
Dynamic Reconfigurations in Frequency
Constrained Data Flow

Paul Dubrulle1,p0000´0002´1158´6348q, Christophe Gaston1,p0000´0001´6865´5108q,
Nikolai Kosmatov1,2,p0000´0003´1557´2813q, and Arnault

Lapitre1,p0000´0002´2185´4051q

1CEA, List, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

2Thales Research and Technology, Palaiseau, France

Abstract. In Cyber-Physical Systems, the software components are of-
ten distributed over several computing nodes, connected by a commu-
nication network. Depending on several factors, the behavior of these
components may dynamically change during its execution. The existing
data flow formalisms for the performance prediction of dynamic systems
do not cover the real-time constraints of these systems, and suffer from
complexity issues in the verification of mandatory model properties. To
overcome these limitations, we propose a dynamic extension to Poly-
graph, a static data flow formalism covering the real-time behavior of
the CPS components. We also propose a verification algorithm to de-
termine if the transitions between different modes are well-defined for
a given model. Initial experiments show that this algorithm can be effi-
ciently applied in practice.

1 Introduction

Context. Cyber-Physical Systems (CPS) are increasingly present in everyday
life. These systems are often distributed over several computing nodes, connected
by a communication network. For example, the next generation of autonomous
vehicles will heavily rely on sensor fusion systems to operate the car. Sensors
and actuators are distributed over the car, in places where their measure or
action makes sense, while fusion kernels operate on high-performance computa-
tion platforms. A network connects these elements together, and in some cases
the computation kernels can even be off-loaded to remote servers over wireless
connections.

Depending on several factors, the behavior of the software components of a
CPS may change during its execution. The algorithms used to process data may
change depending on the nature of the input data, and a component may even
be deactivated due to an external factor. In an autonomous car for example, the
components implementing a parking assistance functionality relying on a rear-
view camera may operate at a lower resolution while driving on a highway, or
even be deactivated completely.

When network communication is involved, an analysis of the communications
between the components is necessary to determine the bandwidth and memory
necessary to respect the application’s real-time requirements. Dynamic variations

2 P. Dubrulle et al.

in execution time and bandwidth usage due to changes in the behavior of the
components must be taken into account in the performance prediction.

Several extensions to static data flow formalisms [9, 2] can be used to per-
form this kind of performance analysis, taking dynamic reconfigurations into
account [6, 7, 11, 14, 15]. In general for data flow formalisms, a prerequisite to
analyze a model is the existence of a periodic schedule in bounded memory
without deadlock, sometimes called an admissible schedule.

Motivation and Goals. Dynamic data flow models are adapted to capture re-
configurations in a CPS, but they lack expressiveness regarding the real-time
synchronization of the components interfaced with the physical world. Recent
research introduced Polygraph, a new static data flow formalism that covers such
synchronous behavior [5], while allowing asynchronous behavior for computation
kernels. Our goal is to extend Polygraph to support the expression of dynamic
reconfigurations, describing more precisely the behavior of distributed CPS, thus
allowing a refinement of the static performance analysis of the resulting models.

Approach and Main Results. This paper proposes to extend Polygraph models
with the specification of different operational modes, in a way inspired by the
well-known Scenario-Aware Data Flow (SADF) [14]. We rely on additional type
information on the communication data to dynamically change the execution
mode of the components that receive it, allowing for a distributed control of
the current operational modes in the system. With our approach, if there is an
admissible schedule for a polygraph model without any mode extension, this
schedule is admissible for any of its extended versions. For a given model, this
property allows to specify as many modes as required by the real-life system,
without impacting the cost of the verification of the existence of such a schedule.
In addition, we propose an algorithm to check that the dynamic changes in the
modes of the components never lead to incoherent states where a component is
supposed to execute in two different modes.

The contributions of this work include:

– an extension to the Polygraph data flow formalism, to support dynamic
changes between static configurations of the modeled system;

– a proof of additional properties on the executions of non-extended poly-
graphs, and properties on their extended executions; these properties are
proved in all generality, for an arbitrary reconfiguration strategy;

– an algorithm that, given an extended polygraph with an admissible schedule,
checks that the current mode of the polygraph is always defined;

– an implementation of that algorithm in the DIVERSITY tool, and initial
experiments to validate this approach.

Outline. The remainder of this paper is organized as follows. Section 2 gives
an informal introduction to the proposed modeling approach. In Section 3, we
remind the formalization of Polygraph, prove additional execution properties,
and formalize the extension. Section 4 presents the verification algorithm and
an initial evaluation of its implementation. In Section 5, we discuss related work,
while Section 6 presents conclusion and perspectives.

Dynamic Reconfigurations in Frequency Constrained Data Flow 3

Fig. 1. a) A cockpit display system modeled as a polygraph denoted P1, and b) its
topology matrix Γ, initial channel state c1, and vector of synchronous constraints t.

2 Motivation

To introduce the dynamic extension to Polygraph, we use a toy example of a
data fusion system that could be integrated into the cockpit display of a car,
depicted in Fig. 1. The system is composed of three sensors producing data
samples to be used by a data fusion component, and a display component. The
first sensor component is a video camera producing frames. The other two sensor
components analyze radar and lidar based samples to produce a descriptor of the
closest detected obstacles. The fusion component uses this information to draw
the obstacle descriptors on the corresponding frame. The display component is a
touch screen, and the driver can choose to activate or deactivate the rendering of
the enhanced camera feed through an interface on the screen. The driver can also
choose to deactivate only the lidar. This leads to three different configurations
for the fusion sub-system: all the components are active (denoted all), all the
components are active except the lidar (denoted no lidar), and the three sensor
components are inactive (denoted none).

Existing semantic. The Polygraph language is a data flow formalism enabling
static performance analysis of systems mixing real-time and compute intensive
components. Compared to existing static data flow formalisms [9, 2, 10], Poly-
graph mixes synchronous and asynchronous constraints for the execution of a
model, and is well-suited to capture the real-life constraints of the CPS.

The core element of Polygraph is a system graph, capturing data dependen-
cies between the components. Each vertex of this graph models an actor, an
abstract entity representing the function of a component. Each directed edge of
the graph models a communication channel, the source actor being the producer
of data consumed by the destination actor. The communication policy on the
channels is First-In First-Out (FIFO), the write operation is non-blocking, and
the read operation is blocking. The actors communicate by firing, an atomic pro-
cess during which they consume and produce a certain number of data tokens
on the connected channels. The number of tokens produced or consumed per
firing of an actor on a channel is specified by a rational rate, which is adapted to
capture resampling of data streams. Fig. 1a gives an example of a system graph
with rational rates (shown near the ends of the edges) for our example.

4 P. Dubrulle et al.

Considering only the modeling elements mentioned so far, the model of
Fig. 1a is equivalent to a Fractional Rate Data Flow graph [10]. In addition
to these elements, Polygraph introduces a specific semantic for rational rates,
whose goal is to approximate a non-linear behavior with integer rates by a linear
behavior with rational rates, and thus to gain the good properties of a linear
behavior. It allows rational initial conditions on the channels. The detailed se-
mantic is recalled in Section 3.1.

The main advantage of Polygraph is the capability to label a subset of actors
with frequencies, corresponding to the real-life constraints imposed for example
by the sampling rates of the sensors (see the frequency labels on v1, v2 v3, and
v4 in Fig. 1a). The actors that do not have a specified frequency correspond to
computation kernels, which in real-life systems often compute as soon as enough
input data is available (notice the absence of a frequency label on v5 in Fig. 1a). A
global clock provides ticks to synchronize the firings of frequency labeled actors,
introducing global synchronous behavior in the data flow graph.

A prerequisite to analyze the performance of a Polygraph model is the ex-
istence of a periodic schedule with two properties. The first property, consis-
tency, requires that the sizes of communication buffers remain bounded for an
unbounded execution of the periodic schedule. In practice, if a model is not con-
sistent, it is not possible to implement the communications without losing data
samples. The second property, liveness, requires the absence of deadlocks in the
schedule. The semantic of Polygraph is detailed in [5], including a proof that the
existence of an admissible schedule with both consistency and liveness properties
is decidable and can be checked in practice.

Dynamic extension. The different configurations of our fusion example could
be captured by the scenario concept introduced in Scenario Aware Data Flow
(SADF) [14], which encompasses the semantic of many other dynamic data flow
formalisms (see Sec. 5). In SADF, some actors receive the role of detector, and
are in charge of broadcasting the current scenario to other actors. Each actor
impacted by the decisions of a detector has a different rate specification and
execution time per possible scenario. Before firing, such an actor reads the sce-
nario information received from the detector and then fires with the appropriate
rates and execution time. Special care is required from the designer when spec-
ifying the alternative rates, to avoid situations where an actor consumes tokens
produced in two different scenarios, that we call an indecision. An SADF model
with no indecision is said to be strongly consistent (see [14] for more detail).

In our context, there are several issues that do not allow for a direct reuse of
this concept. First of all, unlike Polygraph, SADF does not capture synchronous
constraints for a subset of actors. Second, since the rates are the main parameter
influencing the existence of an admissible schedule, a separate check is required
for each possible combination of scenarios, which does not scale up well for real-
life systems with many configurations. Finally, the broadcasting of the detected
scenario has several disadvantages. Additional channels impede the model’s read-
ability, and increase the modeling complexity, since the designer needs to know
the number of firings of each scenario-dependent actor in a schedule to spec-

Dynamic Reconfigurations in Frequency Constrained Data Flow 5

ify appropriate output rates on the control channels. In addition, the idea of
a centralized orchestrator implies additional synchronizations, with a negative
impact on the overall performance for distributed architectures. Our proposal
extends Polygraph with similar concepts, preserving the support of synchronous
constraints, and trying to overcome these limitations.

Modes. We introduce the notion of modes for a polygraph. A mode is decided
for each firing of an actor, and it is similar to a scenario. The main difference is
that the rates do not change in different modes. Instead, a mode change implies
a change in the contents of produced data tokens. For example, for the three
aforementioned configurations in Fig. 1, the firing of each actor can have one of
three user-defined modes λ1 (all), λ2 (no lidar), λ3 (none), which can be used
to enable a non-trivial behavior. For one firing of the lidar actor, it will produce
1 token regardless of the decided mode of that firing. The produced token will
hold an obstacle descriptor if the firing has mode λ1. For the other modes λ2 and
λ3, since the lidar is disabled in the corresponding configurations, the produced
token will hold an empty descriptor. With scenarios, a similar behavior would
require rate 1 in scenario all and 0 in the other scenarios.

The fact that the rates are fixed, regardless of the mode of a firing, brings
an important benefit. The existence of an admissible schedule for an extended
polygraph can be verified once and for all, by considering the polygraph without
modes. We show that by construction of the extension in Section 3.3.

Modes allow for a rich set of options: when the firing of an actor can have
two or more different modes, configuration parameters (produced data type, ex-
ecution time, placement, code version, etc.) may change depending on the mode,
enabling static analysis of the modeled system with many different objectives.
Our goal here being to provide a formal presentation of the modeling language,
its mechanism for changing modes dynamically in an execution, and its proper-
ties, we do not detail how such parameters are associated to modes.

Mode propagation. Like in SADF, in our proposal, some actors, called selectors,
are in charge of identifying reconfigurations and notifying the impacted actors,
called followers. But unlike SADF, we do not require that selectors broadcast the
selection information to all their followers. Instead, we define the propagation of
modes transitively from a selector to its followers. In Fig. 1a, the double-circled
display actor is a good candidate to be the selector responsible for the three
user-defined modes λ1, λ2, and λ3, since it reads the user input that will decide
of the configuration. It does not require a specific channel connected to the fusion
actor, the mode information will reach it through the channels represented with
dashed arrows.

The advantage of this approach is that we do not need channels between a
selector and its followers which are not its direct successors. This overcomes the
issues caused by these channels. The propagation by transitivity also provides
means to automatically check the absence of indecision in a model.

6 P. Dubrulle et al.

3 The Polygraph Modeling Language
We denote by Z the set of integers, by N “ tn P Z |n ě 0u the set of natural
integers, and by Q the set of rational numbers. A number r P Q rounded down
(resp., up) to a closest integer is denoted by tru (resp., rrs), and the fractional
part of r is denoted trs “ r ´ tru.

For a set A, we denote by A˚ the set of all finite words over A (i.e. sequences
of elements of A), and by A` the set of non-empty words.1 The length of a word
w “ a1 ¨ ¨ ¨ an P A˚ is denoted |w| “ n, and the ith element of w is denoted
wris “ ai. For any a P A and for any n P N we denote n ˚ a the word composed
of n occurrences of a. For any word w P A˚ and 0 ď l ď |w|, the suffix of w of
length l is denoted suffixpw, lq. For any two words w and w1, the concatenation
of w and w1 is denoted by w ¨ w1 or ww1.

3.1 Background
A system graph is a connected finite directed graph G “ pV,Eq with set of
vertices (or actors) V and set of edges (or channels) E Ď V ˆ V . We consider
that V and E are indexed respectively by t1, ¨ ¨ ¨ , |V |u and t1, ¨ ¨ ¨ , |E|u, and
denote by vj the actor of index j and by ei the channel of index i. For an actor
vj , let inpvjq “ txvk, vjy P E | vk P V u denote the set of input channels of vj ;
outpvjq “ txvj , vky P E | vk P V u the set of output channels of vj .

For any pair of a channel ei and an actor vj , we associate a rate γij which
is a rational number whose absolute value defines the partial production or
consumption effect on ei of each firing of vj , and whose sign indicates if the
effect is a partial production (γij ą 0) or consumption (γij ă 0). By convention,
the rate γij must be 0 if vj is not connected to ei, or connected to both ends
of ei. Indeed, for a self-loop ei “ xvj , vjy connecting vj to itself, the global
production/consumption effect of vj on the channel must be 0 for the model to
be consistent. Therefore the associated production and consumption rates must
be equal. Their exact value does not matter and can be any integer. The rates
are given by a matrix with one row per channel and one column per actor, as
illustrated in Fig. 1b for P1.

Definition 1 (Topology matrix). A matrix Γ “ pγijq P Q|E|ˆ|V | is a topol-
ogy matrix of a system graph G if for every channel ei “ xvk, vly P E, we have:
– the rate γij “ 0 for all j ‰ k, l;
– if k ‰ l, then the rates γik ą 0 and γil ă 0 are irreducible fractions, and

at least one of them has a denominator equal to 1 (i.e. is an integer); let
qi ě 1 be the greatest of their denominators , we define ri “ 1{qi the smallest
fraction portable by ei;

– if k “ l, then γik “ 0{1 “ 0, and we define qi “ ri “ 1.

A channel state is a vector of rational numbers giving for each channel its
state, tracking the partial production or consumption effect of the successive fir-
ings, which must thus be a multiple of its smallest portable fraction (c.f. Fig. 1b).
The number of tokens in a channel is defined as the integer part of its rational
state, and a token is actually produced (resp. consumed) by a firing when this
integer part increases (resp. decreases) at this firing.
1 In other words, A˚ is the free monoid on A, and A` is the free semigroup on A.

Dynamic Reconfigurations in Frequency Constrained Data Flow 7

Definition 2 (Channel state). A vector c “ pciq P Q|E|ˆ1 is a channel state
of a system graph G with topology matrix Γ if for every channel ei “ xvj , vky P E,
we have ci “ zri for some z P Z. We say that tciu is the number of tokens
occupying channel ei.

A polygraph is composed2 of a system graph, a topology matrix, and a subset
of timed actors VF Ď V with certain synchronous constraints Θ. These con-
straints require that each timed actor fires at a given frequency, synchronously
with respect to the ticks of a global clock. It is possible to choose a suitable time
unit and a global clock with a suitable frequency, such that each vj P VF has to
fire the same number of times tj P N during this time unit. In P1, with a time
unit of 100ms and a global clock at 120Hz, the vector t “ ptjq gives that value
tj for each vj P VF . The current tick of the global clock and the information
about the timed actors which have already fired at this tick are represented3 by
a synchronous state θ. The detailed semantic of these synchronous constraints [5]
is not essential for the comprehension of the extension we propose, as further
discussed in Remark 5. For lack of space, we only recall basic notation and
definitions that are mandatory to present the contributions of this paper.

Definition 3 (Polygraph, state). A polygraph is a tuple P “ xG,Γ,Θy con-
taining a system graph G, a topology matrix Γ, and synchronous constraints Θ.
A state of a polygraph P is a tuple s “ xc,θy containing a channel state c, and
a synchronous state θ. We denote by S the set of all possible states of P.

The only possible transitions from one state to another are the firing of an
actor or a tick of the global clock. Starting from an initial state, a sequence of
states resulting from such successive transitions is called an execution.

Definition 4 (Fire, Tick). For a polygraph P, the mapping fire : V ˆ SÝÑS
maps an actor vj and a state s “ xc, θy to the state s1 “ xc1, θ1y such that for
each ei P E we have c1i “ ci ` γij, and θ1 is the resulting synchronous state. The
mapping tick : SÝÑS maps a state s “ xc, θy to the state s1 “ xc1, θ1y such that
we have c1 “ c, and θ1 is the resulting synchronous state (see [5] for detail).

Remark 1. Let δ`i psq P N denote the amount of tokens produced on a channel
ei “ xvj , vky by a firing of vj in state s “ xc, θy. By Def. 2 and 4, we have
δ`i psq “ tci ` γiju´ tciu. Similarly, for the number of tokens consumed on ei by
a firing of vk in state s, denoted δ´i psq P N, we have δ´i psq “ tciu´ tci ` γiku.

Not all transitions from a state s “ xc, θy to a state s1 “ xc1, θ1y are valid.
First, the synchronous constraints impose an order on some firing and tick tran-
sitions. We write θ $ θ1 when these synchronous constraints (formally defined
in [5]) are satisfied for the transition from s to s1. In addition, the policy to read
from a channel ei is read-blocking. Thus, the transition from s to s1 is called
valid, and denoted s $ s1, if θ $ θ1 and @ei P E, ci ě 0^ c1i ě 0.

2 Θ corresponds to ω and ϕ in [5, Def. 4], while initial marking m is not integrated
into the polygraph definition in this paper.

3 θ corresponds to τ and a in [5, Def. 5].

8 P. Dubrulle et al.

Definition 5 (Execution). An execution of a polygraph P is a sequence of
states σ “ s1 ¨ ¨ ¨ sn P S`, such that s1 is the initial state of σ, and for each
1 ď l ă n, we have either sl`1 “ firepvj , s

lq for some vj P V , or sl`1 “ tickpslq.
An execution σ is said to be valid if sl $ sl`1 for all 1 ď l ă n.

Remark 2. The number of firings of actors in an execution σ “ s1 ¨ ¨ ¨ sn can be
represented by a tracking vector xσ “ pxσj q P N|V |ˆ1, such that for each vj , the

component xσj gives the number of l such that 1 ď l ď n and sl`1 “ firepvj , s
lq.

We say that the f th such firing is of rank f .

To perform a static performance analysis of a polygraph, there should be a
valid periodic behavior of the system. In other words, only the valid executions
σ “ s1 ¨ ¨ ¨ sn P S` returning to their initial state s1 “ sn are relevant. From [5,
Th. 1,2], the existence of such executions can be decided in general. In Fig. 2, a
small example polygraph P2 and an execution σ2 are represented.

Example 1. Fig.2a presents a polygraph P2 with 3 actors and 3 channels. For
simplicity, it has no synchronous constraints. Fig.2b illustrates, step-by-step, the
states of an execution σ2 with consecutive firings of v3, v2, v1, v2. The first five
columns give the firing actor, the number of its firings so far, and the states of the
channels. The latter show the states ci of channels ei and illustrate by circles
the tokens occupying each channel. The last four columns will be explained
later. The first row provides the initial state. For instance, the first firing of v2

consumes one token from e2 (since its state changes from 2{2 “ 1 to 1{2) and
produces one token on e3. Note that σ2 is valid and returns to its initial state
after the first 4 steps, and can thus be repeated infinitely.

Definition 6 (Live execution). For a polygraph P, a valid execution σ “

s1 ¨ ¨ ¨ sn P S` is called live if s1 “ sn. In this case, polygraph P is said to be live
from s1.

Remark 3. We say that two valid executions σ,σ1 P S` of a polygraph P are
equivalent, denoted by σ » σ1, if their tracking vectors and initial states are
equal, that is, xσ “ xσ1

and σr1s “ σ1r1s, and the number of ticks is the same.
If P is live from a state s1, by Th. 2 in [5, 4] there is a minimal live execution
σ, such that σr1s “ s1. Moreover, any other live execution σ1 with σ1r1s “ s1 is
equivalent to l repetitions of σ (for some l ě 1), that is, xσ1

“ l ¨ xσ [4, Cor. 2].
Futhermore, any valid execution σ2 with σ2r1s “ s1 can be extended to a live
execution σ1 [4, Th. 2], thus, equivalent to a certain number of repetitions of a
minimal live execution σ. This property will be used to justify the algorithm in
Sec. 4.

3.2 Additional Properties of Polygraph Executions
For a given valid execution σ “ xc1, θ1y ¨ ¨ ¨ xcn, θny and a channel ei “ xvj , vky
with j ‰ k, we can consider the total number of tokens produced (resp. con-
sumed) on ei by the firings of vj (resp. vk) along σ, denoted δ`i pσq (resp. δ´i pσq).
Formally, by Def. 2, 4 and 5, we have:

Dynamic Reconfigurations in Frequency Constrained Data Flow 9

Fig. 2. a) A polygraph P2, with v1 the unique selector of modes Λ1 “ tλ1, λ2u and its
followers v2 and v3, and b) two step-by-step live executions σ2 and σ12 of P2.

δ`i pσq “
ÿ

l : vj fires on

xcl, θly in σ

ptcl`1
i u´ tcliuq, δ´i pσq “ ´

ÿ

l : vk fires on

xcl, θly in σ

ptcl`1
i u´ tcliuq. (1)

The number of tokens occupying ei along σ is modified only by productions (by
vj) and consumptions (by vk), thus using (1) we have:

tcni u´ tc1i u “
ÿ

1ďlăn

ptcl`1
i u´ tcliuq “ δ`i pσq ´ δ´i pσq.

It follows that tc1i u` δ`i pσq “ δ´i pσq ` tcni u. These two expressions compute the
total number of tokens transiting through channel ei along σ, that we denote by
ησi P N. We call these tokens the footprint of σ on channel ei, and each of these
tokens is identified by a rank 1 ď l ď ησi . They can be seen as the tokens initially
occupying ei and the δ`i pσq tokens produced along σ. On the other hand, the
same tokens can be seen as the δ´i pσq tokens consumed along σ and the tokens
occupying ei after σ. In execution σ2 of Fig. 2, four tokens transit through e3

along σ2, thus the footprint has ησ1 “ 4 tokens, and each token is shown as
1O– 4O for the states when they are occupying e3.

The next result shows that ησi , δ`i pσq, δ´i pσq depend only on the number
of firings of vj and vk in σ and the initial state of ei, and not on the order of
transitions in σ.

Proposition 1. Let P be a polygraph, and σ “ xc1, θ1y ¨ ¨ ¨ xcn, θny P S` be a
valid execution of P with tracking vector xσ. Let ei “ xvj , vky P E be a channel
with j ‰ k, and denote r “ tcis. Then we have: ησi “ tc1i u`δ`i pσq “ δ´i pσq`tcni u,
δ`i pσq “ txσj γij ` ru, δ´i pσq “ rxσk |γik|´ rs.

Proof. The first fact was shown above. We claim that the sums of δ`i pσq, δ
´
i pσq

in (1) can be rewritten as follows: δ`i pσq “
řxσ

j

f“1ptc
1
i ` fγiju´ tc1i ` pf ´ 1qγijuq

and δ´i pσq “ ´
řxσ

k

f 1“1ptc
1
i ` f

1γiku´ tc1i ` pf
1 ´ 1qγikuq.

10 P. Dubrulle et al.

Indeed, at each step, cl`1
i “ c1i ` fγij ` f

1γik where f and f 1 are the number
of firings, resp., of vj and vk in the prefix of length l` 1 in σ. At most one of γij
and γik is not an integer4; by symmetry, we can assume γik P Z. Then in the first
sum we have tcl`1

i u “ tc1i ` fγiju for all l, that implies the proposed rewriting.
In the second sum, the rewriting follows from the fact: @p, p1 P Q,@m,m1 P
Z, tp`mu´ tp`m1u “ tp1 `mu´ tp1 `m1u.

We simplify the first sum δ`i pσq “ tc1i `x
σ
j γiju´tc1i u “ txσj γij`ru as required

since r “ tcis “ tc1i u ´ c1i , and the second sum δ´i pσq “ tc1i u ´ tc1i ` xσkγiku “

´txσkγik ` ru. The third formula follows from the fact: @p P Q,´tpu “ r´ps. [\

For the footprint of σ on ei, we can consider a mapping oσi : t1, . . . ,ησi u Ñ
t0, . . . , δ`i pσqu (resp. ισi : t1, . . . ,ησi u Ñ t0, . . . , δ´i pσqu) associating to each token
in the footprint the rank of the firing of vj (resp. vk) that produced (resp.
consumed) that token in σ. We call that rank the production (resp. consumption)
rank of the token. By convention, a rank 0 is assigned to a token that was not
produced (resp. consumed) by a firing in σ. In Fig. 2, since the 1st firing of v2

consumes 1O on e2 and produces 3O on e3, we have ισ2 p1q “ 1 and oσ2 p3q “ 1.

Proposition 2. In the assumptions of Prop. 1, we have:

1. @1 ď l ď tc1i u, oσi plq “ 0; @tc1i u ă l ď ησi , oσi plq “ r pl ´ c1i q { γij s;
2. @1 ď l ď δ´i pσq, ι

σ
i plq “ 1`t pl´1`rq { |γik| u; @δ´i pσq ă l ď ησi , ι

σ
i plq “ 0.

Proof. The formulas with rank 0 follow from the definition. Given an index l with
tc1i u ă l ď ησi , let us compute the rank f of firing of vj producing the lth token of

the footprint. Considering the prefixes σ1 of σ with f “ xσ
1

j P t1, 2 . . . , x
σ
j u firings

of vj we have to find the shortest prefix σ1 producing that token. In other words,
by Prop. 1, we have to find the smallest f such that l ď δ`i pσ

1q “ tc1i ` fγiju.
Since l P Z, we look for the smallest f such that l ď c1i ` fγij , or equivalently,
f ě pl ´ c1i q{γij . Thus, oσi plq “ r pl ´ c1i q { γijs.

Following the same logic, for 1 ď l ď δ´i pσq, we look for the shortest prefix
σ1 of σ consuming the lth token of the footprint. By Prop. 1, we have to find
the smallest f such that l ď δ´i pσ

1q “ rf |γik| ´ rs. Equivalently, we look for
the smallest f such that l ´ 1 ă f |γik|´ r, i.e. f ą pl ´ 1 ` rq{|γik|. In other
words, we look for the biggest f such that f ´ 1 ď pl ´ 1 ` rq{|γik|. Thus,
f ´ 1 “ tpl ´ 1` rq{|γik|u. It follows that ισi plq “ 1` t pl ´ 1` rq { |γik|u. [\

Remark 4. For two valid executions σ,σ1 P S` that are equivalent (i.e. σ » σ1,
cf. Remark 3), by Prop. 1, for all channels5 ei “ xvj , vky P E with j ‰ k, we

have ησi “ ησ
1

i , oσi “ oσ
1

i , and ισi “ ισ
1

i . For example in Fig. 2, we have σ12 » σ2,
and the footprints and production/consumption ranks are the same in these
executions.
4 We see here the reason for that condition in Def. 1: if both γij , γik R Z, this and the

following results do not hold, and the order of transitions can be important.
5 For the case of self-loops, excluded in the proposition, a similar result can be proved

by separately considering matrices Γ`,Γ´ with production and consumption rates.

Dynamic Reconfigurations in Frequency Constrained Data Flow 11

3.3 Mode Extension of the Polygraph Modeling Language

In the rest of the paper, when there is no risk of confusion, we will use the term
polygraph for an extended polygraph for short.

Extended polygraph. A mode identifies a reconfiguration of a polygraph’s behav-
ior. When firing, an actor has a mode for that firing, called decided mode. In
the channels, the tokens are labeled with modes. An extended polygraph has a
nominal mode denoted α, an undefined mode denoted υ, and a set of user modes
denoted ΛM with ΛM X tα,υu “ H. The mode set is the set Λ “ ΛM Y tα,υu.

Every actor vj is associated with a subset of user modes Λj Ď ΛM . The set Λj
contains the modes selectable by actor vj , and is called its selection set. An actor
vj with Λj ‰ H is called a selector, and the subset of such actors is denoted by
VM Ď V . When firing, a selector vj chooses a selected mode λ P Λj with which it
labels the tokens it produces. A non-selector labels the tokens it produces with
its decided mode. We assume that the Λj form a partition of ΛM (cf. (i) in Def.
7). Hence a given user mode can be selected by one and only one selector. In
addition, a selection makes sense only if there are at least two elements to select
from (cf. (i)).

Every actor vk is associated with a non-empty subset of enabling modes
Mk Ď Λ. The decided mode for a firing of vk should always belong to Mk, unless
it is undefined. We assume (cf. (ii) in Def. 7) that either Mk “ tαu, or there
exists a unique selector vj P VM with Mk “ Λj . In the latter case, vj is said to
be the selector of vk, and vk is said to be a follower of vj , denoted vj vk, and
the decided mode of vk can only be a mode selectable by vj . The only exception
is the undefined mode υ, which becomes the decided mode of vk when its mode
cannot be decided. Note that a selector can be a follower of another selector.

The decided mode of a firing of actor vk is determined based on the labels of
the tokens consumed by this firing from a subset of its input channels, denoted
Ψk Ď inpvkq, called the deciding set of vk, and whose elements are called deciding
channels of vk. If Mk “ tαu, we require (cf. (ii) in Def. 7) that Ψk “ H, since
vk does not need information to decide its mode. If vj vk, to determine its
decided mode, vk must have at least one deciding channel. If all the tokens it
consumes from its deciding channels are labeled with the same user mode, this
mode becomes its decided mode. If conflicting modes are read, the decided mode
of vk is undefined. In order to obtain user modes in its enabling set Mk “ Λj ,
vk’s deciding channels come either from vj or another follower vl of vj (cf. (ii)).

To ensure a follower receives tokens labeled with a mode selected by its selec-
tor, there must be a directed path from that selector to that follower, composed
exclusively of deciding channels (cf. (iii) in Def. 7). Moreover, if there is a cycle
of followers composed of deciding channels, some follower can receive conflicting
modes from (the shortest path from) its selector and from its predecessor in the
cycle. We exclude such a backward propagation of mode selections (cf. (iv)).

Definition 7 (Extended polygraph). An extended polygraph is a tuple P “
xP,Λ, txΛj ,Mj ,Ψjyujy where P is a polygraph, Λ “ ΛM Y tα,υu is a mode set,
and the tuples xΛj ,Mj ,Ψjy contain respectively the selection set, enabling set,

12 P. Dubrulle et al.

and deciding set of actor vj P V , such that:
(i) ΛM “

š

vjPV
Λj; @vj P V, |Λj | “ 0 or |Λj | ě 2; VM “ tvj P V |Λj ‰ Hu;

(ii) for any vk, either Mk “ tαu ^ Ψk “ H,
or Dvj P VM , Mk “ Λj ^H ‰ Ψk Ď txvl, vky P E | j “ l _Ml “ Λju;
(iii) if Mk “ Λj, there is a path vj “ vl1 , ¨ ¨ ¨ , vln “ vk of deciding channels;
(iv) for any vj P VM , there is no cycle vk1 , ¨ ¨ ¨ , vkp “ vk1 in which Mkl “ Λj
and all channels are deciding.

In addition to a state of a polygraph (cf. Def. 3), a state of an extended
polygraph P contains an actor mode mapping m : VÝÑΛ, which stores for an
actor vj the decided mode of its last firing, denoted mj “ mpvjq. To capture
the mode labels associated to tokens in the channels, the state of P also has a
token labeling b : EÝÑΛ˚ mapping a channel ei to a sequence of modes, denoted
bi “ bpeiq. In a given state s “ xc, θy, in channel ei, there are tciu tokens (cf.
Def. 2), so there is a mode label for each of them in FIFO order (see for example
the three rightmost columns for the executions of Fig. 2).

Definition 8 (State). A state of an extended polygraph P is a tuple s “
xs,m, by where s “ xc, θy P S is a state of P, m is an actor mode mapping
such that @vj P V we have mj P Mj Y tυu, and b is a token labeling for s such
that @ei P E we have |bi| “ tciu. We denote by S the set of all possible states for
P, and by O : SÝÑS the forgetful mapping that maps a state s “ xs,m, by to
Opsq “ s.

Our next goal is to extend the fire and tick transitions between states of P to
transitions between states of P. We first define, given a state s “ xs,m, by P S, a
new state s1 “ xs1,m1, b1y P S resulting from the firing of an actor vj in state s.
We assume that s “ xc, θy and s “ xc1, θ1y. As mentioned in Sec. 3.1, only valid
executions are relevant. For this reason, we only define partial mappings for the
transitions in P such that Opsq $ Ops1q.

Decided Mode. We first define how the decided mode for a firing of vj in s
is determined. Only the mode labels of the δ´i psq tokens consumed from each
deciding channel ei will influence the decision. The set of the relevant modes is
thus defined by Ljpsq “ tbirks | ei P Ψj , 1 ď k ď δ´i psqu.

If the set Ljpsq is restricted to a singleton tλu, then λ is the decided mode of
vj (Case 2 in the following Def. 9). If Ljpsq “ H, it means that Ljpsq does not
provide information to decide, and vj will keep its last mode mj (Case 1). The
last possible case is that |Ljpsq| ě 2, which means that Ljpsq provides incoherent
information, since several modes are possible. As explained in Sec. 2, this is an
indecision, and vj will switch to the undefined mode υ (Case 3).

For a non-follower vj , since Ψj “ H (cf. (ii) in Def. 7), the set Ljpsq is empty
(Case 1 in Def. 9), and the decided mode always remains the same (nominal if
the previous mode was nominal). Finally, if a predecessor of vj propagated to vj
an undefined mode via one of its deciding channels, the decision for vj is taken
either by Case 2 or Case 3, and in both situations vj also enters an undefined
mode. Hence, the undefined mode is propagated to successors.

Dynamic Reconfigurations in Frequency Constrained Data Flow 13

Definition 9 (Decided mode). Let P be an extended polygraph, vj P V an
actor, and s “ xs,m, by P S a state with s “ xc, θy P S such that @ei P inpvjq,
ci ě |γij |. Given the set Ljpsq, the decided mode djpsq of vj for its firing in
state s is defined as follows:
1. if Ljpsq “ H, then djpsq “ mj;
2. if Ljpsq “ tλu for some λ, then djpsq “ λ;
3. if |Ljpsq| ě 2, then djpsq “ υ.

Extended transitions. We can now define the resulting state s1 after the firing of
vj in state s as an extension of a firing in P (cf. Case 1 in Def. 10 below). The
mode of vj is set to its decided mode m1j “ djpsq, while for the other actors,
their mode is unchanged (cf. Case 2).

By Def. 2 and Remark 1, for every input channel ei of vj , the firing of vj
consumes the first δ´i psq tokens, so the token labeling b1i for the remaining tokens
is the suffix of bi of length |bi|´δ´i psq (cf. Case 3). Since we only define a partial
mapping for states where the firing of an actor does not result in a negative
channel state, the resulting token labeling is always well defined.

When firing, vj arbitrarily chooses a mode, and labels all the produced tokens
with that mode. If vj is not a selector, then it can only choose its decided mode.
Otherwise, vj is a selector, and can select any mode from its selection set (cf.
(ii)). In Def. 10, we make the choice to represent the arbitrarily chosen mode λ
as an additional parameter of the partial firing mapping, so that different choices
can lead to different resulting states. Then for each output channel ei, since the
number of tokens produced is δ`i psq, a suffix pδ`i psq ˚ λq is added to the token
labeling sequence (cf. Case 4).

Definition 10 (Extended firing). For an extended polygraph P, the partial
mapping fire : V ˆ S ˆ Λ ÞÑS is defined for the tuples xvj , s, λy such that (i)
Opsq $ firepvj ,Opsqq, and (ii) λ “ djpsq if vj R VM or λ P Λj if vj P VM . In this
case, if we denote s “ xs,m, by and xs1,m1, b1y “ firepvj , s, λq, we have:
1. s1 “ firepvj , sq;
2. m1j “ djpsq, and m1k “ mk for any k ‰ j;

3. @ei P inpvjq, b
1
i “ suffixpbi, |bi|´ δ´i psqq;

4. @ei P outpvjq, b
1
i “ bi ¨ pδ

`
i psq ˚ λq.

Definition 11 (Extended tick). For an extended polygraph P, the partial
mapping tick : S ÞÑS is defined for the tuples xvj , s, λy such that Opsq $ tickpOpsqq.
In this case, if we denote s “ xs,m, by and xs1,m1, b1y “ tickpsq, we have
s1 “ tickpsq, m1 “ m, and b1 “ b.

Remark 5. Def. 9, 10, 11 show that the extended transitions in P impact, or
depend on the synchronous constraints θ in the same way as the underlying
transitions in P do. There is no additional dependence or impact on synchronous
constraints introduced by the mode extension. An extended firing only relies on
the channel states c in s “ xc, θy P S to determine the mode changes. Therefore,
the mode extension is orthogonal to synchronous constraints. We thus chose not
to detail them here. In other words, the mode extension is about which tokens
are consumed or produced by a firing, not when they are.

14 P. Dubrulle et al.

Extended execution. An execution of P relies on the extended firing and the
extended tick. By construction, the underlying execution in P is valid.

Definition 12 (Extended execution). An execution of an extended poly-

graph P is a sequence σ “ s1 ¨ ¨ ¨ sn P S
`

, such that @1 ď k ă n we have
either sk`1 “ firepvj , s

k, λq for some vj P V and λ P Λ, or sk`1 “ tickpskq.
The forgetful mapping is extended to any execution σ “ s1 ¨ ¨ ¨ sn as follows:
Opσq “ Ops1q ¨ ¨ ¨Opsnq. In addition, if σ “ Opσq, for all channels ei P E we
denote ησi “ ησi , oσi “ oσi , and ισi “ ισi .

Coherence. As explained above, the decision of the next mode captures a drift
in mode propagation by assigning an undefined mode to actors. We propose in
the next section an algorithm to verify that, given a polygraph P with an initial
state s1, the decided mode is never undefined in any execution starting from s1.
To show its soundness, we need to show (cf. Th. 1 below) that the decided modes
of all actors are pre-determined by the initial state and the modes selected by
the selectors, even if the order of transitions is changed.

To formalize this idea, for an execution σ “ s1 ¨ ¨ ¨ sn P S
`

and for each actor
vj , we define two mappings µσ

j and χσ
j giving for each l P t1, . . . , xσj u the decided

mode µσ
j plq and the selected mode χσ

j plq for the lth firing of vj in σ. Hence, if

the f th firing of vj occurs in state sl such that sl`1 “ firepvj , s
l, λq, we have

µσ
j pfq “ djps

lq and χσ
j pfq “ λ. By Def. 10, they are equal for non-selectors.

Theorem 1. Let P be an extended polygraph, and σ P S
`

, σ1 P S
`

be two
executions of P such that Opσq » Opσ1q and σr1s “ σ1r1s. Assume that for any
selector vj P VM we have χσ

j “ χσ1

j . Then for any actor vk P V we have µσ
k “ µσ1

k .

Sketch of proof. By definition of » (see Remark 3), the tracking vectors of σ
and σ1 are equal, so each actor vj fires the same number of times xσj “ xσ

1

j

in σ and σ1, while the order of firings can be different. Assume the result does
not hold. We can then choose the very first firing of an actor in σ for which the
property does not hold. Assume this is the f th firing of actor vk (referred to below
as problematic) for which the decided mode is not the same: µσ

k pfq ‰ µσ1

k pfq.
Hence for all previous firings (of all actors) in σ, the required property holds.

To choose the decided mode of its f th firing, vk considers the tokens either
initially present in the channel or produced by a firing of some actor occurring
before this firing of vk in σ. By Prop. 2, a given token of the footprint of a channel
is produced by the firings of the same rank of the producer, and consumed by
the firings of the same rank of the consumer of the channel in both executions
Opσq and Opσ1q (and thus in σ and σ1). Thus, the f th firing of vk in σ and σ1

consumes the initial tokens of the same rank in the footprint, that is, exactly
the same number and on the same position. Since σr1s “ σ1r1s, there cannot be
any difference of modes for these tokens between σ and σ1. Regarding the tokens
produced by a firing of a selector in σ, since the ranks of such tokens in the

Dynamic Reconfigurations in Frequency Constrained Data Flow 15

footprint are the same in σ and σ1 and since the selector’s choice is the same in
σ and σ1, there cannot be any difference of token modes either. Regarding the
tokens produced by a firing of a non-selector in σ before the problematic firing of
vk, there cannot be any difference since each such token is produced by a firing
for which the property holds and therefore the token was labeled with the same
decided mode in σ and σ1. The contradiction finishes the proof. [\

4 Method and Tool Support to Check Coherence
In this work, we design and implement in DIVERSITY an algorithm to check
whether or not an indecision can occur in a live execution of a polygraph. DI-
VERSITY is a customizable model analysis tool based on symbolic execution,
available in the Eclipse Formal Modeling Project [12].

The input of our algorithm is a polygraph P and an initial state s1 such that
P is live from Ops1q. Assume σ0 is a minimal live execution of P from Ops1q. The
algorithm performs symbolic execution of all executions σ of P with initial state
s1 such that Opσq is a repeated execution of σ0 (up to a certain number of times).
This exploration is based on a straightforward implementation of Def. 10, 11, 12.
We call current state the state sl resulting from the last such application, with
sl “ s1 initially. In order to represent all possible choices modeled by the selected
mode arguments of the extended fire transitions, for any firing of rank f of a
selector vj in these executions, we use a symbolic parameter ajf representing
that mode and on which we compute constraints (the initial constraint being that
ajf P Λj). The produced tokens are labelled with ajf . The resulting symbolic
state represents all possible choices of selected modes and resulting constraints
(stating that the mode labels of some tokens—having the same ajf—are equal).

Each time an actor fires, we compute the conditions given in Def. 9. By
construction at least one of them is satisfiable. If the condition corresponding
to Item 3 is satisfiable, it means that there exists a valuation of the formal
parameters for which the decided mode is undefined. In this case the computation
ends with a verdict no stating that there is at least one live execution with an
indecision. Otherwise, the exploration continues.

From Prop. 1, for any actor vj and channel ei P inpvjq, the tc1i u tokens initially
occupying ei are consumed after a known number of firings of vj . Hence, from
Remark 3, it is possible to successively execute σ0 (with all possible choices of
decided modes) a number of times l ą 0 such that all tokens initially occupying
input channels are consumed. Assume we reach some state sn; as σ0 is live, we
have Opsnq “ Ops1q, so the number of tokens in the channels is the same as in
the initial state. The labels of all tokens present in the channels at that stage are
expressed by some ajf . Finally, our algorithm executes σ0 one last time, overall
to a repetition of l ` 1 minimal live executions σ0. This last step, starting from
some symbolic state sn, necessarily comes to a symbolic state equivalent to sn

(since by Prop. 2 the constraints on the mode labels of tokens—having the same
ajf—will be semantically the same, even if the indices j of ajf will be shifted).
If no indecision is detected by executing an extension of σ0 from state sn, and
since it leads to an equivalent state, we can stop iterations: any additional step
will not detect an indecision. The computation ends with a verdict yes.

16 P. Dubrulle et al.

No example 7 actors min live verdict 7 firings 7 min. live time
(7 timed act.) exec. len. simulated execs.

1 Fig. 1 5 (4) 22 yes 44 2 95ms
2 Fig. 1(:) 5 (4) 220 yes 440 2 432ms
3 Fig. 2 3 (2) 8 yes 16 2 9ms
4 Fig. 4 15 (0) 1358 yes 2716 2 4s668ms
5 Fig. 4(:) 15 (0) 2702 yes 5404 2 14s716s
6 Fig. 4(:) 15 (0) 13580 yes 27160 2 1m41s
7 Fig. 4(;) 15 (0) 1358 no 8 0 6ms
8 MP4-SP 5 (2) 299 yes 598 2 557ms
9 MP4-SP(:) 5 (2) 598 yes 6008 2 7s451ms
10 MP4-SP(§) 5 (2) 299 no 237 0 189ms

Fig. 3. Experiments on examples, where (:) denotes token rate modification preserving
consistency, (;) denotes a modified number of initial tokens, and (§) denotes marking
an existing channel as deciding. The last three columns show the verdict, the number
of firings and the number of full live executions executed by DIVERSITY.

The proposed technique is sound by construction: if an indecision is detected,
it really occurs since the algorithm simulates a possible execution of P. To show
its completeness, we should check that if an indecision can occur for some exe-
cution of P, the no verdict will be returned.

We claim that it is indeed sufficient to explore extensions of live executions
as per our algorithm, and check that no indecision occurs in them. First, from
Th. 1, the only parameters influencing the decided modes are the labels of the
tokens initially occupying the channels, and the modes selected by the firings of
selectors. The labels of the initial tokens are an input of the problem and do not
change in the executions to consider. The symbolic parameters used to label the
tokens produced by the firing of selectors cover all possible choices. Hence, all
possible executions σ such that Opσq is a repeated execution of σ0 (any finite
number of times, as argued above) are covered by our exploration. By Remark
3 and Th. 1, we deduce that a possible indecision in any execution of P will be
thus detected by our technique on an execution σ such that Opσq is equivalent
to a repeated execution of σ0

We have applied our algorithm to different examples and summarized the
results in Fig. 3. The three examples introduced in this paper were analyzed,
and are referenced by Figure number (for Fig. 2 the tested model received syn-
chronous constraints). The example denoted MP4-SP is a translation to Poly-
graph of the classical MPEG4-SP SADF decoder (see [13] for original graph).
For some examples, transformations were applied to the initial model, in order to
show how execution time increases linearly with the number of firings, or to vol-
untarily introduce an indecision. Correctness of verdicts was checked manually.
Experiments were run on an Intel core i7-7920HQ@3.10GHz, 32GB RAM.

5 Discussion and Related Work

In [9], the authors introduced Synchronous Data Flow (SDF), a restriction of
Kahn Process Networks [8], overcoming the undecidability of the existence of

Dynamic Reconfigurations in Frequency Constrained Data Flow 17

Fig. 4. A MP3 decoder modeled as a polygraph.

an admissible schedule (in the general case), and allowing static performance
analysis. The key was the introduction of a linear behavior using static integer
rates. For a more precise performance prediction, it is useful to allow rates to
change dynamically during an execution to find tighter bounds on the evaluated
memory footprint, throughput, and latency. The main difficulty to introduce
such dynamic behavior resides in the capability to approximate the desired non-
linear behavior while preserving the good properties of a linear equation system.

Our proposition is one of many other approaches attempting to tackle this
issue [3, 2, 1, 10]. In Sec. 2, we mentioned SADF [14], and referenced a recent
and extensive survey of similar approaches [6], showing that SADF is the most
expressive while retaining the scheduling properties. Compared to SADF, Poly-
graph can express global synchronous constraints, simplifies the reconfiguration
mechanisms by removing control channels, and offers a different approach to
capture the dynamic changes in communication. Since the rational rates are the
same in all modes, consistency and liveness can be checked as for static models.
By adding configuration information per mode on the tokens, the existing exam-
ples with variable rates provided in [13] can be modeled in Polygraph without
loss of behavioral information.

For example, in the translation of the MP3 decoder of Fig. 4, the actor H
is a selector and determines the frame type for the left and right channels, and
produces 2 granules of 576 components labeled with the determined frame types
(e.g. FSL stands for short frame on left channel and long frame on right channel).
Actor S is a follower of H, and it is also a selector, determining the amount and
type of blocks to distribute to the block processing pipelines starting with actors
ARi. For example, if S consumes a granule labeled FSL on its 1st firing, it will
not consume another granule for its next 95 firings (input rates 1{96), and from
the 1st firing to the 96th, the left channel will receive 96 short blocks each of size
6, and the right channel will receive 32 long blocks each of size 18. In the model,
both channels receive 96 tokens, the first 32 are labeled BSL for short block on
left and long block on right, and the remaining 64 tokens are labeled BS0 for
short block on left and empty block on right. As in SADF, depending on the
mode for a firing, the execution time can change and be set to 0 for actors that
do not process for the determined frame and block types.

18 P. Dubrulle et al.

6 Conclusion
To cover the needs of modeling distributed and reconfigurable CPS, we have in-
troduced dynamic behavior in Polygraph, such that for an extended polygraph,
the consistency and liveness properties of the underlying static polygraph are
not impacted by the extension. This allows for a single verification of these prop-
erties for a static model, and the static performance analysis of many alternative
extended versions.

An adaptation of the existing approaches for the static performance analysis
of similar languages will be the main part of our future work. In addition, we
want to consider hierarchical and composable modeling of polygraphs, allowing
the design of large scale complex distributed CPS.
Acknowledgement. Part of this work has been realized in the FACE/OPTEEM
projects, involving CEA List and Renault. The Polygraph formalism has been
used as a theoretical foundation for the software methodology in the project.

References

1. Bhattacharya, B., Bhattacharyya, S.S.: Parameterized dataflow modeling for DSP
systems. IEEE Transactions on Signal Processing 49(10), 2408–2421 (2001)

2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static data flow.
In: Proc. of ICASSP. vol. 5, pp. 3255–3258 (1995)

3. Buck, J.T.: Static scheduling and code gen. from dynamic dataflow graphs with
integer-valued control streams. In: Proc. of ACSSC. vol. 1, pp. 508–513 (1994)

4. Dubrulle, P., Gaston, C., Kosmatov, N., Lapitre, A., Louise, S.: Polygraph: A data
flow model with frequency arithmetic, submitted

5. Dubrulle, P., Gaston, C., Kosmatov, N., Lapitre, A., Louise, S.: A data flow model
with frequency arithmetic. In: Proc. of FASE. LNCS, vol. 11424, pp. 369–385 (2019)

6. Geilen, M., Falk, J., Haubelt, C., Basten, T., Theelen, B., Stuijk, S.: Performance
analysis of weakly-consistent scenario-aware dataflow graphs. Journal of Signal
Processing Systems 87(1), 157–175 (2017)

7. Geilen, M., Stuijk, S.: Worst-case performance analysis of synchronous dataflow
scenarios. In: Proc. of CODES+ISSS. pp. 125–134. ACM (2010)

8. Kahn, G., MacQueen, D., Laboria, I.: Coroutines and Networks of Parallel Pro-
cesses. IRIA Research Report, IRIA laboria (1976)

9. Lee, E.A., Messerschmitt, D.G.: Static scheduling of SDF programs for digital
signal processing. IEEE Transactions on Computers C-36(1), 24–35 (87)

10. Oh, H., Ha, S.: Fractional rate dataflow model for efficient code synthesis. Journal
of VLSI Signal Process. Syst. Signal Image Video Technol. 37(1), 41–51 (2004)

11. Plishker, W., Sane, N., Kiemb, M., Anand, K., Bhattacharyya, S.S.: Functional
DIF for rapid prototyping. In: Proc. of Int. Symp. RSP. pp. 17–23 (2008)

12. The List Institute, CEA Tech: The DIVERSITY tool, http://projects.eclipse.
org/proposals/eclipse-formal-modeling-project/

13. Theelen, B.D., et al.: Scenario-aware dataflow. Tech. Rep. ESR-2008-08, TUE
(2008)

14. Theelen, B.D., Geilen, M.C., Basten, T., Voeten, J.P., Gheorghita, S.V., Stuijk, S.:
A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In: Proc. of MEMOCODE. pp. 185–194. IEEE (2006)

15. Wiggers, M.H., Bekooij, M.J., Smit, G.J.: Buffer capacity computation for through-
put constrained streaming applications with data-dependent inter-task communi-
cation. In: Proc. of RTAS. pp. 183–194. IEEE (2008)

