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Abstract. Formal verification of real-life industrial software remains a
challenging task. It provides strong guarantees of correctness, which are
particularly important for security-critical products, such as smart cards.
Security of a smart card strongly relies on the requirement that the un-
derlying JavaCard virtual machine ensures necessary isolation properties.
This case study paper presents a recent formal verification of a JavaCard
Virtual Machine implementation performed by Thales using the Frama-
C verification toolset. This is the first verification project for such a
large-scale industrial smart card product where deductive verification is
applied on the real-life C code. The target properties include common
security properties such as integrity and confidentiality. The implemen-
tation contains over 7,000 lines of C code. After a formal specification
in the ACSL specification language, over 52,000 verification conditions
were generated and successfully proved. We present several issues iden-
tified during the project, illustrate them by representative examples and
present solutions we used to solve them. Finally, we describe proof re-
sults, some lessons learned and desired tool improvements.

1 Introduction

Safety and security of critical software has become a major concern today. Formal
software verification is able to rigorously demonstrate the absence of bugs and
security flaws. It provides strong guarantees of correctness, which are particularly
important for security-critical products, such as smart cards. However, formal
verification of real-life industrial software still remains a challenging task.

Security of a smart card strongly relies on a set of isolation properties that
must be ensured by the underlying JavaCard virtual machine. According to [20],
“an applet shall not read, write, compare a piece of data belonging to an applet
that is not in the same context, or execute one of the methods of an applet in
another context without its authorization”. The corresponding access rules are
usually implemented by a specific access control mechanism ensuring necessary
isolation, that is called a firewall.

This case study paper presents a recent formal verification of a JavaCard Vir-
tual Machine (JCVM) implementation performed by Thales using the Frama-C



verification platform [14]. It was realized for a Common Criteria EAL6 certifi-
cation (for which the certificate was recently issued). Target properties include
common security properties—such as integrity and confidentiality—that ensure
the required access control rules. The perimeter of verification includes the ma-
jority of functions of the JCVM with over 7,000 lines of C code. They were
formally annotated in the ACSL specification language [4], and verified using
the WP and MetAcsl plugins of Frama-C. Overall, more than 52,000 proof goals
(verification conditions) were generated and successfully proved. As far as we
know, this is the first verification project for such a large-scale industrial smart
card product where deductive verification is applied on the real-life C code.

Contributions. The contributions of the paper include a presentation of the
formal verification case study fully realized in the industrial context. It took
approximately 3 person-years. We present our specification and verification ap-
proach, emphasize some of the issues faced during the project and briefly explain
how they were solved. The issues include bit-related operations, heterogeneous
pointer casts, existential quantifiers, prover scalability and failures of automatic
proof, expressing and efficient proof of global (e.g. security) properties, and code
maintenance. While most solutions are not new, their accurate combination was
essential for the proof. We also describe some extensions and improvements of
Frama-C—some of which were key for the success of this project—identified dur-
ing the project and implemented by its developers. Finally, we present our proof
results, some lessons learned and the desired tool improvements. The source code
of smart card products is highly sensitive and cannot be shared. To illustrate the
implementation structure, a subset of properties and our verification approach,
we use a toy example. Due to space limitations, some other specific aspects of
this work (in particular, related to stack verification and the Common Criteria
evaluation methodology) will be described in future publications.

Outline. Sections 2 and 3 provide necessary background on Frama-C and JCVM.
Our memory modeling approach using a companion ghost model is presented in
Sect. 4. Section 5 describes the usage of lemmas and scripts to help the proof.
Security property specification and verification with MetAcsl are presented in
Sect. 6. Section 7 discusses code organization and maintenance. Our proof re-
sults, lessons learned and expected future improvements are presented in Sect. 8.
Finally, Sections 9 and 10 present related work and a conclusion.

2 Frama-C Verification Platform

This section briefly presents the verification tools used in this project. We as-
sume that the reader is familiar with basic notions of contracts and deductive
verification.

Frama-C [14] is a program verification platform for C code developed by CEA
List with participation of INRIA. It offers several analyzers organized as plugins
around a common kernel. Developed since 2008, Frama-C has been used in several
academic and industrial projects and has a large community of developers and



users. Today, thanks to an active development, rigorous validation process and
a wide range of applications throughout the world, Frama-C is considered as a
state-of-the-art verification toolset for C programs. Frama-C uses ACSL (ANSI
C Specification Language) [4], a formal specification language for C programs.
It allows the user to specify annotations as typed first-order logic formulas. In
particular, a precondition (ACSL clause requires) of a function f defines a
property expected to hold before any invocation of f . It is assumed on entry
during the verification of f , but must be proved before any call of f during the
verification of a caller. A postcondition (ensures clause) of f states a property
that must hold after the function call. It must be proved during the verification
of f but is assumed after the call to f in a caller. An assigns clause in the
contract of f specifies the memory locations that can be modified by f . A loop
invariant clause in a loop contract specifies a property that must hold before
the loop and after every loop iteration. Local properties (ACSL clause assert)
must hold at the point where they are inserted.

The WP plugin of Frama-C is dedicated to modular deductive verification
of C code. It takes as input a C program and a (partial) formal specification
expressed by ACSL annotations and tries to prove that the program respects the
provided annotations. To do that, WP generates proof goals (or proof obligations,
or verification conditions) that are then either proved by WP itself (thanks to
its internal formula simplification engine called Qed [8]) or sent via the Why3
tool [12] to external provers (SMT solvers). In this work we use Alt-Ergo [7], cho-
sen in agreement with the certification authority. If all proof goals generated for
a given program with ACSL annotations are proved, the program is guaranteed
to respect the given ACSL specification. In addition to the specified properties,
to ensure that the program under verification represents no risk of provoking
undefined behaviors (also called runtime errors), WP relies on the RTE plugin
of Frama-C to generate additional assertions to exclude the risk of undefined
behaviors. Their proof is an essential step, both for the soundness of verification
and to avoid security vulnerabilities due to undefined behaviors. Finally, one can
rely on the MetAcsl plugin [23–25] to verify some security properties. It allows
the user to specify global properties and translates them into local assertions
(for instance, for each reading or writing operation) that can then be verified by
other tools (like WP).

3 Overview of JavaCard Virtual Machine

This section briefly presents JavaCard Virtual Machine (whose detailed under-
standing is not mandatory to follow the paper).

JavaCard Virtual Machine (JCVM) [22] is often part of a smart card ar-
chitecture and plays an essential role in it: it executes JavaCard bytecode. Its
main functional goal is to provide application interoperability, when the same
JavaCard bytecode can be run without re-compilation on several smartcard ar-
chitectures. JavaCard bytecode contains a sequence of opcodes, each defining a
particular operation, e.g. allocation of a new object of a given class, arithmetic
operation on the Java stack, writing into a heap object a value read from the



Java stack, etc. Opcodes are read iteratively inside the main dispatch loop, which
calls functions implementing particular opcodes.

We can distinguish 3 main memory locations managed by JCVM: Java stack,
data heap and code area. Inside the code area, immutable information of the
package(s) is stored during loading of application to the card, and is never mod-
ified later. It contains mainly package classes, including bytecode of their meth-
ods.

The data heap is used for storage of application data, namely class instances,
arrays and (static) class variables. Three different types of memory are used to
store heap data, depending on its life cycle: transient deselect data erased during
owning application deselection, transient reset data erased only when the smart
card is reset, and persistent data preserved anytime. The Java stack is a central
location for data processing. In particular, its subpart, the operand stack, serves
to realize arithmetic operations and for data exchange with the heap memory.

Next to functional aspects, JCVM also ensures security goals essential to the
smart card ecosystem. As applications of different vendors can be loaded on the
same smart card, it is crucial to guarantee isolation, in particular concerning the
heap data. It is done by an oncard software component, JavaCard firewall [21].

A unique context value is assigned to each JavaCard binary (CAP file) during
loading to the card. In general, the firewall blocks access to the data of another
CAP file, except well-defined exceptions such as global arrays, ArrayViews or
class variables. For simplicity, we ignore those exceptions in the examples in this
paper. As a natural implementation choice, for each object on the heap (except
class variables), the object owner context is stored inside the object header.

For illustration, we can list some examples of (simplified) security goals,
which refine the general objective of CAP file data isolation, as defined in [20]
(and quoted in Sect. 1), and distinguish confidentiality and integrity aspects.

Gheadinteg: Already allocated objects’ headers cannot be modified during a VM run.

Gdatainteg: Elements of a (persistent or transient reset) array can be modified only
if the accessing context is the owner of the accessed object.

Gdataconf : Elements of a (persistent or transient reset) array can be read only if the
accessing context is the owner of the accessed object.

There is an interplay between JCVM and another important security com-
ponent of a smart card environment, Bytecode Verifier (BCV). As stated in [20],
BCV must check any application prior to its execution to ensure its type security.
On the other hand, (fully) defensive VMs ensure the discussed security properties
even if the interpreted application is not verified by BCV. However, the toy ex-
ample considered in this paper does not contain necessary sanity checks, so they
rely on successful BCV checks. Thus, to enable its proof, we introduce hypothe-
ses corresponding to particular BCV checks. For example, function updateJPC
(modifying the Java program counter) will simply assume the updated code
position stays within the method component of the CAP file.

The influence between JCVM and BCV is bidirectional. Indeed, BCV applies
typed based simulation of bytecode, investigating all possible paths through the



1 typedef unsigned char u1; typedef unsigned short u2; typedef unsigned int u4;
2

3 // === Code model and current Java context ===
4 #define CODE_SIZE 10000
5 u1 Code[CODE_SIZE], *JPC; // Java code area and Java program counter
6 //@ ghost u4 gJPCOff; // JPC offset in code area
7 u1 JCC; // Current Java context
8

9 // === Heap model ===
10 #define SEGM_SIZE 10000
11 #define MAX_OBJS 500
12 u1 ObjHeader[SEGM_SIZE]; // Object headers area
13 //Header(8B),Bytes:Contents: 0:Owner,1:Flags,2-3:Class,4-5:BodyOff,6-7:BodySize
14 #define GET_OWN(addr) ( *((u1*)addr + 0) )
15 #define GET_FLAG(addr) ( *((u1*)addr + 1) )
16 #define GET_OFF(addr) ( (u2)((*((u1*)addr + 4))*256 + *((u1*)addr + 5)) )
17 #define GET_SIZE(addr) ( (u2)((*((u1*)addr + 6))*256 + *((u1*)addr + 7)) )
18 u1 PersiData[SEGM_SIZE]; // Persistent objects data area
19 u1 TransData[SEGM_SIZE]; // Transient objects data area
20

21 /*@ ghost // === Companion ghost memory view ===
22 u4 gNumObjs; // Number of allocated objects
23 u1 gIsTrans [MAX_OBJS]; // Nonzero for transient object
24 u4 gHeadStart[MAX_OBJS]; // Start offset of object header
25 u4 gDataStart[MAX_OBJS]; // Start offset of object data
26 u4 gDataEnd [MAX_OBJS]; // End offset of object data
27 u4 gCurObj; */ // Currently considered object number
28

29 /*@ // === Validity predicates ===
30 predicate valid_code_model = 0 <= gJPCOff < CODE_SIZE &&
31 JPC == &Code[gJPCOff];
32 predicate valid_heap_model =
33 0 <= gNumObjs <= MAX_OBJS &&
34 // headers of allocated objects are within ObjHeader segment
35 (\forall integer i; 0 <= i < gNumObjs ==>
36 0 <= gHeadStart[i] <= SEGM_SIZE - 8 ) &&
37 // no overlapping between headers (each header has 8 bytes)
38 (\forall integer i,j; 0 <= i < j < gNumObjs ==>
39 (gHeadStart[i] >= gHeadStart[j]+8 || gHeadStart[j] >= gHeadStart[i]+8) ) &&
40 // IsTrans[i] encodes if i-th object’s transient bit is set
41 (\forall integer i; 0 <= i < gNumObjs ==>
42 ( gIsTrans[i] <==> (GET_FLAG(ObjHeader+gHeadStart[i]) & 0x08) ) ) &&
43 // data of allocated objects is within a data segment
44 (\forall integer i; 0 <= i < gNumObjs ==>
45 gDataStart[i] == GET_OFF(ObjHeader+gHeadStart[i]) &&
46 gDataEnd[i] == gDataStart[i] + GET_SIZE(ObjHeader+gHeadStart[i]) - 1 &&
47 0 <= gDataStart[i] < gDataEnd[i] < SEGM_SIZE ) &&
48 // no overlapping between persistent object data
49 (\forall integer i,j; 0<=i<j<gNumObjs && !gIsTrans[i] && !gIsTrans[j] ==>
50 (gDataStart[i] > gDataEnd[j] || gDataStart[j] > gDataEnd[i]) ) &&
51 // no overlapping between transient object data
52 (\forall integer i,j; 0 <= i < j < gNumObjs && gIsTrans[i] && gIsTrans[j] ==>
53 (gDataStart[i] > gDataEnd[j] || gDataStart[j] > gDataEnd[i]) ); */
54

55 // Lines 56-66 give declarations of functions updateJPC, get_u1, get_u4, get_gu4.

Fig. 1. Illustrative example of JCVM: code and heap modeling.

code and checking its type safety [19]. As a hypothesis, BCV relies on the opcode
specification [22] and its effect on the memory managed by JCVM (e.g. number
of slots popped and pushed on the Java stack). It is therefore mandatory to
check that JCVM respects this specification.



4 Memory Modeling and Companion Ghost Model

To illustrate our verification approach, we use a toy example of a JCVM, split
into Fig. 1–5, where we omit some less important fragments or empty lines. It is
strongly simplified to fit the paper, and intentionally modified to avoid revealing
real-life code features. It is of course too simple to provoke proof issues we faced
on real-life code, but sufficient to explain when they occur and how we address
them. We consider one JCVM run, in which allocated objects cannot be deleted,
but new objects can be allocated. Figure 4 presents the dispatch loop that reads
the next opcode and calls the relevant opcode function. An opcode function and
a simple firewall function are shown in Fig. 3. We detail all components of the
example below. In this section, we explain Fig. 1 and the C code of Fig. 3.

Line 1 in Fig. 1 defines unsigned integer types with 1, 2 and 4 bytes. Lines 3–7
show a simple code model, where Java program counter JPC will be assumed to
refer inside the Code array as specified by the code model validity predicate on
lines 30–31. This predicate will be maintained by most functions in our example.
Here, to facilitate the automatic proof, we avoid an existentially quantified offset
by introducing the offset gJPCOff as a ghost variable (i.e. used only in ACSL
annotations). We start the names of ghost variables with a g.

Lines 9–27 show a simplified model of the heap, where we model only persis-
tent and transient reset objects. We consider three separate memory segments:
for objects headers, persistent object data and transient (reset) object data (cf.
lines 12, 18–19). A header contains the object’s owner context (1 byte), flags (1
byte), class reference (2 bytes), followed by the start offset of the object data
(body) and its size, each over 2 bytes (cf. line 13). Macros on lines 14–17 ex-
tract some of these fields. The number of allocated objects is specified as a ghost
variable gNumObjs, and the allocated objects are supposed be numbered start-
ing from 0. For the i-th object, the offset of its header is modeled by a ghost
array element gHeadStart[i], while gDataStart[i] and gDataSize[i]
contain the offset and size of its body in one of the data segments. The ghost
array element gIsTrans[i] is nonzero iff the i-th object has transient data.

The heap model validity predicate specifies first the value interval for the
number of allocated objects (line 33). Lines 34–39 state that headers are within
the bounds of the segment and do not overlap. Similarly, lines 43–53 state that
object bodies are within the bounds of data segments and—when in the same
segment—do not overlap. Thus, we precisely model the heap memory using a
companion ghost model, some parts of which are not readily available in the C
code. The heap validity predicate is maintained by most functions, including
new object allocation.

Optimized code often uses bits, e.g. to encode various flags. Let us consider
here only one bit: the transient bit, obtained from the flag byte with mask 0x08.
If this bit is set, the object data is located in the transient segment (with the
offset and size given in the header), otherwise in the persistent segment (with
the offset and size given in the header). Its usage is well illustrated by function
bastore (see lines 110–119 in Fig. 3). It writes a given value into a given
object at a given offset. After calling the firewall to check the access, it tests



67 /*@ // === A security property: object headers remain intact ===
68 predicate object_headers_intact{L1, L2} =
69 \forall integer i, off; 0 <= i < \at(gNumObjs,L1) &&
70 \at(gHeadStart[i],L1) <= off < \at(gHeadStart[i],L1) + 8 ==>
71 \at(ObjHeader[off],L1) == \at(ObjHeader[off],L2);
72

73 // === Memory footprint predicate and lemma example ===
74 predicate mem_model_footprint_intact{L1,L2} =
75 \at(gNumObjs,L1) <= \at(gNumObjs,L2) &&
76 ( \forall integer i; 0 <= i < \at(gNumObjs,L1) ==>
77 \at(gIsTrans[i],L1) == \at(gIsTrans[i],L2) &&
78 \at(gHeadStart[i],L1) ==\at(gHeadStart[i],L2) &&
79 \at(gDataStart[i],L1) ==\at(gDataStart[i],L2) &&
80 \at(gDataEnd[i],L1) ==\at(gDataEnd[i],L2) );
81

82 lemma vhm_preserved{L1,L2}: mem_model_footprint_intact{L1,L2} &&
83 object_headers_intact{L1,L2} && valid_heap_model{L1} &&
84 \at(gNumObjs,L1) == \at(gNumObjs,L2) ==> valid_heap_model{L2}; */

Fig. 2. Examples of a security property, a footprint-related predicate and a lemma.

the transient bit to choose and write the target memory location before moving
the program counter to a next opcode (using the function updateJPC, omitted
here). The firewall function (see lines 93–97 in Fig. 3) allows the access if the
current context is the object owner and the destination offset is in the bounds
(cf. Gdatainteg, Gdataconf in Sec. 3). In the real-life code, several bits can be manipulated
within the same function, leading to complex proof goals.

Straightforward specification of the code with bit-related operations does not
scale well in our case study : automatic proof fails for many properties over the
real-life code when numerous bits are involved, thus requiring extra assertions
or interactive scripts. To overcome proof scalability issues due to bit-level op-
erations, we duplicate the bit-level information by boolean ghost variables and
maintain their equivalence. That is why we encode the transient bit of the i-th
object as a ghost array element gIsTrans[i], as specified by lines 40–42. By
expressing annotations using the resulting ghost variables (like on lines 49, 52,
or as we will see later in Fig. 5) rather than the transient bit, we provide the
provers with a parallel, companion view of bit-level information. It enhances
their capacity of automatic proof in our project.

Heterogeneous pointer casts present another difficulty faced in our project.
The definitions of macros of lines 16–17 in real-life code would use such casts:

#define GET_OFF(addr) ( (u2)(*(u2*)(addr + 4)) ) // Before rewriting of casts
#define GET_SIZE(addr) ( (u2)(*(u2*)(addr + 6)) ) // Before rewriting of casts

To allow the proof with the Typed memory model of WP, we rewrite such casts
equivalently as shown on lines 16–17. The equivalence of rewriting can be checked
even by an exhaustive enumeration. The Typed memory model of WP [3] is both
sound and efficient, but unable to support heterogeneous pointer casts. Lower-
level models are either unsound or unable to reason efficiently on our case study.
Introducing ghost variables to store the resulting casted values (cf. lines 45–46)
and using those ghost variables in annotations (cf. line 91) also had a positive
effect on the automatic proof.

Overall, the companion ghost model in our project has a twofold role: it
allows us to conveniently express memory-related properties and facilitates au-



86 /*@
87 requires vhm: valid_heap_model;
88 requires 0 <= gCurObj < gNumObjs && ObjRef == gHeadStart[gCurObj];
89 assigns \nothing;
90 ensures \result <==> ( GET_OWN(ObjHeader+ObjRef) == JCC &&
91 gDataStart[gCurObj] + DestOff <= gDataEnd[gCurObj] );
92 */
93 u1 firewall(u4 ObjRef, u4 DestOff){
94 if (GET_OWN(ObjHeader+ObjRef) == JCC && DestOff < GET_SIZE(ObjHeader+ObjRef))
95 return 1;
96 return 0;
97 }
98

99 /*@
100 requires vhm: valid_heap_model;
101 requires vcm: valid_code_model;
102 admit requires 0 <= gCurObj < gNumObjs && ObjRef == gHeadStart[gCurObj];
103 assigns PersiData[0..(SEGM_SIZE-1)],TransData[0..(SEGM_SIZE-1)],JPC,gJPCOff;
104 assigns JPC \from &Code[0]; // possible base address
105 ensures vhm: valid_heap_model;
106 ensures vcm: valid_code_model;
107 ensures oh: object_headers_intact{Pre,Post};
108 ensures mmf: mem_model_footprint_intact{Pre,Post};
109 */
110 void bastore(u4 ObjRef, u4 DestOff, u1 Val)
111 {
112 if( ! firewall(ObjRef,DestOff) ) // Check access and
113 return; // exit if forbidden
114 if( GET_FLAG(ObjHeader+ObjRef) & 0x08 ) // If trans. bit set,
115 TransData[GET_OFF(ObjHeader+ObjRef) + DestOff] = Val;// write to trans.body
116 else // Otherwise
117 PersiData[GET_OFF(ObjHeader+ObjRef) + DestOff] = Val;// write to pers.body
118 updateJPC();
119 }

Fig. 3. firewall and bastore functions with their ACSL contracts.

tomatic reasoning for bit-level operations and heterogeneous casts rewritten with
arithmetic operations.

5 Predicates, Lemmas and Scripts

This section details Fig. 2 and 4, as well as function contracts in Fig. 3.

The predicate on lines 68–71 of Fig. 2 states that the object headers of al-
located objects do not change between labels (program points) L1,L2. The
predicate on lines 74–80 states that the companion model does not change be-
tween labels L1,L2 for objects that existed at label L1, but new objects can
have been allocated. As we said, we do not consider object deletion.

The C code of the dispatch loop in Fig. 4 reads the next opcode and chooses
the opcode function to be called. The code of bastore function was presented
in Sec. 4. We assume that baload is a similar function for reading a value, and
other_opcode illustrates other opcodes. For simplicity, the Java stack and
Java reference resolution are not modeled in this example, and the necessary
arguments of bastore and baload are read as non-deterministic values (lines
185–186, 188–189). Here again, to avoid an existential quantifier, we use a ghost
variable gCurObj to represent the index of the object in our companion model.
We assume for simplicity as a precondition of bastore (cf. line 102 in Fig. 3)



120 //Lines 121-170 contain functions baload, other_opcode and a contract of main_loop
. . .

171 void main_loop(){
172 /*@
173 loop invariant vhm: valid_heap_model;
174 loop invariant vcm: valid_code_model;
175 loop invariant oh: object_headers_intact{LoopEntry,Here};
176 loop invariant mmf: mem_model_footprint_intact{LoopEntry,Here};
177 loop invariant no: gNumObjs >= \at(gNumObjs,LoopEntry);
178 loop assigns gNumObjs, ObjHeader[0..(SEGM_SIZE-1)],
179 gIsTrans[0..(MAX_OBJS-1)], gHeadStart[0..(MAX_OBJS-1)],
180 gDataStart[0..(MAX_OBJS-1)], gDataEnd[0..(MAX_OBJS-1)], gCurObj, JCC,
181 PersiData[0..(SEGM_SIZE-1)], TransData[0..(SEGM_SIZE-1)], JPC, gJPCOff;
182 */
183 while(1){
184 if(*JPC == 1) // Assume code 1 is for BASTORE
185 /*@ ghost gCurObj=get_gu4(); */ // Assume arbitrary object index and
186 bastore(get_u4(),get_u4(),get_u1()); // header offset, body offset, value
187 else if(*JPC == 2) // Assume code 2 is for BALOAD
188 /*@ ghost gCurObj=get_gu4(); */ // Assume arbitrary object index and
189 baload(get_u4(),get_u4()); // header offset, body offset
190 else if(*JPC == 3) // Assume code 3 is for exit
191 return;
192 else // Other opcodes
193 other_opcode();
194 }
195 }

Fig. 4. The dispatch loop and its ACSL contract.

that the object reference is a valid object, therefore, it has an index in the com-
panion model. The admit keyword1 indicates that this annotation is assumed
without proof. Heap and code validity are both pre- and postconditions (lines
100–101, 105–106). Line 103 indicates variables that the function is allowed to
modify. Line 107 ensures security property Gheadinteg of Sec. 3. Line 104 indicates
base address(es) of memory locations pointer JPC can be assigned to refer to.
This information is needed for a recent alias analysis in WP for pointers modified
inside the function (see [3, Sec. 3.6]). Line 108 is explained below. The contract
of firewall is straightforward.

The loop contract of the dispatch loop is similar to the contract of bastore,
but also allows modifications of current context JCC, an allocation of new objects
(line 177) and, therefore, modifications of the companion ghost model (lines 178–
180). For simplicity, in properties on lines 175–177 we compare the state after
each iteration (label Here, taken by default) to the start of the loop (label
LoopEntry), i.e. to the objects allocated before the loop. To cover all objects
allocated before the current iteration, similar properties comparing the start and
the end of an iteration can be specified in the loop body.

The dispatch loop iterations can modify a large part of the memory in the real-
life code, that decreases the capacity of automatic proof. To facilitate the proof,
we introduce the memory model footprint preservation property for previously
allocated objects (lines 73–80). It is used to state several preservation lemmas for
complex properties (like on lines 82–84 in Fig. 2). They facilitate the automatic
proof for the real-life code: non-modification of some variables is easier to prove

1 It was recently added in the 23.0beta and 23.0 releases of Frama-C; it should be
removed if an earlier release is used.



automatically than more complex properties, and helps to automatically deduce
more complex properties using lemmas.

When automatic proof does not work, the interactive proof editor of WP [3]
is very helpful to indicate some first proof steps—that can be recorded in a
proof script—to help the automatic prover to finish the proof. For instance, for
the lemma in Fig. 2, Alt-Ergo cannot perform the proof. The preservation of
the loop invariant mmf in the dispatch loop is another unproved goal. Proof
scripts can help to finish the proof. Typically, a script in our project includes
unfolding some predicate definitions, splitting some proof goals and instantiating
universally quantified goals with specific values.

Another issue was related to bit-level lemmas, not proved with Alt-Ergo, e.g.:

/*@ lemma dn: \forall u1 c; (c & 0x04)==0 && (c & 0x08)!=0 ==> (c & 0x0C)==0x08;*/

On our request, WP developers added new tactics so that now such lemmas are
successfully proved after a few clics in the interactive proof editor of WP.

One scalability issue we met was related to the simplification engine Qed of
WP: it could take about 40 min per property because of a very high number
of branches (for 185 opcodes) in the dispatch loop. The solution we used was
to deactivate some Qed simplifications (with option -wp-no-pruning) and
to rewrite a long dispatch loop equivalently with shorter functions. Another
kind of code transformation was necessary to rewrite longjmp/setjmp instructions
present in the code but not yet supported by Frama-C. Apart from these two
cases of transformations and a minor rewriting for heterogeneous pointer casts
(see Sec.4), the real-life code was proved as is, without other code transformations.

Overall, a careful combination of preservation properties, lemmas and inter-
active proof scripts helped us to successfully finish the proof.

6 Verification of Security Properties with MetAcsl

We saw that some security properties like Gheadinteg can be specified in ACSL as
an invariant property maintained by relevant functions and directly proved by
WP. For other properties, like Gdatainteg and Gdataconf , it is not possible. Confidentiality
properties cannot be currently verified by WP because there is no way supported
by the tool to specify which variables (or memory locations) can be read and
under which precise conditions. But even for an integrity property Gdatainteg, it is
not easy to specify that modifications can only occur when allowed. The current
context of the smart card can be changed (under certain conditions, that must
of course be specified and verified as well). Hence Gdatainteg cannot be specified
as preservation of values during the dispatch loop: object data can be modified
if the current context JCC was legally changed to the object owner. As various
involved variables (in this example, object data and JCC) are changed in different
functions under different specific conditions, it is extremely difficult to achieve
a global view of what is really specified and verified. To solve this issue, we use
the recent metaproperty-based approach and the MetAcsl plugin [23–25].

Figure 5 shows two metaproperties expressing Gdatainteg and Gdataconf for persistent
objects. Lines 198, 203 provide a name, the set of target functions (here, all
functions) and the context—the situations in which it must apply. The first



197 /*@ // === Metaproperties: persistent object data written/read only by owner ===
198 meta \prop,\name(meta_persi_objects_integrity),\targets(\ALL),\context(\writing),
199 ( \forall integer i; 0 <= i < gNumObjs && !gIsTrans[i] &&
200 ObjHeader[gHeadStart[i] + 0] != JCC ==>
201 \separated(\written,PersiData+(gDataStart[i]..gDataEnd[i])) );
202

203 meta \prop,\name(meta_persi_objects_confident),\targets(\ALL),\context(\reading),
204 ( \forall integer i; 0 <= i < gNumObjs && !gIsTrans[i] &&
205 ObjHeader[gHeadStart[i] + 0] != JCC ==>
206 \separated(\read,PersiData+(gDataStart[i]..gDataEnd[i])) ); */

Fig. 5. Metaproperties for persistent object data integrity/confidentiality.

metaproperty has a writing context and applies whenever a variable is written.
It means that whenever a variable (or memory location) is written, the predicate
on lines 199–201 must hold, where \written refers to the written location. In
other words, the written location must be separated (that is, disjoint) from the
data of any persistent object if the current context is not its owner, as required
by Gdatainteg. Similarly, the second metaproperty states that every read location
must be separated (that is, disjoint) with the data of any persistent object if
the current context is not its owner, as required by Gdataconf . Metaproperties for
transient objects are expressed similarly.

MetAcsl translates metaproperties into assertions at each relevant program
point. For example, for the first metaproperty, an assertion of the provided pred-
icate will be added before each writing operation, where \written will be
replaced by the address of the written location. Those assertions can then be
verified by WP. If all assertions are proved, the metaproperty is proved. Notice
that these metaproperties directly ensure the security properties for all currently
allocated objects (not only those allocated before the loop as for a loop invariant)
since the predicate is inserted and evaluated at each relevant program location.

On our request, MetAcsl developers added an extremely useful feature: to
translate a metaproperty into checks rather than asserts. In ACSL, the proof of
a check is attempted, but it is not kept in the proof context for the following
properties, contrary to an assert, that is proved and kept in the context.
Thanks to the translation of metaproperties into checks that do not overload
proof contexts, the metaproperty-based approach scales very well, despite a great
number of generated annotations.

7 Specification Architecture and Effort

Maintenance issue. ACSL annotations may become pervasive, difficult to track
and to maintain, especially when the verification scope is meant to be extended.
They require a careful organization to ensure specification traceability and main-
tainability. Function contracts are placed in header files with function declara-
tions, security properties are grouped in a separate header file, etc.

Macros to define common contracts. We leverage the pre-processing of C macros
to organize a large part of function and loop contracts as macros. They are used
to define common properties that occur in several contracts. For instance, one
macro is used to gather all postconditions that apply to several opcode functions.
Other examples of macros are some common preconditions, or common assigns



User-provided ACSL MetAcsl RTE
Manual effort Auto. prep. Man. Auto. trans. Auto. gen.

Code subset #opc #fun #C #ghost #man
ACSL

#man
ACSL
#C

#pp
ACSL

#
pp
ACSL
#C

#P #meta
ACSL

#meta
ACSL
#C

#rte
ACSL

#rte
ACSL
#C

Bastore 1 11 540 70 2,814 5.21 2,770 5.12 29 57,362 106.22 514 0.95
Sample 1 4 19 783 94 3,153 4.08 3,526 4.50 29 84,698 108.17 734 0.93
Sample 2 11 36 1,201 97 3,939 3.27 5,787 4.81 34 117,191 97.57 897 0.74
All 185 391 7,014 162 12,432 1.77 35,480 5.05 36 396,603 56.54 2,290 0.32

Table 1. Specification effort for the real-life code.

clauses. Macros reduce redundancy in specifications and facilitate updates and
maintenance. Note that specific clauses can still be added to opcode function
contracts if required.

Macros to reduce the VM to particular opcodes. We realize a rich set of macros
to select a consistent minimal part of the C code and ACSL annotations for veri-
fication of properties for some code subsets: one opcode or a sample of opcodes.
On a large project, running the proof on such a code subset is handy for getting
faster results for a subset of opcodes and for proof debugging purposes.

Inventory of ACSL annotations. We distinguish several kinds of ACSL annota-
tions in our project, depending whether they have been manually written by the
user or automatically generated by MetAcsl, RTE or WP plugins:

– User-provided annotations: ACSL predicates and lemmas, function contracts,
loop contracts, proof-guiding assertions and metaproperties.

– Automatically generated annotations, produced

• by MetAcsl plugin according to user-defined metaproperties (cf. Sec. 6);

• by RTE plugin to prevent undefined behaviors (cf. Sec. 2);

• by WP plugin to detect ACSL specification inconsistencies, called smoke
tests (optional) [3, Sec. 2.3.5]. Basically, they check if false is provable.

Target JCVM code and code subsets. We verify the JCVM code that interprets
185 standard opcodes of the JavaCard platform [22]. To show our proof results,
we consider four incrementally increasing subsets of C code: (i) the smallest
subset required to interpret the bastore opcode; (ii) a subset required to interpret
4 opcodes (Sample 1); (iii) a subset for 11 opcodes (Sample 2); (iv) the whole
code with all 185 opcodes (All). Columns #opc, #fun and #C of Table 1 show,
respectively, the number of opcodes, functions and lines of C code in each subset.
The whole code (All) submitted to our deductive verification contains 7,014 lines
of C code. In addition to the 391 functions that are fully proved, it contains 23
stub functions (only specified in ACSL but not verified) to delimit the considered
verification scope. They mainly include some specific functions exploring the
hierarchy of classes and interfaces, functions for particular exception handler
operations, and memory address resolution functions.



User-provided ACSL annotations. The core of our formal specification consists of
manually written ACSL annotations. We show separately the amount (in lines of
code (loc)) of ghost code and other annotations (except metaproperties), resp.,
in columns #ghost and #man

ACSL of Table 1. The amount of ghost code is relatively
small (162 loc for All) compared to the project size. It mainly contains declar-
ing and updating ghost variables. Column #pp

ACSL shows the amount of ACSL
annotations after preprocessing of the macros defining common contracts. We
observe that the ratio of expanded ACSL annotations with respect to the C code
(column #pp

ACSL/#C) is between 4.5 and 5.12 for all subsets. However the ratio of
user-provided ACSL annotations with respect to the C code (column #man

ACSL/#C)
shrinks drastically from 5.05 for Bastore to 1.77 for All. Indeed, macros help to
reduce the number of lines of user-provided ACSL annotations from 35, 480 to
12, 432 for the whole C code. Hence, the benefit of macros monotonically in-
creases with the increase of redundant ACSL annotations for larger code subsets,
and the ratio of manually written annotations for the whole code becomes very
reasonable. Macros save a lot of effort and enhance the readability and trace-
ability of ACSL annotations. Notice though that this observation can be specific
to our project, where some groups of opcodes have similar contracts.

MetAcsl annotations. Column #P in Table 1 gives the number of metaproperties
(that varies since some of them cover different sets of functions). Column #meta

ACSL

shows the number of lines in annotations automatically generated from them by
MetAcsl. Despite a very high number of ACSL annotations generated (396, 603 loc
for All, which is 56.54 times the original C code size), we had to write only 36
metaproperties with approximately 480 lines of ACSL. Note that the ratio of the
size of generated ACSL annotations w.r.t the original code (#meta

ACSL/#C) decreases
from 106.22 for Bastore to 56.54 for All, in particular, since All includes many
simple, short opcode functions, for which MetAcsl generates less annotations.

RTE annotations. The ratio of the size of generated RTE annotations w.r.t. the
whole C code (#rte

ACSL/#C) is 0.32 (cf. Table 1), which is smaller compared to
user-provided annotations (5.05) and MetAcsl-generated annotations (56.54). Is
decreases for the same reason as for metaproperties.

8 Proof Results and Lessons Learned

8.1 Proof results

Table 2 depicts proof results obtained by running Frama-C 22.0 (Titanium) on
an Ubuntu virtual machine. It was used under VirtualBox on a host desktop
PC running Windows 10 with Intel(R) core(TM) i7 CPU @ 2.00GHz processor
and 32.0 GB RAM. 8 processors and 24GB were allocated to the virtual ma-
chine. Frama-C was run with option -wp-par 8 to optimally use the 8 allocated
processors and a timeout for provers set to 100 seconds (option -wp-timeout
100). We used the Alt-Ergo solver, version 2.3.2. Overall, 52,198 proof goals have
been proven within 3h28m07s.



User-provided ACSL MetAcsl RTE Total

Code subset Prover #Goals #Goals #Goals #Goals Time

Bastore Qed 1,019 3,304 106 4,429 (77.92%) 0h47m45s
Script 78 131 1 210 (3.69%) 0h11m12s
SMT 305 590 148 1,043 (18.35%) 0h17m23s
All 1,402 (24.67%) 4,025 (70.81%) 255 (4.48%) 5,684 0h49m37s

Sample 1 Qed 1,491 5,037 120 6,648 (79.76%) 1h00m49s
Script 111 149 7 267 (3.20%) 0h13m41s
SMT 437 784 199 1,420 (17.03%) 0h28m24s
All 2,039 (24.46%) 5,970 (71.63%) 326 (3.91%) 8,335 0h59m59s

Sample 2 Qed 2,413 6,884 126 9,423 (79.43%) 1h04m33s
Script 144 257 20 421 (3.55%) 0h18m15s
SMT 682 1,088 249 2,019 (17.01%) 0h37m01s
All 3,239 (27.30%) 8,229 (69.36%) 395 (3.33%) 11,863 1h09m47s

All Qed 18,925 22,361 168 41,454 (79.42%) 2h58m15s
Script 330 212 30 572 (1.1%) 0h44m48s
SMT 4,683 4,588 902 10,173 (19.49 %) 2h36m18s
All 23,938 (45.85%) 27,435 (52.55%) 1,117 (2.13%) 52,198 3h28m07s

Table 2. Proof results for the real-life code.

Results per prover. The internal simplifier engine Qed of WP proves most proof
goals (around 79%) with an average time of 257ms per proved goal. The max-
imum time spent by Qed to prove one goal is 10.9s. The SMT solver is able to
discharge around 20% of proof goals with an average time of 974ms per proved
goal. The maximum time spent to prove one goal is 1m2s. Last but not least,
scripts prove the rest of the goals with an average time of 4s699ms. The majority
of scripts are necessary, but some scripts are introduced for time saving purpose,
when a script-based proof is faster and more stable with a fixed timeout of 100s.

Results per annotation kind. As discussed in Sect. 7, most lines of ACSL are
generated by MetAcsl. Each ACSL annotation is usually encoded on several lines
and several proof goals may be generated by WP for each ACSL annotation.
This partially explains the difference of proportions between Tables 1 and 2:
in Table 1, the ratio of the number of generated ACSL lines for MetAcsl w.r.t.
the number of preprocessed user-provided ACSL lines ranges between 20 times
for Bastore subset (57,362 vs 2,770) and 11 times for All (396,603 vs 35,480).
However, in Table 2, the ratio of the number of generated goals for MetAcsl w.r.t.
the number of goals for user-provided ACSL ranges between 3 times for Bastore
subset (4,025 vs 1,402) and 1.1 times for All (27,435 vs 23,938). For the same
reasons as explained in Sect. 7, the percentage of MetAcsl goals decreases from
70.81% for Bastore subset to 52.55% for All.

Overall results scalability. Results of Table 2 show that the proof scales well
with an increasing number of proof obligations. Whereas the number of proof
goals increases ten times from bastore subset to all opcodes subset, the proof
time increased only four times. This is thanks to parallelisation of goal proofs
in Frama-C. The distribution of proved goals over provers and ACSL annotation
kinds is given in Table 2. Although scripts prove only 1% of goals for the whole
program, they are very important to achieve a complete proof. They are also



important to get a complete proof verdict in a reasonable time while the specifi-
cation task is in progress and the verification engineers wait for the proof results.
Without the 572 scripts, proved in 44m48s, 16 extra hours will be necessary to
get a complete proof verdict with a timeout of 100s set for external provers.

8.2 Lessons Learned

Successful industrial application. Our application of deductive verification on a
large industrial C program shows that formal verification of real-life industrial
code has become feasible today. The proof of real-life code in our project requires
a careful combination of several ingredients: companion ghost code, preservation
properties, lemmas and proof scripts. This combination made it possible to ef-
ficiently reason about non-trivial code fragments involving bitwise operations
without the use of external interactive tools (e.g. Coq) with a high level of auto-
matic proof. The majority of proof goals (almost 99%) are proved automatically
by the Qed simplification engine of WP and an automatic SMT solver. The
remaining goals are successfully proved with proof scripts. MetAcsl proved to
offer a convenient and efficient technique for specification and verification of
security-related properties. An efficient support from the tool developers during
the whole project was essential for its success. Some anomalies were reported
and fixed, and several new features were requested and implemented. Examples
of such features include the implementation of check-and-forget versions of all
annotations (i.e. verified but not kept in the proof context), their usage for an-
notations generated by MetAcsl, as well as precise generation of memory model
hypotheses necessary for a sound proof [3, Sec. 3.6].

Further improvements. Creating and updating proof scripts in WP is a time-
consuming task. Scripts are very sensitive to specification changes and require
to be updated accordingly. Designing and applying custom, project-specific stra-
tegies—possible in Frama-C—would at least partially address this issue and save
efforts. Another issue we faced during this project is related to properties mixing
casts and arithmetic operations between different integer types. Lemmas allow-
ing to prove such properties should be either systematically activated in the
tool or made applicable on request. Further improvements in the tool seem to
be necessary to perform a proof of large programs, in particular, mixing com-
plex logic properties and low-level operations. One future work direction is the
development of collaborative memory models, capable to reason with different
memory models on various parts of code (e.g. with and without low-level op-
erations) and to soundly combine the results. Integrating more abstract levels
of reasoning into source-code based deductive verification is also an interesting
work perspective. Another work direction concerns a deeper proof paralleliza-
tion. In our case study, doubling the number of processors dedicated to the proof
computation from 8 to 16 cores does not seem to bring any benefit on the proof
efficiency today since some parts of WP are not parallelized. A more efficient
proof parallelization would facilitate industrial applications of the tool. Finally,
scalability issues of the Qed simplification engine on very long functions—that
we avoided by a code rewriting—should be further investigated.



9 Related Work
JavaCard related formal verification. A classical approach of applying formal
verification on JavaCard platform consists in building a high-level formal model
of target sub-modules. Several case studies have adopted this approach. An ex-
ecutable formal semantics of the JCVM and BCV is proposed in [2] with 15,000
lines of Coq scripts. Authors of [17] describe a refinement-based approach, using
the Coq proof assistant, to show that a native JavaCard API function fulfills its
specification. In general, in such approaches, the traceability of formally proven
properties may require a considerable effort to be justified because of the gap
between the formal model and the source code. In our case, all specified features
and properties are expressed as ACSL annotations directly on source code. An
operational semantics of a language that models the JCVM behavior is proposed
in [11,26]. It includes the basic structures needed to model object ownership and
the JavaCard firewall. This is analogous to our formal specification. In addition,
we perform a full proof of target security properties on a real-life JCVM imple-
mentation. Among tools devised and/or used for the purpose of providing formal
guarantees about JavaCard platform security properties we can list: Key [16],
KRAKATOA [15] and Caduceus [1].

Other success stories of deductive verification. Various verification case studies of
real-life software have emerged in the last two decades, where code was annotated
and verified, and often bugs were found [13]. A recent case study [18] presented
formal verification of industrial safety-critical software for a traffic tunnel control
system verification based on VerCors tool. Authors of [9] provide a feedback on
their experience of using ACSL and Frama-C on a real-world example. Other case
studies based on Frama-C present formal verification of kLIBC, a minimalistic C
library [6], a unit-proof of almost 3315 C functions of an avionics software [5] and
a verified RTE-free X.509 parser [10]. Proved properties tend to be shallower as
the code becomes of a lower-level nature. In our work, we took on the challenge
and managed to prove global critical security properties on large real-life C code.

10 Conclusion
In this paper, we have presented a formal verification case study fully realized in
an industrial context for a certification purpose. It contributes to collect and pub-
lish best practices and specification patterns in formal verification. We believe
this work will set up a new state of the art for applying deductive verification to
prove global security properties directly on large security-critical code. We report
detailed specification statistics and proof results that measure the specification
effort and proof scalability. The reported lessons learned from this project open
the door for further methodology and tool enhancements. As a future work, we
plan to introduce deductive verification in a sustainable continuous integration
process as both the code and its formal specification share the same codebase.

Acknowledgement. The authors thank the Frama-C team members for their re-
liable and efficient support. Many thanks to the anonymous reviewers for their
helpful comments.
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A Appendix: Supplementary Material

A.1 Complete illustrative example

Figures 6, 7, 8, 9 give the complete illustrative example of the JCVM code
annotated in ACSL. It was tested with Frama-C 23.0, Why3 1.4.0, Alt-Ergo 2.2.0.
The commands to run the proof with or without MetAcsl are given at the end
of the file.

Three proof goals remain unproven with these versions and require scripts.
One of them is the lemma in Fig. 2. The second one is the preservation of the
loop invariant mmf in the dispatch loop. Finally, lemma dn is the third goal. We
prepared scripts to illustrate that they can be proved using proof scripts.



1 typedef unsigned char u1; typedef unsigned short u2; typedef unsigned int u4;
2

3 // === Code model and current Java context ===
4 #define CODE_SIZE 10000
5 u1 Code[CODE_SIZE], *JPC; // Java code area and Java program counter
6 //@ ghost u4 gJPCOff; // JPC offset in code area
7 u1 JCC; // Current Java context
8

9 // === Heap model ===
10 #define SEGM_SIZE 10000
11 #define MAX_OBJS 500
12 u1 ObjHeader[SEGM_SIZE]; // Object headers area
13 //Header(8B),Bytes:Contents: 0:Owner,1:Flags,2-3:Class,4-5:BodyOff,6-7:BodySize
14 #define GET_OWN(addr) ( *((u1*)addr + 0) )
15 #define GET_FLAG(addr) ( *((u1*)addr + 1) )
16 #define GET_OFF(addr) ( (u2)((*((u1*)addr + 4))*256 + *((u1*)addr + 5)) )
17 #define GET_SIZE(addr) ( (u2)((*((u1*)addr + 6))*256 + *((u1*)addr + 7)) )
18 u1 PersiData[SEGM_SIZE]; // Persistent objects data area
19 u1 TransData[SEGM_SIZE]; // Transient objects data area
20

21 /*@ ghost // === Companion ghost memory view ===
22 u4 gNumObjs; // Number of allocated objects
23 u1 gIsTrans [MAX_OBJS]; // Nonzero for transient object
24 u4 gHeadStart[MAX_OBJS]; // Start offset of object header
25 u4 gDataStart[MAX_OBJS]; // Start offset of object data
26 u4 gDataEnd [MAX_OBJS]; // End offset of object data
27 u4 gCurObj; */ // Currently considered object number
28

29 /*@ // === Validity predicates ===
30 predicate valid_code_model = 0 <= gJPCOff < CODE_SIZE &&
31 JPC == &Code[gJPCOff];
32 predicate valid_heap_model =
33 0 <= gNumObjs <= MAX_OBJS &&
34 // headers of allocated objects are within ObjHeader segment
35 (\forall integer i; 0 <= i < gNumObjs ==>
36 0 <= gHeadStart[i] <= SEGM_SIZE - 8 ) &&
37 // no overlapping between headers (each header has 8 bytes)
38 (\forall integer i,j; 0 <= i < j < gNumObjs ==>
39 (gHeadStart[i] >= gHeadStart[j]+8 || gHeadStart[j] >= gHeadStart[i]+8) ) &&
40 // IsTrans[i] encodes if i-th object’s transient bit is set
41 (\forall integer i; 0 <= i < gNumObjs ==>
42 ( gIsTrans[i] <==> (GET_FLAG(ObjHeader+gHeadStart[i]) & 0x08) ) ) &&
43 // data of allocated objects is within a data segment
44 (\forall integer i; 0 <= i < gNumObjs ==>
45 gDataStart[i] == GET_OFF(ObjHeader+gHeadStart[i]) &&
46 gDataEnd[i] == gDataStart[i] + GET_SIZE(ObjHeader+gHeadStart[i]) - 1 &&
47 0 <= gDataStart[i] < gDataEnd[i] < SEGM_SIZE ) &&
48 // no overlapping between persistent object data
49 (\forall integer i,j; 0<=i<j<gNumObjs && !gIsTrans[i] && !gIsTrans[j] ==>
50 (gDataStart[i] > gDataEnd[j] || gDataStart[j] > gDataEnd[i]) ) &&
51 // no overlapping between transient object data
52 (\forall integer i,j; 0 <= i < j < gNumObjs && gIsTrans[i] && gIsTrans[j] ==>
53 (gDataStart[i] > gDataEnd[j] || gDataStart[j] > gDataEnd[i]) ); */

Fig. 6. Complete illustrative example of the JCVM code, part 1/4.



54

55 // Lines 56-66 give declarations of functions updateJPC, get_u1, get_u4, get_gu4.
56 /*@
57 requires vcm: valid_code_model;
58 assigns JPC, gJPCOff;
59 assigns JPC \from &Code[0],JPC;
60 ensures vcm: valid_code_model; */
61 void updateJPC(void);
62

63 /*@ assigns \nothing; */ u1 get_u1(void);
64 /*@ assigns \nothing; */ u4 get_u4(void);
65 /*@ ghost /@ assigns \nothing; @/ u4 get_gu4(void); */
66

67 /*@ // === A security property: object headers remain intact ===
68 predicate object_headers_intact{L1, L2} =
69 \forall integer i, off; 0 <= i < \at(gNumObjs,L1) &&
70 \at(gHeadStart[i],L1) <= off < \at(gHeadStart[i],L1) + 8 ==>
71 \at(ObjHeader[off],L1) == \at(ObjHeader[off],L2);
72

73 // === Memory footprint predicate and lemma example ===
74 predicate mem_model_footprint_intact{L1,L2} =
75 \at(gNumObjs,L1) <= \at(gNumObjs,L2) &&
76 ( \forall integer i; 0 <= i < \at(gNumObjs,L1) ==>
77 \at(gIsTrans[i],L1) == \at(gIsTrans[i],L2) &&
78 \at(gHeadStart[i],L1) ==\at(gHeadStart[i],L2) &&
79 \at(gDataStart[i],L1) ==\at(gDataStart[i],L2) &&
80 \at(gDataEnd[i],L1) ==\at(gDataEnd[i],L2) );
81

82 lemma vhm_preserved{L1,L2}: mem_model_footprint_intact{L1,L2} &&
83 object_headers_intact{L1,L2} && valid_heap_model{L1} &&
84 \at(gNumObjs,L1) == \at(gNumObjs,L2) ==> valid_heap_model{L2}; */
85

86 /*@
87 requires vhm: valid_heap_model;
88 requires 0 <= gCurObj < gNumObjs && ObjRef == gHeadStart[gCurObj];
89 assigns \nothing;
90 ensures \result <==> ( GET_OWN(ObjHeader+ObjRef) == JCC &&
91 gDataStart[gCurObj] + DestOff <= gDataEnd[gCurObj] );
92 */
93 u1 firewall(u4 ObjRef, u4 DestOff){
94 if (GET_OWN(ObjHeader+ObjRef) == JCC && DestOff < GET_SIZE(ObjHeader+ObjRef))
95 return 1;
96 return 0;
97 }
98

99 /*@
100 requires vhm: valid_heap_model;
101 requires vcm: valid_code_model;
102 admit requires 0 <= gCurObj < gNumObjs && ObjRef == gHeadStart[gCurObj];
103 assigns PersiData[0..(SEGM_SIZE-1)],TransData[0..(SEGM_SIZE-1)],JPC,gJPCOff;
104 assigns JPC \from &Code[0]; // possible base address
105 ensures vhm: valid_heap_model;
106 ensures vcm: valid_code_model;
107 ensures oh: object_headers_intact{Pre,Post};
108 ensures mmf: mem_model_footprint_intact{Pre,Post};
109 */
110 void bastore(u4 ObjRef, u4 DestOff, u1 Val)
111 {
112 if( ! firewall(ObjRef,DestOff) ) // Check access and
113 return; // exit if forbidden
114 if( GET_FLAG(ObjHeader+ObjRef) & 0x08 ) // If trans. bit set,
115 TransData[GET_OFF(ObjHeader+ObjRef) + DestOff] = Val;// write to trans.body
116 else // Otherwise
117 PersiData[GET_OFF(ObjHeader+ObjRef) + DestOff] = Val;// write to pers.body
118 updateJPC();
119 }

Fig. 7. Complete illustrative example of the JCVM code, part 2/4.



120 //Lines 121-170 contain functions baload, other_opcode and a contract of main_loop
121 /*@
122 requires vhm: valid_heap_model;
123 requires vcm: valid_code_model;
124 admit requires 0 <= gCurObj < gNumObjs && ObjRef == gHeadStart[gCurObj];
125 assigns JPC, gJPCOff;
126 assigns JPC \from &Code[0]; // possible base address
127 ensures vhm: valid_heap_model;
128 ensures vcm: valid_code_model;
129 ensures oh: object_headers_intact{Pre,Post};
130 ensures mmf: mem_model_footprint_intact{Pre,Post};
131 */
132 void baload(u4 ObjRef, u4 DestOff)
133 {
134 u1 Value;
135 if( ! firewall(ObjRef,DestOff) ) // Check access and
136 return; // exit if forbidden
137 if( GET_FLAG(ObjHeader+ObjRef) & 0x08 ) // If transient flag
138 Value = TransData[GET_OFF(ObjHeader+ObjRef) + DestOff];// set transient body
139 else // Otherwise
140 Value = PersiData[GET_OFF(ObjHeader+ObjRef) + DestOff];// set persistent body
141 updateJPC();
142 }
143

144 /*@
145 requires vhm: valid_heap_model;
146 requires vcm: valid_code_model;
147 assigns gNumObjs, ObjHeader[0..(SEGM_SIZE-1)],
148 gIsTrans[0..(MAX_OBJS-1)], gHeadStart[0..(MAX_OBJS-1)],
149 gDataStart[0..(MAX_OBJS-1)], gDataEnd[0..(MAX_OBJS-1)], gCurObj, JCC,
150 PersiData[0..(SEGM_SIZE-1)], TransData[0..(SEGM_SIZE-1)], JPC, gJPCOff;
151 assigns JPC \from &Code[0]; // possible base address
152 ensures gNumObjs >= \at(gNumObjs,Pre);
153 ensures vhm: valid_heap_model;
154 ensures vcm: valid_code_model;
155 ensures oh: object_headers_intact{Pre,Post};
156 ensures mmf: mem_model_footprint_intact{Pre,Post};
157 */
158 void other_opcode(void);
159

160 /*@
161 requires vhm: valid_heap_model;
162 requires vcm: valid_code_model;
163 assigns gNumObjs, ObjHeader[0..(SEGM_SIZE-1)],
164 gIsTrans[0..(MAX_OBJS-1)], gHeadStart[0..(MAX_OBJS-1)],
165 gDataStart[0..(MAX_OBJS-1)], gDataEnd[0..(MAX_OBJS-1)], gCurObj, JCC,
166 PersiData[0..(SEGM_SIZE-1)], TransData[0..(SEGM_SIZE-1)], JPC, gJPCOff;
167 assigns JPC \from &Code[0]; // possible base address
168 ensures vhm: valid_heap_model;
169 ensures vcm: valid_code_model;
170 ensures oh: object_headers_intact{Pre,Post}; */
171 void main_loop(){
172 /*@
173 loop invariant vhm: valid_heap_model;
174 loop invariant vcm: valid_code_model;
175 loop invariant oh: object_headers_intact{LoopEntry,Here};
176 loop invariant mmf: mem_model_footprint_intact{LoopEntry,Here};
177 loop invariant no: gNumObjs >= \at(gNumObjs,LoopEntry);
178 loop assigns gNumObjs, ObjHeader[0..(SEGM_SIZE-1)],
179 gIsTrans[0..(MAX_OBJS-1)], gHeadStart[0..(MAX_OBJS-1)],
180 gDataStart[0..(MAX_OBJS-1)], gDataEnd[0..(MAX_OBJS-1)], gCurObj, JCC,
181 PersiData[0..(SEGM_SIZE-1)], TransData[0..(SEGM_SIZE-1)], JPC, gJPCOff;
182 */
183 while(1){
184 if(*JPC == 1) // Assume code 1 is for BASTORE
185 /*@ ghost gCurObj=get_gu4(); */ // Assume arbitrary object index and
186 bastore(get_u4(),get_u4(),get_u1()); // header offset, body offset, value
187 else if(*JPC == 2) // Assume code 2 is for BALOAD
188 /*@ ghost gCurObj=get_gu4(); */ // Assume arbitrary object index and
189 baload(get_u4(),get_u4()); // header offset, body offset
190 else if(*JPC == 3) // Assume code 3 is for exit
191 return;
192 else // Other opcodes
193 other_opcode();
194 }
195 }

Fig. 8. Complete illustrative example of the JCVM code, part 3/4.



196

197 /*@ // === Metaproperties: persistent object data written/read only by owner ===
198 meta \prop,\name(meta_persi_objects_integrity),\targets(\ALL),\context(\writing),
199 ( \forall integer i; 0 <= i < gNumObjs && !gIsTrans[i] &&
200 ObjHeader[gHeadStart[i] + 0] != JCC ==>
201 \separated(\written,PersiData+(gDataStart[i]..gDataEnd[i])) );
202

203 meta \prop,\name(meta_persi_objects_confident),\targets(\ALL),\context(\reading),
204 ( \forall integer i; 0 <= i < gNumObjs && !gIsTrans[i] &&
205 ObjHeader[gHeadStart[i] + 0] != JCC ==>
206 \separated(\read,PersiData+(gDataStart[i]..gDataEnd[i])) ); */
207

208 /*@ // === Metaproperties: transient object data written/read only by owner ===
209 meta \prop,\name(meta_trans_objects_integrity),\targets(\ALL),\context(\writing),
210 ( \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] &&
211 ObjHeader[gHeadStart[i] + 0] != JCC ==>
212 \separated(\written,TransData+(gDataStart[i]..gDataEnd[i])) );
213

214 meta \prop,\name(meta_trans_objects_confident),\targets(\ALL),\context(\reading),
215 ( \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] &&
216 ObjHeader[gHeadStart[i] + 0] != JCC ==>
217 \separated(\read,TransData+(gDataStart[i]..gDataEnd[i])) );
218 */
219

220 // A bit-related lemma not proved by Alt-Ergo,Z3,CVC4 but easily proved by script
221 /*@ lemma dn: \forall u1 c; (c & 0x04)==0 && (c & 0x08)!=0 ==> (c & 0x0C)==0x08;*/
222

223 /* Run the proof with RTE and with MetAcsl:
224

225 frama-c-gui code_with_casts.c -machdep x86_32 -meta -meta-checks -meta-no-simpl
-meta-no-check-ext -meta-number-assertions -then-last -wp
-wp-check-memory-model -wp-rte -wp-prover=script,alt-ergo -wp-smoke-tests

226

227 Run the proof with RTE without MetAcsl:
228

229 frama-c-gui code_with_casts.c -machdep x86_32 -wp -wp-check-memory-model -wp-rte
-wp-prover=script,alt-ergo -wp-smoke-tests

230

231 The previous commands run the proof using the pre-recorded scripts and the
Alt-Ergo solver.

232 To observe the proof results without scripts, replace -wp-prover=script,alt-ergo
by -wp-prover=alt-ergo

233 */

Fig. 9. Complete illustrative example of the JCVM code, part 4/4.



A.2 Illustrative example of annotations generated by MetAcsl

Figures 10 and 11, show the function bastore with annotations automatically
generated by MetAcsl for metaproperties meta_persi_objects_integrity
and meta_trans_objects_confident. The generated assertions are inserted
in the form of checks, that can be seen as ”check-and-forget” assertions, not pre-
served in the proof contexts. These checks are automatically proved. Similar
checks are inserted for other metaproperties and into other functions.



1 void bastore(u4 ObjRef, u4 DestOff, u1 Val)
2 {
3 u1 tmp;
4 /*@ check meta_persi_objects_integrity: _1: meta:
5 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
6 ObjHeader[gHeadStart[i] + 0] != JCC ==>
7 \separated(&tmp, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
8 /*@ check meta_persi_objects_confident: _1: meta:
9 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&

10 ObjHeader[gHeadStart[i] + 0] != JCC ==>
11 \separated(&ObjRef, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
12 /*@ check meta_persi_objects_confident: _2: meta:
13 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
14 ObjHeader[gHeadStart[i] + 0] != JCC ==>
15 \separated(&DestOff, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
16 tmp = firewall(ObjRef,DestOff);
17 /*@ check meta_persi_objects_confident: _3: meta:
18 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
19 ObjHeader[gHeadStart[i] + 0] != JCC ==>
20 \separated(&tmp, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
21 if (! tmp) goto return_label;
22 /*@ check meta_persi_objects_confident: _4: meta:
23 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
24 ObjHeader[gHeadStart[i] + 0] != JCC ==>
25 \separated(&ObjRef, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
26 /*@ check meta_persi_objects_confident: _5: meta:
27 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
28 ObjHeader[gHeadStart[i] + 0] != JCC ==> \separated(&ObjHeader[ObjRef]+1,
29 &PersiData[gDataStart[i] .. gDataEnd[i]]); */
30 if ((int)*(& ObjHeader[ObjRef] + 1) & 0x08)
31 /*@ check meta_persi_objects_integrity: _2: meta:
32 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
33 ObjHeader[gHeadStart[i] + 0] != JCC ==>
34 \separated(&TransData[(u4)((u4)((unsigned short)((int)((int)((int)*
35 (&ObjHeader[ObjRef] + 4) * 256) + (int)*(&ObjHeader[ObjRef]
36 + 5)))) + DestOff)], &PersiData[gDataStart[i] .. gDataEnd[i]] );*/
37 /*@ check meta_persi_objects_confident: _6: meta:
38 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
39 ObjHeader[gHeadStart[i] + 0] != JCC ==>
40 \separated(&ObjRef, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
41 /*@ check meta_persi_objects_confident: _7: meta:
42 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
43 ObjHeader[gHeadStart[i] + 0] != JCC ==>
44 \separated(&DestOff, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
45 /*@ check meta_persi_objects_confident: _8: meta:
46 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
47 ObjHeader[gHeadStart[i] + 0] != JCC ==>
48 \separated(&Val, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
49 /*@ check meta_persi_objects_confident: _9: meta:
50 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
51 ObjHeader[gHeadStart[i] + 0]!=JCC ==> \separated(&ObjHeader[ObjRef]+4,
52 &PersiData[gDataStart[i] .. gDataEnd[i]]); */
53 /*@ check meta_persi_objects_confident: _10: meta:
54 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
55 ObjHeader[gHeadStart[i] + 0]!=JCC ==> \separated(&ObjHeader[ObjRef]+5,
56 &PersiData[gDataStart[i] .. gDataEnd[i]]); */
57 TransData[(u4)((unsigned short)((int)*(& ObjHeader[ObjRef] + 4) * 256 +
58 (int)*(& ObjHeader[ObjRef] + 5))) + DestOff] = Val;

Fig. 10. Function bastore with annotations automatically generated
by MetAcsl for metaproperties meta_persi_objects_integrity and
meta_trans_objects_confident, part 1/2.



59 else
60 /*@ check meta_persi_objects_integrity: _3: meta:
61 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
62 ObjHeader[gHeadStart[i] + 0] != JCC ==>
63 \separated(&PersiData[(u4)((u4)((unsigned short)((int)((int)((int)*
64 (&ObjHeader[ObjRef] + 4) * 256) + (int)*(&ObjHeader[ObjRef] + 5))))
65 + DestOff)], &PersiData[gDataStart[i] .. gDataEnd[i]]); */
66 /*@ check meta_persi_objects_confident: _11: meta:
67 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
68 ObjHeader[gHeadStart[i] + 0] != JCC ==>
69 \separated(&ObjRef, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
70 /*@ check meta_persi_objects_confident: _12: meta:
71 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
72 ObjHeader[gHeadStart[i] + 0] != JCC ==>
73 \separated(&DestOff, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
74 /*@ check meta_persi_objects_confident: _13: meta:
75 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
76 ObjHeader[gHeadStart[i] + 0] != JCC ==>
77 \separated(&Val, &PersiData[gDataStart[i] .. gDataEnd[i]]); */
78 /*@ check meta_persi_objects_confident: _14: meta:
79 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
80 ObjHeader[gHeadStart[i] + 0]!=JCC ==> \separated(&ObjHeader[ObjRef]+4,
81 &PersiData[gDataStart[i] .. gDataEnd[i]] ); */
82 /*@ check meta_persi_objects_confident: _15: meta:
83 \forall integer i; 0 <= i < gNumObjs && gIsTrans[i] == 0 &&
84 ObjHeader[gHeadStart[i] + 0]!=JCC ==> \separated(&ObjHeader[ObjRef]+5,
85 &PersiData[gDataStart[i] .. gDataEnd[i]] ); */
86 PersiData[(u4)((unsigned short)((int)*(& ObjHeader[ObjRef] + 4) * 256 +
87 (int)*(& ObjHeader[ObjRef] + 5))) + DestOff] = Val;
88 updateJPC();
89 return_label: return;
90 }

Fig. 11. Function bastore with annotations automatically generated
by MetAcsl for metaproperties meta_persi_objects_integrity and
meta_trans_objects_confident, part 2/2.


