exhaustive all-paths testing when

it terminates. The column ’unknown’ provides the number of remaining unconfirmed

alarms (relevant for value analysis, PathCrawler all-threats and SANTE). We also pre-

sent, when relevant, the number of bugs detected, the number of treated paths, and

full process duration. The strategy k-path is given for the minimal k allowing to de-

tect all bugs in SANTE. Experiments were conducted on an Intel Duo 1.66 GHz note-

book with 1 GB of RAM with a 30 min timeout.

SANTE vs. static analysis. Fig. 1 shows that in most cases static analysis alone

reduces the number of potential threats and proves that some of them are safe, but

still generates many alarms. We see in Fig. 2 that SANTE confirms some alarms as real

bugs, provides a test case activating each bug and leaves less unknown alarms.

SANTE vs. PathCrawler alone. SANTE detects more bugs than PathCrawler alone,

and treats additional paths arising from error branches with reasonable extra time

(Fig. 2, see for instance Ex. 3).

SANTE vs. PathCrawler all-threats. Alarm-guided test generation in SANTE only

treats the alarms raised by value analysis while all-threats dully considers all po-

tential threats. Thus test generation in SANTE considers less paths, detects the same

origin function name
size all known value analysis

(loc) threats bugs safe unknown time

1 Apache escape_absolute_uri (simplified) 33 8 1 4 4 1s

2 Apache escape_absolute_uri (full) 97 16 1 11 5 1s

3 Spam Assassin message_write 55 17 2 2 15 1s

4 Apache get_tag 165 12 3 0 12 2s

5 QuickSort partition 50 8 1 4 4 1s

Fig. 1. Examples and static analysis results

strategy
PathCrawler alone PathCrawler all-threats SANTE

bugs paths time safe unknown bugs paths time safe unknown bugs paths time

1
all-paths 0 2164 14s 7 0 1 3602 22s 7 0 1 2454 14s

3-path 0 30 <1s 0 7 1 71 <1s 4 3 1 45 <1s

2
all-paths 0 2023 10s 15 0 1 3876 20s 15 0 1 2694 13s

10-path 0 232 1s 0 15 1 417 1s 11 4 1 325 1s

3
all-paths 0 31917 311s time / space out 15 0 2 37967 523s

3-path 0 12446 120s 0 15 2 30977 558s 2 13 2 18874 215s

4
all-paths time / space out time / space out time / space out

2-path 1 26595 663s 0 9 3 36690 870s 0 9 3 36690 872s

5
all-paths 1 5986 33s 7 0 1 15216 116s 7 0 1 11893 72s

2-path 1 569 5s 0 7 1 4509 25s 4 3 1 3319 18s

Fig. 2. Experimental results for two test generation techniques and our combined method

number of bugs in less time and leaves less unknown alarms. It terminates in some

cases where all-threats spaces/times out (Ex. 3). In the worst case, when static analy-

sis can’t filter any threat, SANTE can take as much time as all-threats (cf Ex. 4, 2-path).

Additional application of program slicing before alarm-guided test generation

didn’t show obvious gain here, because these examples were already simplified.

4 Related Work and Conclusion

Closely related work. Many static and dynamic analysis tools are well known and

widely used in practice. Recently, several papers presented combinations of dynamic

and static methods for program verification, e.g. [1–6]. Daikon [4] uses dynamic anal-

ysis to detect likely invariants. [5] compares two combined tools for Java: Check ’n’

Crash and DSD-Crasher. Our all-threats method is similar to [11], called active prop-

erty checking in [6]. Synergy/Dash [3] and BLAST [2] combine testing and partition

refinement for property checking. The idea of combining static analysis and testing

for debugging was mentioned in [6] but was not implemented and evaluated.

Conclusion. We have presented our ongoing research on a new method combining

static analysis and structural testing, as well as experimental results showing that this

method is more precise than a static analyzer and more efficient in terms of time and

number of detected bugs than a concolic structural testing tool alone or guided by

the exhaustive list of alarms for all potentially threatening statements. Static analy-

sis alone will in general just generate alarms (some of which may be false alarms),

whereas our method allows to confirm some alarms as real bugs and provides a test

case activating each bug. This is done automatically, avoiding, at least for confirmed

alarms, time-consuming alarm analysis by the validation engineer, requiring signifi-

cant expertise, experience and deep knowledge of source code. Stand-alone test gen-

eration, when it is not guided by generated alarms for some statements, does not de-

tect as many bugs as our combined method. When guided by the exhaustive list of

alarms for all potentially threatening statements (not filtered by static analysis), test

generation usually has to examine more infeasible paths and takes more time than

our combined method (or even times/spaces out). In all cases, our method outper-

forms each technique used independently. Since complete all-paths testing is unre-

alistic for industrial software, it is also encouraging to see that realistic partial criteria

(e.g. k-path) are very efficient in SANTE method. We expect that other testing tech-

niques will also gain from the use of static analysis as concolic testing evaluated here.

Future work includes continuing research to eliminate unconfirmed alarms, to

better support other alarm types (e.g. invalid pointers) and to integrate program slic-

ing; experimenting with other coverage criteria (e.g. all-branches) and with breadth-

first search; extending the SANTE implementation and comparing it with other tools

and on more benchmarks.

Acknowledgments. The authors thank the members of the PathCrawler and Frama-C teams

for providing the tools and support. Special thanks to Loic Correnson, Bernard Botella and

Bruno Marre for their helpful advice and fruitful suggestions.

References

1. Pasareanu, C., Pelanek, R., Visser, W.: Concrete model checking with abstract matching

and refinement. In: CAV. (2005) 52–66

2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker BLAST:

Applications to software engineering. Int. J. Softw. Tools Technol. Transfer 9(5-6) (2007)

505–525

3. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: a new

algorithm for property checking. In: FSE. (2006) 117–127

4. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:

The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program.

69(1–3) (2007) 35–45

5. Smaragdakis, Y., Csallner, C.: Combining static and dynamic reasoning for bug detection.

In: TAP. (2007) 1–16

6. Godefroid, P., Levin, M.Y., Molnar, D.A.: Active property checking. In: EMSOFT. (2008)

207–216

7. Frama-C: Framework for static analysis of C programs (2007-2010)

http://www.frama-c.com/.

8. Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov, N., Mouy, P., Roger, M., Williams,

N.: Automating structural testing of C programs: Experience with PathCrawler. In: AST.

(2009) 70–78

9. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software model

checkers. In: ASE. (2007) 389–392

10. Ball, T.: A theory of predicate-complete test coverage and generation. In: FMCO. (2004)

1–22

11. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically generat-

ing inputs of death. In: CCS. (2006) 322–335

