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Abstract. Modern deductive verification tools succeed in automatically
proving the great majority of program annotations thanks in particular
to constantly evolving SMT solvers they rely on. The remaining proof
goals still require interactively created proof scripts. This tool demo pa-
per presents a new solution for an automatic creation of proof scripts
in Frama-C/WP, a popular deductive verifier for C programs. The veri-
fication engineer defines a proof strategy describing several initial proof
steps, from which proof scripts are automatically generated and applied.
Our experiments on a large real-life industrial project confirm that the
new proof strategy engine strongly facilitates the verification process by
automating the creation of proof scripts, thus increasing the potential of
industrial applications of deductive verification on large code bases.
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1 Introduction

Recent years have seen many successful applications of deductive verification [7,
8]. Modern deductive verifiers manage to automatically prove the greatest num-
ber of proof goals, also called proof obligations, or verification conditions (VCs).
This is in particular due to powerful and constantly evolving SMT solvers they
rely on. The remaining unproven goals typically require some form of interac-
tive proof: either with a proof script indicating a few initial proof steps to make
the goal more suitable for an automatic prover, or a fully interactive proof in a
proof assistant like Coq. The need for an interactive proof remains an important
obstacle to a wider application of deductive verification on large projects.

It can be illustrated by a recent proof [6] of real-life smart card code—a
JavaCard Virtual Machine (JCVM)—that was performed by Thales for the high-
est EAL6–EAL7 levels of Common Criteria certification4 using Frama-C/WP [9],

4 The EAL7 certificate delivered by the French certification body ANSSI
is available at https://cyber.gouv.fr/sites/default/files/document_type/

Certificat-CC-2023_45fr_0.pdf.



a popular deductive verifier for C programs. Even if a very high level of automa-
tion is achieved in that project and less than 2% of proof goals require manually
created proof scripts, a significant effort is still required for the remaining goals
because hundreds of properties are concerned.

Moreover, proof scripts are sensitive to the versions of the deductive verifier,
of the code and the specification. Thus, proof scripts not only need to be created
once for a given version of the target code, its specification and the verifier, but
often have to be recreated when the code or the specification are updated, or the
verifier evolves (and hence the way to generate VCs is modified). Thus, the need
for manually created proof scripts for the unproven goals is seen as an important
obstacle to a better maintenance of the proved code in the industrial setting.

This tool demo paper presents a new mechanism5 for an automatic creation
of proof scripts in Frama-C/WP. The verification engineer defines a proof strat-
egy describing the alternative proof steps to be tried, from which proof scripts
are automatically generated and applied. Our experiments on the JCVM verifi-
cation project confirm that the new mechanism strongly facilitates the verifica-
tion process, thus increasing the potential of industrial applications of deductive
verification on large code bases.

The contributions of this work include a demonstration of the new mech-
anism for automating the creation of proof scripts in Frama-C/WP based on
user-defined proof strategies, its illustration on simple examples and its evalua-
tion on a real-life industrial project.

2 Deductive Verification with Frama-C/WP

Frama-C is an open-source, industrially mature, extensible framework for ver-
ifying C programs annotated with ACSL [2] specifications. The WP plug-in of
Frama-C allows the user to prove that the C code respects the ACSL specifications
using deductive verification [7, 8]. More precisely, WP implements an efficient
variant of weakest precondition calculus [10], hence the name of the plug-in.

ACSL specifications, written inside special comments “/*@...*/”, basically
consist of function contracts and code annotations. Function contracts include
pre-conditions (requires clauses) and post-conditions (ensures clauses), con-
taining pure logical formulas that shall be verified respectively before and after
any call to a function. The assigns clause specifies the possible side effects of the
function on global variables and pointers received in parameters. Code annota-
tions (e.g. assert clauses) contain pure logical formulas attached to a particular
program point that shall be verified at each execution path going through this
program point. These clauses are illustrated by the program below:

1 /*@
2 requires 0 ≤ x ≤ y ;
3 ensures \result == (x + y) / 2;
4 assigns \nothing;
5 */
6 int middle(int x,int y)

5 publicly available on https://git.frama-c.com/pub/frama-c/ as part of the cur-
rent development version (and in the upcoming release planned for November 2023).
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7 {
8 /*@ assert 0 ≤ y - x < MAX_INT; */
9 /*@ assert 0 ≤ x + (y-x) / 2 < MAX_INT; */

10 return x + (y - x) / 2;
11 }

Frama-C contains plug-ins that can generate assertions, and plug-ins that
can prove assertions, or both. For instance, the RTE plug-in can generate code
annotations that are sufficient for the program to never go into unspecified or
undefined behaviors. The assertions in the previous example (Lines 8–9) show
two of the five assertions generated by RTE on this code.

WP is able to prove code annotations written by the user or generated by
other plug-ins. It works by using deductive verification: ACSL logic formula and
C-code instructions are translated to some equivalent pure logic formulæ in a
first-order logic language. Each generated formula is first simplified by a built-in
solver named Qed [4] and then submitted to external provers, generally auto-
mated SMT solvers such as Alt-Ergo, Z3, CVC4 or CVC5. On the above program,
WP can prove all ACSL annotations written by the user and generated by RTE:

1 $ frama -c -wp -wp-rte middle.c
2 [rte:annot] annotating function f
3 [wp] 8 goals scheduled
4 [wp] Proved goals: 8 / 8
5 Qed: 2
6 Alt -Ergo 2.4.2: 6 (4ms -14ms)

In this example, RTE generated 5 annotations and WP generated 8 formulas
for proving all resulting ACSL annotations, 2 of which being proved by Qed
simplification, and the remaining 6 being proved by Alt-Ergo in few milliseconds.

3 Automated vs. Interactive Proofs

In most cases, ACSL annotations are automatically proven by Qed and SMT
solvers. However, sometimes an automated proof might fail for a correct formula
because deductive verification is not complete in general, and WP in particular.

In such a situation, WP offers different features to complete the proofs. First,
the user might help SMT solvers by introducing intermediate code annotations,
hence providing proof hints and intermediate proof results. Second, the user
might enter the interactive proof mode with the Frama-C graphical interface,
in which the user can apply so-called tactics to transform a proof goal into a
conjunction of several, typically simpler ones, that WP can try to prove in turn.
This process can be iterated, and all the applied tactics can be saved on disk in
a proof script file that can be replayed later from the Frama-C command line.

After some efforts, the user can thus manage to achieve full automation in
proof replay for a proof campaign: all proof goals are discharged automatically
by SMT solvers, possibly thanks to proof hints provided as code annotations,
and possibly after applying tactics from saved proof scripts.

WP offers a large variety of tactics. Common ones include splitting over
a boolean expression; brute-forcing an integer expression within a given range
(detailed below); unfolding predicate or function definitions; removing hypothe-
ses; etc. Applying tactics is simple in spirit, although it raises complex issues in
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practice. Consider for instance the Range tactic, which can be defined as follows,
where φ is the current goal, e some expression and a ≤ b two integer constants:

range(φ, e, a, b) ≡
∧

k∈a...b

(e = k =⇒ φ) ∧ (e < a =⇒ φ) ∧ (e > b =⇒ φ)

Applying it on goal φ consists in replacing6 φ by range(φ, e, a, b). It requires to
have at hand the expression e and the two constants a and b. Under the graphical
user interface (GUI), those arguments are selected by the user from the goal.
However, bookkeeping them in a proof script is not that simple, especially if we
want the proof script to resist to minor changes in the code or the specifications.
WP has dedicated features to achieve this choice but up to a certain extent.

In practice, managing proof scripts during the lifetime of large projects is
an industrial issue. On the contrary, proof hints in the form of intermediate
code annotations are quite robust. However, writing code annotations by hand
is tedious. On the other hand, applying tactics to decompose goals is quite
efficient, and it appears that, on a given application, many pending goals are
solved by applying few tactics with very similar patterns. Those observations
lead us to the design of proof strategies.

4 Definition of Proof Strategies

This section introduces the main principles and selected features of proof strate-
gies through illustrative examples, which can be tested using the companion
artifact [5]. We refer the reader to the WP manual [1] for a detailed description.

Proof strategies are user-defined specifications for combining automated sol-
vers with pattern-driven tactics. A proof strategy consists of a list of alternatives
to be tried in sequence on a proof goal until success. Elementary alternatives
consist in trying one or several SMT solvers with a specified timeout, or applying
a tactic on a goal. Lists of alternatives can be grouped and given a (strategy)
name, that can be used as an elementary alternative as well. Then, specific
proof strategies can be associated to specific proof goals, functions or lemmas.
For instance, the user may associate proof strategy A to every code annotation
with name P and proof strategy B to every code annotation without name Q,
and finally proof strategy C to other code annotations.

Proof strategies and their association to proof goals are user-written as spe-
cific ACSL extensions defined and managed by the Frama-C/WP plug-in. An
overview of these annotations is provided below:

strategy strategyname : alternative , . . . , alternative ;
proof strategyname : target , . . . , target ;

The strategy clause introduces a new proof strategy strategyname, whereas
the proof clause associates it to some property targets, i.e. individual goals

6 We have range(φ, e, a, b) =⇒ φ, which is sufficient for the tactic to be safely applied.
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or sets of goals, using the same syntax as for frama-c command line, which
simplifies users’ learning curve. As introduced above, each alternative might
consist of:

– \provers(p,...,p,time) which tries the specified provers in sequence with
a specified timeout.

– \tactic(id,param...) tries to apply the specified tactic with the associated
parameter(s).

– strategyname or \default tries the specified named strategy.

Parameters for applying tactics are the most expressive but also the most
complex components of proof strategies. As briefly introduced in previous sec-
tion, a tactic transforms a proof goal into one or several sub-goals that are suffi-
cient to entail the initial goal. The difficult point with tactics is that they need
parameters to be applied. For instance, the tactic range illustrated in previous
section must be applied to an expression and a range of two integer constants.
From the Frama-C GUI, proof engineers often pick those parameters from the
goal itself, according to some patterns of interest and their experience. Our proof
strategy language allows proof engineers to specify those patterns, and to build
tactic parameters with required values accordingly.

A trade-off between robustness and precise definition of tactic applications is
an important design objective. The proposed strategy language allows a signifi-
cant flexibility in choosing precise (and less robust) or more general (and more
robust) patterns. The latter include ’_’ for any expression, ’..’ for any number
of arguments, ’A:_’ to introduce a variable to name a subexpression and to use
it in a tactic parameter or a pattern to select, etc.

Consider lemma dn3 in Fig. 1, not proved by Alt-Ergo. It can now be proved
by associating to it the following strategy (we omit surrounding /*@...*/):

1 strategy RangeThenProver:
2 \tactic ("Wp.range",
3 \pattern(is_uint8(e)),
4 \select(e),

5 \param("inf" ,0) ,\param("sup" ,255),
6 \children(RangeThenProver) ),
7 \prover("alt -ergo" ,2);
8 proof RangeThenProver: dn3;

The "Wp.range" name identifies the range tactic introduced above. This
strategy looks for a variable e of type unsigned char (pattern is_uint8(e), cf.
Line 3) in the goal. If such a pattern is found in goal φ, the tactic range(φ, e, 0, 255)
is applied on φ (cf. Lines 2–5). Otherwise, the Alt-Ergo prover is applied for 2 s
(Line 7). The tactic specification language also offers directives to specify which
strategies shall be applied on the resulting sub-goals. Line 6 above indicates that
the strategy should be applied recursively. In this way, it enumerates first the
values of c, then those of d. Indeed, the recursive application to all subgoals in
this case is equivalent to selecting a first variable of type unsigned char and
enumerating its values, then for each fixed value, doing so for a second variable
of type unsigned char (and in this case, there are no more such variables). WP
takes only ∼1 s to automatically create the script and prove the lemma, while
its manual creation would take several minutes.

Moreover, each sub-goal generated by applying a tactic has predefined names.
For instance, tactic range(φ, e, a, b) generates a sub-goal named "Lower a" for
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1 lemma dn3:
2 ∀ unsigned char c d;
3 (c & 0x8E) == 2 ∧
4 (c & 0x01) == 1 ∧
5 (d & 0x8F) == 0
6 ⇒ ((c+d) & 0x03) == 0x03;

7 lemma vhm_preserved{L1 ,L2}:
8 valid_heap_model{L1} ∧
9 mem_model_footprint_intact{L1,L2} ∧

10 \at(gNumObjs ,L1) == \at(gNumObjs ,L2) ∧
11 object_headers_intact{L1,L2}
12 ⇒ valid_heap_model{L2};

Fig. 1. Two ACSL lemmas not proved by automatic prover Alt-Ergo (with a 5 min.
timeout).

1 strategy FastAltErgo: \prover("alt -ergo", 1); // run Alt -Ergo for 1s
2 strategy EagerAltErgo: \prover("alt -ergo" ,10); // run Alt -Ergo for 10s
3 strategy UnfoldVhmThenProver: // Strategy with three steps:
4 FastAltErgo , // 1) fast prover attempt
5 \tactic("Wp.unfold", // 2) if unproved , unfold
6 \pattern(P_valid_heap_model ((..))), // predicate valid_heap_model
7 \children(UnfoldVhmThenProver) ), // and apply itself recursively
8 EagerAltErgo; // 3) longer prover attempt
9 proof UnfoldVhmThenProver: vhm_preserved; // Associate strategy to goal

Fig. 2. Strategies to automatically create a proof script for lemma vhm_preserved of
Fig. 1.

case e < a, "Upper b" for case e > b and "Value k" for each case e = k with k ∈
a..b. The user can then specify which strategy shall be used for each generated
sub-goal. More detailed documentation can be found in the WP manual [1].

The second lemma in Fig. 1 comes from the example in [6] on the proof of
the JCVM. It was not proved by the Alt-Ergo prover [3] (used in that work)
and required a proof script. Basically, lemma vhm_preserved deduces predicate
valid_heap_model at label (i.e. program point) L2 from the same predicate at
label L1 (Lines 8, 12 in Fig. 1) if additional conditions are satisfied: the variables
defining the memory state and the number of allocated objects do not change
between labels L1 and L2 (Lines 9–10), and the headers of the allocated objects
(indicating object owner, object size, etc.) do not change between labels7 L1 and
L2 either (Line 11). Such lemmas are useful in large verification projects with
lots of variables: by showing the preservation of values only for a few variables
between two program points, this lemma allows the tool to deduce the predicate
of interest at a new program point. The exact definition of predicates is not
necessary to follow the present paper (and can be found in [6]).

With the presented extension of WP, the verification engineer can define a
strategy UnfoldVhmThenProver (see Fig. 2) indicating which proof steps should
be applied in order to achieve the proof. First, it calls the Alt-Ergo prover to
check whether the goal can be proved with a short timeout (cf. Lines 4 and
1). If not, Lines 5–7 provide another alternative: to apply the Unfold tactic to
unfold the definition of predicate valid_heap_model (in any part of the goal
and with any number of arguments). Line 7 indicates that after a successful
unfolding, the same strategy should be applied iteratively on the resulting sub-

7 Labels L1 and L2 can be C labels or predefined ACSL labels [2]. While labels are not
directly preserved in the resulting VCs, the variables at those labels typically have
different names, so it is still possible to match the corresponding values.
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goals (children). Finally, Line 8 indicates that if the unfolding alternative cannot
be applied anymore, a longer prover attempt is tried (cf. Line 2). This strategy
allows WP to prove the target lemma in ∼2 s.

5 Industrial Evaluation and Conclusion

We have applied the presented extension of Frama-C/WP to the proof of the
real-life JCVM code8 (with 8,000+ lines of C and 30,000+ lines of ACSL) at
Thales. The complete proof for 85,000 goals using Alt-Ergo with a 250s timeout
requires 800+ proof scripts. The new tool saves a very significant effort: after a
manual creation of strategies (∼2 days), WP automatically produces more than
50% of the required scripts, whose manual creation would take ∼1 person-month.
This effort is estimated by the authors based on the experience of manual proof
script creation in the industrial context over four years. In this experiment, the
strategies are created by the same verification engineers who have previously
created proof scripts. The same strategy is often able to successfully prove several
dozens of proof goals, which confirms the reusability of strategies for multiple
goals.

We summarize our experiment as a two-step workflow. First, the verification
engineer creates proof strategies. Frequently used tactics (Unfold, Split, etc.)
may be used as an initial guess with a large timeout in order to maximize proof
automation. If some goals are still not proved, the engineer uses their experience
to propose new ones, tuned to failed goals. The generated scripts are then saved
for a proof replay session. Second, the engineer optimizes the strategies, e.g.
by optimizing the script generation or replay time. The creation of strategies
requires similar skills as for the creation of proof scripts.

We believe that an even greater number of proof scripts can be generated
from strategies, which will strongly facilitate industrial verification. Future steps
include identification and implementation of further strategy features, and their
rigorous evaluation on various industrial projects. A detailed analysis of the
reasons why some goals remained unproven in our experiment on the JCVM
code will provide a better understanding of the nature of those goals and the
required additional strategies. Finally, an evaluation of the usability of strategies
by various categories of users (e.g. verification engineers who are not familiar
with the target project or with proof scripts in Frama-C) is another future work
perspective.
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8 Being highly security-critical, this code cannot be shared or included in an artifact.
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V.: ACSL: ANSI/ISO C Specification Language (2021), https://www.frama-c.
com/download/acsl.pdf

3. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: Inter-
national Workshop on Satisfiability Modulo Theories(SMT 2018). https://hal.
inria.fr/hal-01960203

4. Correnson, L.: Qed. Computing what remains to be proved. In: NASA Formal
Methods Symp. (NFM 2014). LNCS, vol. 8430, pp. 215–229. Springer (2014)

5. Correnson, L., Blanchard, A., Djoudi, A., Kosmatov, N.: Automate where automa-
tion fails: Proof strategies for Frama-C/WP. Companion artifact for the paper sub-
mitted to TACAS 2024. (Nov 2023), https://doi.org/10.5281/zenodo.10047833
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