
A Late Treatment of C Precondition in Dynamic Symbolic Execution

Mickaël Delahaye
University Grenoble-Alpes, LIG

38041 Grenoble, France
E-mail: firstname.lastname@imag.fr

Nikolai Kosmatov
CEA, LIST, Software Safety Laboratory
PC 174, 91191 Gif-sur-Yvette, France

E-mail: firstname.lastname@cea.fr

Abstract—Relevance of automatically generated test cases
depends on an appropriate definition of a test context, or pre-
condition. This paper presents a novel method for handling a
precondition in dynamic symbolic execution (DSE) testing tools.
This method allows PathCrawler, a DSE tool for C programs,
to accept a precondition defined as a C function. It provides
a simple way to express a precondition even for developers
who are not familiar with specification formalisms. It has also
proven useful when combining static and dynamic analysis.

Keywords-test input generation, dynamic symbolic execution,
concolic testing, executable preconditions.

I. INTRODUCTION

In software testing, the precondition (often called test
context) specifies the domain of the inputs on which the
program under test should be tested. This ability to se-
lect the test input domains is very important. Indeed, it
allows concentrating the testing effort on some part of the
programs’ possible inputs. The most common use of the
test precondition is to select only the inputs for which the
behavior of the program is specified. In that case, the test
precondition corresponds to the specification precondition.
Other uses include testing outside the specification to check
for unwanted behaviors and partitioning the test domain.

However, in the case of automated test input generation
tools, the precondition leads to two interesting challenges.
First, because the input is selected automatically, one must
encode the precondition into a formalism understood by the
tool. Second, the tool must take into account the precondi-
tion in its process to minimize rejects for test inputs outside
the precondition.

PATHCRAWLER [1] is a test input generation tool for
C programs. It is based on dynamic symbolic execution
(DSE), a technique that combines concrete execution and
symbolic execution of the program under test. Originally
PATHCRAWLER accepted a precondition written in a declar-
ative format specific to the tool. But user feedback encour-
aged us to find an alternative solution.

In this paper, we propose a new approach to handle the
precondition in a DSE tool, written in the tested language.
It is based on a late exploration of the precondition’s code
during the test generation. First Sec. II gives a brief overview

This work has been partly funded by the French-government Single Inter-
Ministry Fund (FUI) through the IO32 project (Instrumentation and Tools
for 32-bit Microcontrollers).

of precondition handling. Then Sec. III describes the new
method. Finally Sec. IV concludes this paper.

II. RELATED WORK

Some test input generation tools allow to express
the precondition in the tested language. For instance,
Java PathFinder [2] (generalized symbolic execution) and
CUTE [3] (DSE) allow the user to provide a consistency
check as a function in the tested language. The function is
first solved, using the normal process of the tools. Similarly,
Pex [4], a DSE tool for the .NET platform, treats Code
Contracts, an embedded form of specification that automati-
cally translates into dynamic checks during compilation. For
the precondition, assumption statements are placed before
the code to be tested and handled as any other part of
the code. Many DSE tools do not address the precondition
problem specifically. However, at the cost of extra test cases,
the precondition can be written as a conditional statement
around the program code, leading to a solution almost
equivalent to previous approaches. Like these tools, our
approach proposes to encode the precondition in the tested
language. However, it separates and delays the exploration
of the precondition in order to minimize the exploration of
the program code.

Another way to enforce the precondition is to describe
how to construct a valid input rather than how to check
whether a test case is valid. This method, sometimes called
finitization [5], is complementary to classic precondition.
Indeed, some complex structures are simpler to check than
to construct, while others are better handled constructively.

III. LATE-PRECONDITION METHOD

Usual test generation in PATHCRAWLER: In Fig. 1 we
briefly present (following [6, Sec.2.1]) the DSE-based test
generation method for a C function f implemented in
PATHCRAWLER. Step A1 creates a logical variable for each
input of f and posts the constraints for the precondition of f
(given in an internal format). The depth-first exploration of
program paths (steps A2-A5) starts with the empty path ε.
A2 symbolically executes the current partial path π in f and
posts corresponding path constraints, solved at A3 in order to
generate a test t activating a path starting with π. If A2 or A3

fails, i.e., π is infeasible, then A5 continues directly to the
next partial path in a depth-first search. If a test t is found,
A4 executes f on t and observes the complete executed path



Notation
f C function under test
π current partial path in f
p C function that checks if a test t satisfies the precondition of f
ρ current partial path in p

(A1) init., set precond., π := ε

(A2) symb. exec. π in f (A3) generate test t

(A5) compute next π (A4) execute f on t

finish

ok

fail okfailok

no more paths in f

Figure 1. Basic PATHCRAWLER test generation method (with
a precondition defined in an internal format)

(A′
1) init., π := ε

(A′
2) symb. exec. π in f (A′′

1 ) ρ := ε

(A′′
2 ) symb. exec. ρ in p (A′′

3 ) generate test t

(A′′
5 ) compute next ρ (A′′

4 ) execute p on t

(A′
5) compute next π (A′

4) execute f on t

finish

failok

no more paths in f

ok

ok

fail okfail

p is true on t

p is

false
on t

ok

no more paths in p

Figure 2. Our late-precondition method using a precondition defined in a
separate C function

and its results. Note that some solvers (e.g., Colibri the con-
straint solver used in PATHCRAWLER) support incremental
constraint solving. That is why, if the constraints are sent to
the solver during the symbolic execution and if the solver
detects the infeasibility of a path at steps A2-A3, the process
skips A4 and goes to A5.

Late-precondition process: Let us assume given the pre-
condition of f defined by a C function p, returning true (a
non-zero value) when the inputs are admissible for f . One
could suggest to filter inputs by p before exploring f . It can
be done when the precondition is a conjunction of elemen-
tary conditions (it is the case in the internal precondition
format of PATHCRAWLER). The difficulty of treating any C
function p is that p can have several paths that may lead to
an accepting return statement since a C precondition may
encode a complex logic formula with disjunctions. How to
cover, without repetitions, every program path in f by a test
executing an accepting path in p?

Fig. 2 presents our late-precondition method. It consists in
“exploring p after f”, that is, searching, for each partial path
π of f , a test accepted by p after posting the path constraints
of π at A′

2. The steps A′
i explore the paths of f in the same

manner as in Fig. 1, except that the test generation step A3

is replaced by another DSE-like exploration A′′
1 -A′′

5 for the
precondition p. At the steps A′′

1 -A′′
5 , the process keeps in the

constraint store the constraints for π all the time and adds
those for the current partial path ρ in p when necessary. If
A′′

3 finds a test t satisfying the precondition, t also satisfies
the path constraints of π and the exploration of p stops.
Otherwise, the process explores all paths of p to check that
no admissible test executes the partial path π of f .

This method treats a C precondition in a completely
automatic way and is available online [7] (see e.g. example
MergePrecond). It never considers again the same path of
f . The “exploring p before f” approach cannot guarantee
this property, so the same path in f may be covered several
times. In addition, our technique allows us to continue to
benefit from incremental constraint solving approach (where
the constraints of the same partial path π are never re-
posted and re-solved again), one of the main forces of the
PATHCRAWLER method.

IV. CONCLUSION

We propose a late-precondition method for dynamic sym-
bolic execution that combines at least two benefits. First,
it takes as input an executable precondition written in
the tested language, i.e., C for PATHCRAWLER. Such a
precondition is easier to write for developers and can be
very expressive. Second, the method ensures that paths of
the function under test are considered once and only once
during the test. This notably allows high path coverage,
where each uncovered paths is either infeasible or outside
chosen limits (e.g., on the number of loop iterations). This
method was implemented in the tool PATHCRAWLER. It also
appears very useful when combining static and dynamic
analysis, notably in the SANTE tool [8] and in treating
E-ACSL, an executable specification language for C [9].
Indeed, when combining tools with very different views on
the program, the program’s own language is often the only
suitable common language to express a precondition. That
is why C preconditions have been used in those works to
encode preconditions given in Pre/Post specifications.

REFERENCES

[1] B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov,
P. Mouy, M. Roger, and N. Williams, “Automating structural
testing of C programs: Experience with PathCrawler,” in
AST’09.

[2] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input
generation with Java PathFinder,” in ISSTA’04.

[3] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit
testing engine for C,” in ESEC/FSE-13, 2005.

[4] M. Barnett, M. Fahndrich, P. de Halleux, F. Logozzo, and
N. Tillmann, “Exploiting the synergy between automated-test-
generation and programming-by-contract,” in ICSE’09.

[5] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid,
“Korat: A tool for generating structurally complex test inputs,”
in ICSE’07.

[6] N. Kosmatov, “All-paths test generation for programs with
internal aliases,” in ISSRE’08.

[7] ——, “Online version of PathCrawler.” 2010–2013,
http://pathcrawler-online.com/.

[8] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand, “Pro-
gram slicing enhances a verification technique combining static
and dynamic analysis,” in SAC’12.

[9] M. Delahaye, N. Kosmatov, and J. Signoles, “Common spec-
ification language for static and dynamic analysis of C pro-
grams,” in SAC’13, to appear.


	Introduction
	Related Work
	Late-Precondition Method
	Conclusion
	References

