
Prove your Colorings: Formal Verification of
Cache Coloring of Bao Hypervisor

Axel Ferréol , Laurent Corbin , and Nikolai Kosmatov

Thales Research & Technology, Palaiseau, France
{axel.ferreol,laurent.corbin,nikolai.kosmatov}@thalesgroup.com

Abstract. Hypervisors allow sharing of computing resources between
applications—possibly of various levels of criticality—that makes them
increasingly relevant for modern embedded systems. In this context,
memory isolation properties (including low-level cache isolation) are es-
sential to guarantee. This paper presents a case study on formal verifi-
cation of the cache coloring mechanism implemented in the Bao hyper-
visor. It proposes an original technique for coloring memory pages and
assigning to each virtual machine only pages of certain colors, aimed to
provide strong isolation guarantees. The implementation presents several
challenges for formal verification, such as bit-level operations, complex
arithmetic operations, multiple levels of nested loops, and linked lists.
We identify two subtle bugs in the existing implementation breaking the
expected guarantees, and propose bug fixes. We provide formal speci-
fication for the key functions of the mechanism and verify their (fixed)
version in the Frama-C verification platform with a few lemmas proved in
the Coq proof assistant. We present our specification choices, verification
approach and obtained results. Finally, we outline possible optimizations
of the current implementation.

Keywords: deductive verification, Frama-C, cache coloring, Bao hyper-
visor, memory pages, Coq.

1 Introduction

Hypervisors allow a host system to support multiple guest systems (virtual ma-
chines, or VMs) by virtually sharing its resources, such as memory and pro-
cessing. Already intensively used in some domains (e.g. cloud infrastructures),
hypervisors become highly relevant today for critical embedded systems due to
an increasing number of necessary functions and features. Numerous functions
have already been added to embedded systems, such as driver assistance or sen-
sor management, and more functions need to be integrated today, for example,
artificial intelligence (AI) solutions for mission-critical systems, or further en-
tertainment and connectivity features. In many contexts, it is not possible to
add more hardware because of size, weight and cost constraints. To enable this
integration, it is necessary to share the same hardware between several functions
(or systems), often with different levels of criticality. It can be achieved thanks
to virtualization, when each system runs on a separate VM.

https://orcid.org/0009-0007-5172-7823
https://orcid.org/0009-0000-9089-288X
https://orcid.org/0000-0003-1557-2813

Hardware resources can be shared by the hypervisor in two ways: (i) time
sharing: each VM has access to all resources in turn, i.e. VMs are scheduled;
(ii) partitioning: each VM has access only to the part of resources dedicated to
it. Time sharing requires a more complex and resource-hungry hypervisor, due
to the scheduling function. That is why partitioning-based hypervisors (called
static hypervisors) are more widely used in embedded systems. Static hypervisors
allocate all hardware resources to VMs during the hypervisor start-up, so that
each resource is allocated to only one VM. In addition, each VM has direct access
to its resources, without interception by the hypervisor, which is particularly
important for real-time systems. Thus, a static hypervisor seems to be an ideal
solution for mixed-criticality systems.

However, some resources must be shared, such as processor last-level cache
(LLC), which is by definition shared between several cores, each one possibly run-
ning a different VM. To tackle this problem, some static hypervisors implement
cache coloring. The main idea is to split cache—without specific hardware—into
several areas, each associated with a color. A color can then be associated with
a VM, so that the data of memory pages used by this VM can be stored only in
the cache area of the same color. The underlying implementation becomes more
complex and highly critical, and its correctness is essential to guarantee.

The purpose of this work is formal verification of the cache coloring mecha-
nism implemented in Bao [1,37], an open-source static hypervisor used in embed-
ded systems. While it proposes an elegant optimized implementation, its code is
also challenging for formal verification because it contains non-trivial logic, bit-
level operations, complex arithmetic operations, multiple levels of nested loops,
and linked lists. During this case study, we identified two subtle bugs1 in the
existing implementation breaking the expected guarantees, and proposed bug
fixes2. We provide formal specification for the key functions of the mechanism
and verify their (fixed) version in the Frama-C verification platform [31,10,33].
The proof requires carefully chosen predicates, ghost code, non-trivial loop in-
variants and lemmas. Some proof goals are not proved by automatic solvers: we
prove them interactively (in Frama-C or in the Coq proof assistant [40,13]). We
present our specification choices, verification approach and obtained results, and
outline possible further optimizations of the current code.

Contributions. The contributions of this work include:

– a pedagogical presentation of the cache coloring mechanism of Bao;
– an identification of some subtle bugs in its implementation and proposals of

bug fixes, as well as suggestions of possible further optimizations;
– formal specification and verification of a subset of (fixed) real-life code of

this mechanism in Frama-C, publicly available via a companion artifact [27];
– an overview of key specification choices, verification solutions and results.

1 present in the code since 2020 (commit d840da).
2 Shortly before the final submission of this paper, the authors reported the bugs and
the suggested fixes to Bao developers, who integrated the proposed fixes into the
code (commit ee73f7e in the Bao repository [1] on January 6, 2025).

2

In a broader sense, this work promotes rigorous software engineering approaches,
contributes to an empirical evaluation of modern verification tools, and enriches
the record of successful formal verification case studies for critical real-life code
in industrially relevant contexts.

Outline. Section 2 presents Frama-C. Bao and cache coloring are described in
Sect. 3. The considered implementation is presented in Sect. 4. Section 5 presents
the bugs, suggested fixes and optimizations. Section 6 describes key specification
choices, verification solutions and results. Finally, Sect. 7 provides some related
work and concludes the paper.

2 Frama-C Verification Platform

Frama-C [31,10,33] is an open-source verification platform for C code. It offers
various plugins along with a kernel providing basic services for source-code pars-
ing and analysis. The program under analysis can be annotated in ACSL (AN-
SI/ISO C Specification Language) [11,33], a formal specification language for C,
that allows users to express functional properties of programs in the form of an-
notations, such as assertions or function contracts, written in special comments
/*@...*/ and //@... . A function contract includes pre- and postconditions
(resp., requires and ensures clauses) expressing properties that must hold,
resp., before and after a call to the function. It also includes an assigns clause
listing (non-local) variables and memory locations that the function is allowed to
modify. The terminates \true clause specifies that the function must termi-
nate. Users can add ghost code, used only for verification purposes and written
in annotations /*@ ghost ... */. Ghost code can also contain annotations,
written in special comments /@...@/ and //@... . ACSL offers built-in predi-
cates and logic functions to express frequent properties such as pointer validity
or memory separation, and provides different ways to define new predicates and
logic functions. As it is often done, in this document some ACSL notation (e.g.
\forall, integer, ==>, <=, !=) is pretty-printed (resp., as ∀, Z, ⇒, ≤, ̸=).

Frama-C offers a deductive verification plugin called Wp [33] . Given a C
program annotated in ACSL, Wp generates the corresponding proof obligations
(also called proof goals or verification conditions) that can be proved either by
Wp itself, or (through the Why3 platform [28]) by SMT solvers [20,14,9] or an
interactive proof assistant like Coq [40,13]. To ensure the absence of runtime
errors (RTE), Wp can automatically add necessary assertions and try to prove
them as well. In this work, we chose to use Frama-C/Wp due to its capacity to
perform deductive verification of industrial C code with successful verification
case studies [23] and the fact that it is currently the only tool for C source
code verification recognized by ANSSI, the French Common Criteria certification
body, as an acceptable formal verification technique for the highest certification
levels EAL6–EAL7 [24].

3

3 The Bao Hypervisor and Cache Coloring

The cache issue. Caches in modern CPUs are organized in levels: each core
has a first-level cache, and the data in these caches are replicated in (possibly
several levels of) higher-level caches until last-level cache (LLC), shared by all
cores. While data from a given page is always stored in the same cache area, the
memory-to-cache mapping is not bijective: data from different memory addresses
can end up being stored in the same cache area. This reduces isolation guarantees
and can potentially increase the risk of (e.g. side-channel) attacks. Moreover,
memory addresses mapped to the same cache set compete for space. If a VM
running on one core frequently accesses a large amount of data, it can monopolize
the shared cache, slowing down other VMs running on nearby cores. This is a
serious issue for real-time applications. To prevent this, the hypervisor must
ensure that memory pages assigned to different VMs do not overlap in cache.

Cache coloring. Cache coloring is a technique that assigns colors to memory
pages such that pages of the same color compete for the same cache sets, while
pages of different colors do not compete for the same cache sets. In essence,
cache coloring segments the main memory based on cache segmentation. The
minimum number of colors is one (i.e., no cache coloring), and the maximum is
determined by the number of cache sets of the different caches.

When a hypervisor assigns a unique color to each virtual machine—meaning
a VM is loaded exclusively on pages of its color that have not been allocated to
other VMs—it ensures that: (i) VMs cannot access each other’s data since they
reside on separate pages in memory; (ii) VMs do not compete for the same cache
sets because their data is stored in cache sets of different colors. Thereby, cache
coloring is essential for memory isolation.

Bao. Bao [1,37] is a lightweight open-source static hypervisor specifically de-
signed for embedded systems and real-time applications. It focuses on providing
strong isolation between VMs and ensuring real-time guarantees, being thus par-
ticularly well-suited for environments where both performance and reliability are
critical. Bao elegantly implements a general version of cache coloring where the
uniqueness property can be relaxed, that is, each VM accepts a subset of colors.
It is crucial to ensure correctness of this implementation, that makes it a highly
relevant target for formal verification.

4 Implementation of Cache Coloring in Bao

This section presents an overview of the cache coloring mechanism in the Bao hy-
pervisor (see the real-life code in [1]), and a simplified version of its key functions
(given in Fig. 3). Several syntactical changes were realized to make the real-life
code more compact and clearer for the paper. The only semantical change is the
removal of lock and unlock instructions (in the beginning and the end of function
pp_next_clr) used to prevent concurrent modifications of a page pool and page

4

allocation statuses, which are classic and orthogonal to our main scope. The se-
mantics of other instructions (with all real-life code optimizations and bit-level
operations) was carefully preserved.

4.1 Overview of the Implementation

Fig. 1. The main memory
layout in Bao with cache
coloring, where the periodic
block of colors is repeated
to engender the coloring of
pages for the whole memory.

When the option to use cache coloring is acti-
vated, Bao calculates during the boot the num-
ber of colors allowed by the hardware. Then, it at-
tributes to every page a single color depending on
the page number, so that its data is mapped to a
cache area of the same color. COLOR_SIZE denotes
the number of contiguous pages of the same color
in memory, while COLOR_NUM represents the num-
ber of different colors in memory. In other words,
pages are colored into the same color by consecutive
groups of COLOR_SIZE pages, and the colors of the
groups follow a constant sequence that loops every
COLOR_NUM groups. Thus, the main memory is col-
ored following a specific pattern—a periodic block
of COLOR_NUM*COLOR_SIZE pages—as illustrated in
Fig. 1 (where both constants are equal to 4, so the
block contains 16 pages).

In a configuration file, for each VM, the user
specifies a set of (possibly several) acceptable colors for pages where the VM
will be loaded. When loading a VM, Bao maps the VM’s address space into free
pages of acceptable colors.

Page p7
Page p6
Page p5
Page p4
Page p3
Page p2
Page p1
Page p0

0

0
1

0
0
1

0
1

1 allocated page0 free page

Fig. 2. Example of a pool
of memory pages where
COLOR_SIZE equals to 1 and
COLOR_NUM equals to 2.

The allocation of suitably-colored pages is han-
dled by function pp_alloc_clr (detailed below). It
searches for a set {p1, . . . , pn} of a required num-
ber n of free consecutive pages of acceptable colors
c1, . . . , ck. To formalize these requirements for se-
lected pages, it is convenient to introduce the notion
of a pset (pronounced as p-set).

A set of pages {p1, . . . , pn} is called a pset of
n pages for acceptable colors c1, . . . , ck if: (i) each
page pi in the set has one of the acceptable colors
c1, . . . , ck; (ii) the pages of the set are (colorwise)
consecutive, that is, there does not exist a non-
selected page of an acceptable color between two
selected ones (notice that there may exist a non-

selected page between two selected pages if its color is not acceptable). We say
that the pset is free if in addition: (iii) each page pi in the set is free. We say
that the pset is in (or inside) a pool of pages if: (iv) each page pi belongs to the
pool.

In this terminology, function pp_alloc_clr searches for a free pset of a given
size n for given acceptable colors c1, . . . , ck inside a given pool of pages. When

5

the conditions are clear from the context, we may drop them and just say “a
(free) pset”.

For example, in the pool of 8 pages shown in Fig. 2, the set {p2, p4, p6} forms
a free pset of size 3 for the yellow color; the set {p1, p3} does not form a free
pset of size 2 for the blue color (since p3 is not free); while {p1, p5} is not a pset
of size 2 for the blue color, as (ii) fails (page p3 is in-between).

Bao developers chose to search only for consecutive pages because it simplifies
the process for other functions to access the newly allocated pages: from the
starting page of a pset of size n, function pp_next_clr is iteratively called n

times to obtain the first page of an acceptable color (that should return the
starting page itself), then the second page of an acceptable color, and so forth
(as it will be shown on lines 62–65 in Fig. 3).

Functions bitmap_get and bitmap_set are used, resp., to read and to write
the allocation status of a page (allocated if nonzero or free if zero) from a bitmap,
in which each bit represents the status of a page.

4.2 Basic Type Definitions and Constants

Lines 2–22 of Fig. 3 define basic types and constants used in the code. P_SIZE
denotes the size of a memory page (in bytes). COLOR_NUM and COLOR_SIZE were
presented above. CELL_SIZE defines the number of bits in an array cell of type
u32, which will be used for a compact storage of bits in a bitmap (defined as an
array of type u32*).

The page_pool structure (lines 5–11) represents a pool of pages, that is, a
contiguous memory area, starting at the page address base and containing size

pages. Each page is marked as free or allocated using the corresponding bit in
bitmap. For heuristic purposes, the field last records the page that follows the
last page of the last allocated pset. Field node is used (in higher-level functions)
to link several pools into a linked list. Some other fields unrelated to the scope
of this work were removed in this paper for simplicity (but this simplification
does not impact the proof results).

A set of colors is encoded as a 64-bit unsigned integer, called a vector of colors,
in which the i-th bit is set if the i-th color is authorized. The ppages structure
(lines 12–16) is used to store a pset, described by the first page’s address base,
the number of pages num_pages and the vector of acceptable colors colors.

4.3 Implementation of pp_next_clr

Function pp_next_clr (see Fig. 3, lines 23–29) looks for a first suitably-colored
page starting from a given page. This function takes as arguments the address of
a base page base, an offset from (in terms of page numbers with respect to the
base page) of the starting page of the search, and a color vector colors indicating
the acceptable colors. It returns the offset (again, in terms of page numbers with
respect to the base page) of the first page whose color is one of the acceptable
colors specified in the color vector. Notice that while the base page base is given
by its address, the starting page and the returned page are identified by their
page number offsets (with respect to the number of the base page) and not
their address offsets. The page number of the base page with address base is

6

1 #include <limits.h>
2 typedef unsigned char u8;
3 typedef unsigned int u32;
4 typedef unsigned long u64;
5 typedef struct page_pool {
6 struct page_pool *node;
7 u64 base;
8 u64 size;
9 u64 last;

10 u32 *bitmap;
11 } page_pool;

12 typedef struct {
13 u64 base;
14 u64 num_pages;
15 u64 colors;
16 } ppages;
17 #define P_SIZE (0 x1000)
18 #define CELL_SIZE (sizeof(u32) * 8)
19 u64 COLOR_NUM;
20 u64 COLOR_SIZE;
21 #define P_NB(addr) ((addr)/P_SIZE)
22 #define P_NB_MAX (1UL << 52)

23 u64 pp_next_clr(u64 base , u64 from , u64 colors){
24 u64 clr_offset = (base / P_SIZE) % (COLOR_NUM * COLOR_SIZE);
25 u64 index = from;
26 while (!((colors >> ((clr_offset + index) / COLOR_SIZE % COLOR_NUM)) & 1))
27 index ++;
28 return index;
29 }
30

31 u32 bitmap_get(u32 *map , u64 bit){
32 return (map[bit / CELL_SIZE] & (1U << (bit % CELL_SIZE))) ? 1U : 0U;
33 }
34

35 void bitmap_set(u32 *map , u64 bit){
36 map[bit / CELL_SIZE] |= 1U << (bit % CELL_SIZE);
37 }
38

39 u8 pp_alloc_clr(page_pool *pool , u64 n, u64 colors , ppages *ppages){
40 u64 allocated = 0;
41 u64 first_index = 0;
42 u8 ok = 0;
43 ppages->colors = colors;
44 ppages->num_pages = 0;
45 u64 index = pp_next_clr(pool->base , pool->last , colors);
46 u64 top = pool->size;
47 for (u64 i = 0; i < 2 ∧ !ok; i++){
48 while ((allocated < n) ∧ (index < top)){
49 allocated = 0;
50 while ((index < top) ∧ bitmap_get(pool->bitmap , index))
51 index = pp_next_clr(pool->base , ++index , colors);
52 first_index = index;
53 while ((index<top)∧(bitmap_get(pool->bitmap ,index)==0)∧(allocated<n)){
54 allocated ++;
55 index = pp_next_clr(pool->base , ++index , colors);
56 }
57 index ++; // FIX: remove this line
58 }
59 i f (allocated == n){
60 ppages->num_pages = n;
61 ppages->base = pool->base + (first_index * P_SIZE);
62 for (u64 j = 0; j < n; j++){
63 first_index = pp_next_clr(pool->base , first_index , colors);
64 bitmap_set(pool->bitmap , first_index ++);
65 }
66 pool->last = first_index;
67 ok = 1;
68 break;
69 }
70 else {
71 index = 0; // FIX: replace this line by the next one
72 // index = pp_next_clr(pool->base , 0, colors);
73 }
74 }
75 return ok;
76 }

Fig. 3. Simplified code of the cache coloring mechanism in Bao.

7

base / P_SIZE, while the starting page defined by the number offset from has
page number base / P_SIZE + from and address base + from * P_SIZE.

Calculation of the color of a page. In Bao, the cache coloring mechanism defines
the color of a page with page number PNum through the formula:

PNum / COLOR_SIZE % COLOR_NUM. (A)

The function keeps track of the offset of the current candidate page in the variable
index, initialized to from, see line 25. The page number of the current page is
base / P_SIZE + index and its color is naturally calculated as:

(base / P_SIZE + index) / COLOR_SIZE % COLOR_NUM. (B)

However, since the function frequently calculates this formula, it performs an
optimization to calculate the color as3:

(clr_offset + index) / COLOR_SIZE % COLOR_NUM, (C)

where clr_offset is the (page number) offset of the base page with respect to
the beginning of its periodic block of colored pages, defined on line 24.

Going through the pages. To find the next suitably-colored page, the function
iterates over the pages (through the loop on lines 26–27), starting from the index
from (line 25), each time checking if the color is acceptable using a bit shift of
the color vector. The color c is acceptable if and only if !((colors >>c) & 1)

(line 26). Once a page with an acceptable color is found, the loop condition fails,
and the function returns the offset of the found page on line 28.

Callers always check that the color vector colors contains (hence, accepts)
at least one existing color, which ensures the termination of the loop as it will
eventually find a page of an acceptable color. Notice that the function does not
guarantee that the returned page belongs to the valid range of page indices; this
verification is supposed to be done in the upper-level functions.

4.4 Implementation of bitmap_get and bitmap_set

Function bitmap_get (see Fig. 3, lines 31–33) checks the allocation status of
pages encoded by a bitmap. It takes two arguments: a bitmap map and a bit
number bit, and returns 1 if the bit-th bit is set in map, and 0 otherwise.
The bit-th bit is contained in the cell of index bit / CELL_SIZE, at offset
bit % CELL_SIZE. This explains the calculation on line 32. Similarly, function
bitmap_set (line 35–37) updates the allocation status of a page.

4.5 Implementation of pp_alloc_clr

Function pp_alloc_clr (see Fig. 3, lines 39–76) searches for a given number of
free consecutive pages of acceptable colors in a given page pool, that is, a free
pset. The function takes four arguments: a pointer to a pool structure pool,
the number of pages n, a vector colors of acceptable colors, and a pointer to
a physical page structure ppages to store the result of the search. In case of
success, it returns (inside the structure) the number of pages n and the address
of the first page; otherwise, it sets the number of pages to 0.

3 We show below (in lemma arith_1 in Sect. 6.4) that (B) and (C) are equal.

8

The variable index contains the number offset of the current candidate page
(with respect to the base page of the pool). The search proceeds in two phases
performed by two iterations of the loop on lines 47–74. During the first phase
(i==0), it starts by searching the first page of an acceptable color from the
page with number offset last (cf. line 45). Recall that last stores the page that
follows the last page of the last pset found by the function. The intuition behind
this heuristic is that starting from the last page is on average more efficient than
starting always from the beginning of the pool, because after several allocations
the pages in the beginning of the pool will be more likely to be already allocated.
To be exhaustive, the second phase (i==1) starts from the beginning (line 71).

In each phase, the loop on lines 48–58 scans for free psets. It stops either when
it finds a free pset of size n of acceptable colors or when the current candidate
page runs outside the pool (cf. lines 46, 48).

To find such a pset, the function first searches for the first free page of an
acceptable color, as shown in the loop on lines 50–51. If the candidate page has
already been allocated (line 50), the function moves to the next candidate page
of an acceptable color (line 51). The loop continues until it finds a free page of
an acceptable color or the current candidate page runs outside the pool.

If the first page is within the pool and free, the loop on lines 53–56 verifies
that the next n-1 consecutive pages of acceptable colors are also within the
pool and free. As long as n suitable pages are not yet found, the loop condition
checks that the previously found page is free and belongs to the pool (line 53),
and the loop body identifies the following page of an acceptable color (line 55).
The number of already found pages is maintained in the counter allocated (cf.
lines 40, 49, 54).

The iteration of the loop on lines 48–58 stops when it has found n pages
(that is, a free pset is found) or when the candidate page is outside the pool or
allocated. If the candidate page is allocated, the search for a new pset restarts
just after the last candidate page, as shown on line 55. (The fixes for lines 57
and 71 are discussed in Sect. 5.)

If the function successfully finds n pages (line 59), it marks these pages as
allocated (loop on lines 62–65), updates the number of allocated pages to n

(line 60), sets the address of the first page in ppages (line 61), updates the
address of the last allocated page of the pool (line 66), and, finally, returns.

If the function does not find n pages, it returns with ppages containing zero
allocated pages, as set initially on line 44. The function always terminates and
examines all pages in the pool (at least in the second phase).

5 Bugs, Corrections and Further Optimizations

Bugs and fixes. The current version of pp_alloc_clr, contrary to its intended
behavior, does not guarantee that the returned set is indeed a free pset of n
pages in the pool. In some intricate cases, depending on the status of the pages,
the n-th page might be already in use or outside the pool. The first case may
break memory isolation, while the second case may cause the VM to crash.

9

The bugs reside in the selection of the first page of a candidate pset: the
function may choose a first page whose color is not acceptable. Indeed, the loop
calculating the first page (lines 50–51) only checks that the page is free, without
checking its color. This is sufficient for the very first execution or if the loop has
already been executed at least once, as a call to pp_next_clr (resp., on line 45
or 51)—to select the new candidate page—guarantees it has an acceptable color.

However, if the function fails to find a pset of size n, it wrongly starts a new
search from the page following the last candidate page (see line 57), whose color
may be unacceptable. Additionally, during the second phase, the function starts
searching from page index 0 (line 71), which might also have an unacceptable
color. In these two faulty cases, if the candidate page is free, it will be selected
as the first page of a tentative pset (lines 50–52).

To fix these bugs, we should ensure that the first page has an acceptable
color before entering the loop. We propose two bug fixes: we remove line 57 and
modify line 71 to index=pp_next_clr(pool->base, 0, colors);. These bugs
were discovered during the formal specification step, and the fixed version was
formally proved with Wp.

Counterexample. To illustrate the first bug, consider the mock pool of Fig. 2 on
which pp_alloc_clr is called to find a free pset of size 2 for the blue color with
pool->last==p0. The function will succeed and wrongly return (the address of
page) p4 in ppages->base as the first page of a pset. Recall (cf. Sect. 4.1) that
in higher-level functions the pages are assigned to a VM via consecutive calls
to pp_next_clr starting from the first page (like on lines 62–65). The VM will
receive pages p5 and p7, the latter being potentially already allocated to another
VM! This counterexample (along with another one, due to the second bug) was
formally confirmed in Frama-C with the static value analysis plugin Eva [33].
Eva was used to confirm the undesired situation (described with a few ACSL
annotations that were proved by Eva) to avoid any risk of misinterpretation of
the code. The counterexamples can be found in the companion artifact [27].

Suggestions of optimizations. It would be sufficient for the second phase in the
outer loop on lines 47–74 (cf. Sect. 4.5) to perform the search of the first pset page
until pool->last, instead of uselessly performing a full search until the end of
the pool (and re-exploring the pages tried in the first phase). This can be done,
for instance, by adding if (i==1 ∧ index ≥ pool->last) return ok; as a
second instruction in the body of the loop on lines 50–51. Another optimization
can be to perform direct jumps to the first page of the next color without enu-
merating all pages (as it is done on lines 26–27 in function pp_next_clr, very
frequently called). This can be realized e.g. with a precomputed array of jumps,
based on the number offset of the current page inside its periodic block of colors.
We plan to submit these and some other suggestions to Bao developers before
integrating them into the code under verification.

10

40 predicate ValidCacheCfg = 0 < COLOR_NUM ≤ 64 ∧ 0 < COLOR_SIZE < P_NB_MAX;
41 predicate IsValidPool(page_pool* pool) =
42 \valid(pool) ∧ 0 ≤ P_NB(pool->base) < P_NB_MAX ∧
43 0 ≤ pool->size < P_NB_MAX ∧ 0 ≤ pool->last ≤ pool->size ∧
44 0 ≤ P_NB(pool->base) + pool->size ≤ P_NB_MAX ∧
45 \valid(pool->bitmap + (0.. pool->size/CELL_SIZE)) ∧
46 \separated(pool ,&(pool->bitmap [0.. pool->size/CELL_SIZE]));
47 predicate flatPoolStatus(page_pool* pool) =
48 \valid read(pool) ∧ \valid read(pool->bitmap + (0.. pool->size/CELL_SIZE)) ∧
49 \valid read(& gPStatus[P_NB(pool->base)..(P_NB(pool->base)+ pool->size-1)]) ∧
50 ∀ Z idx; 0 ≤ idx < pool->size ⇒
51 (((pool->bitmap[idx/CELL_SIZE] >> (idx%CELL_SIZE)) & 1)⇐⇒
52 gPStatus[P_NB(pool->base) + idx]);
53 predicate flatClrs(u64 colors) = ∀ Z clr; 0 ≤ clr < 64 ⇒
54 (((colors >> clr) & 1) ⇐⇒ gFlatClrs[clr]);
55 predicate IsInClrs(Z clr) = gFlatClrs[clr] ̸= 0;
56 predicate IsNotInClrs(Z clr) = gFlatClrs[clr] == 0;
57 predicate HasClrPages{L1 ,L2}(u64* PArr , Z p_base , u64 n) =
58 \at(\valid read(PArr + (0.. n-1)),L2) ∧
59 ∀ Z i; 0 ≤ i < n ⇒ IsInClrs{L1}(P_CLR{L1}(p_base + \at(PArr[i],L2)));
60 predicate NoClrPBtw(Z p_base , Z start , Z end) =
61 ∀ Z index; start ≤ index < end ⇒ IsNotInClrs(P_CLR(p_base + index));
62 predicate HasSeqPages{L1 ,L2}(u64* PArr , Z p_base , u64 n) =
63 \at(\valid read(PArr + (0.. n-1)),L2) ∧
64 ∀ Z i; 1 ≤ i < n ⇒ \at(PArr[i-1],L2) < \at(PArr[i],L2) ∧
65 NoClrPBtw{L1}(p_base ,\at(PArr[i-1],L2)+1,\at(PArr[i],L2));
66 predicate HasPagesInPool{L1 ,L2}(u64* PArr , page_pool* pool , u64 n) =
67 \at(\valid read(PArr + (0.. n-1)),L2) ∧ \at(\valid read(pool),L1) ∧
68 ∀ Z i; 0 ≤ i < n ⇒ 0 ≤ \at(PArr[i],L2) < \at(pool->size ,L1);
69 predicate PSetInPool{L1,L2}(u64* PArr , page_pool* pool , u64 n, u64 colors) =
70 \at(\valid read(pool),L1) ∧ flatClrs{L1}(colors) ∧
71 HasPagesInPool{L1 ,L2}(PArr ,pool ,n) ∧
72 HasClrPages{L1 ,L2}(PArr ,P_NB(\at(pool->base ,L1)),n) ∧
73 HasSeqPages{L1 ,L2}(PArr ,P_NB(\at(pool->base ,L1)),n);
74 predicate HasFreePages{L1,L2}(u64* PArr , page_pool* pool , u64 n) =
75 \at(\valid read(PArr + (0.. n-1)),L2) ∧
76 ∀ Z i; 0 ≤ i < n ⇒ \at(gPStatus[P_NB(pool->base)+\at(PArr[i],L2)],L1) == 0;
77 predicate HasAllocPages(u64* PArr , page_pool* pool , u64 n) =
78 \valid read(PArr + (0.. n-1)) ∧
79 ∀ Z i; 0 ≤ i < n ⇒ gPStatus[P_NB(pool->base) + PArr[i]] ̸= 0;

Fig. 4. Predicates used in the specification of the cache coloring mechanism of Bao.

6 Verification of Cache Coloring

This section presents key specification and verification points and the results
of the case study. Its full annotated code can be found in the companion arti-
fact [27]. We mainly focus in the paper on the verification of the key functions
presented in Fig. 3. The specified and verified code also includes a simplified
version of two higher-level functions (pp_alloc_ppages and mem_map), which
were verified to get confidence in consistency of the proposed contracts for the
key functions with the expected behavior in the callers. For an easier navigation,
unless otherwise stated, the line numbers in the figures and text below are kept
as in the full annotated code.

6.1 Basic Predicates and Flattening Invariants

In this case study (cf. Fig. 3, lines 17, 22), we consider a 64-bit implementation
with 212-byte pages and a maximum number of pages of 252, which aligns with
the maximum number of pages supported by most 64-bit architectures. Addi-

11

tionally, we consider 64-bit long color vectors, which sets the maximal num-
ber of colors to 64 accordingly, and we do not impose any prior constraints on
COLOR_SIZE to ensure compatibility with a wide range of hardware configura-
tions, as specified in the definition of predicate ValidCacheCfg (Fig. 4, line 40).

Predicate IsValidPool (line 41) ensures that pool represents a valid segment
of memory, and that its bitmap is sufficiently large to store the status of its pages
and does not overlap with the pool structure. Macros P_NB and P_NB_MAX were
defined in Fig. 3, lines 21–22.

Earlier verification efforts with Frama-C (e.g. [23]) demonstrated that reason-
ing on array cells instead of bits makes solvers more efficient. We introduce a
global companion ghost array u8 gPStatus[P_NB_MAX] to store page allocation
statuses, and express the equivalence between a bitmap and the companion ar-
ray with predicate flatPoolStatus (Fig. 4, line 47). It guarantees that checking
the i-th bit in the bitmap is equivalent to checking the i-th cell in gPStatus. A
starting letter g (e.g. in gPStatus) indicates a ghost variable name in this work.

Similarly, we introduce a global companion ghost array u8 gFlatClrs[64]

to flatten the color vector (unchanged in our scope4), and express the equiva-
lence between a color vector and the companion array with predicate flatClrs
(line 53), i.e. that checking the i-th bit in color vector clrs is equivalent to
checking the i-th cell in gFlatClrs. Maintaining such flattening invariants in
contracts enables expressing properties on array cells instead of bits.

Predicates IsInClrs and IsNotInClrs (lines 55, 56) state that color clr is,
resp., acceptable and unacceptable w.r.t. the color vector encoded in gFlatClrs.

Predicate HasClrPages (line 57) states that array PArr of size n contains page
number offsets (with respect to the base page p_base) of pages with acceptable
colors. Labels L1 and L2 characterize, resp., the moment of calculation of the
color and of reading the cell in PArr. Such a distinction of labels will often be
used in predicates below. Logic function P_CLR(PNum) computes the color of a
given page as in (A) in Sect. 4.2. Predicate NoClrPBtw (line 60) states that there
is no page of an acceptable color with number offset between start and end

(excluded) with respect to p_base.

Predicate HasSeqPages (line 62) ensures that page number offsets stored in
array PArr of size n are in ascending order, and any other page between them
does not have an acceptable color. Predicate HasPagesInPool (line 66) states
that page number offsets stored in array PArr of size n are within the memory
pool pointed to by pool.

Predicate PSetInPool (line 69) states that the page number offsets stored in
array PArr of size n are within the memory pool pointed to by pool, consecutive
and of an acceptable color. In other words, array PArr is a pset of size n for
colors inside pool.

Predicate HasFreePages (line 74) states that pages with page number offsets
stored in array PArr of size n are free according to gPStatus. Likewise, predicate
HasAllocPages (line 77) states that those pages are allocated.

4 this is not a limitation for larger scopes: such arrays can be ghost function arguments.

12

144 requires ValidCacheCfg;
145 requires 0 ≤ from < P_NB_MAX;
146 requires flatClrs(colors);
147 requires \valid read(gFlatClrs + (0..63));
148 requires 0 ≤ gClrValid < COLOR_NUM ∧ IsInClrs(gClrValid);
149 terminates \true;
150 assigns \nothing;
151 ensures flatClrs(colors);
152 ensures clr: IsInClrs(P_CLR(P_NB(base) + \result));
153 ensures cons: NoClrPBtw(P_NB(base),from ,\result);
154 ensures bnd: from ≤ \result < from + COLOR_NUM*COLOR_SIZE;

Fig. 5. Contract of pp_next_clr.

In order to verify the code with the deductive verification plugin Wp of
Frama-C, we provide an ACSL specification for each of the considered functions.
We overview here the contracts of pp_next_clr and pp_alloc_clr.

6.2 Specification of pp_next_clr

Preconditions. Given the scope of our verification, we bound the range of the
page number offset from between 0 and 252 (excluded), assuming there can be a
single memory pool supporting up to 252 pages (Fig. 5, line 145). We did not need
to impose specific constraints on the address base since we are considering 12-bit
wide pages and 52-bit wide page numbers, so the address is naturally bounded by
its type. Predicate ValidCacheCfg (line 144) specifies the considered arithmetic
constraints. The equivalence between the color vector and the companion array
must hold before and after the call (lines 146, 151). Finally, recall that callers
ensure that the color vector accepts at least one color (cf. Sect. 4.3). To guarantee
termination, we express this constraint on line 148, where the existential property
is replaced by a witness—a global ghost variable gClrValid—since this value
will be used in ghost code inside the function. We preferred this (simple and
sufficient) option for our scope to the alternative when a witness has to be found
inside the function from an existential precondition.

Postconditions. We express that the function always terminates (line 149) and
does not modify the memory (line 150). Finally, we express the functional prop-
erties. The returned page has an acceptable color (line 152) and is the closest
page with this property to from, the starting page of the search (line 153);
Line 154 gives an interval of values for the result, a maximum offset being the
size of a color block (line 154). This upper bound is tight5 and suffices to prove
the absence of overflows during the update of index.

6.3 Specification of pp_alloc_clr

Preconditions. The preconditions (omitted in the paper) are relatively natural
and mostly similar to those of pp_next_clr. An interval of values is specified
for the number of allocated pages n, and the validity of ppages is required. The
validity of pool and flattening invariants are present both in preconditions and
postconditions (the latter on lines 259–261 in Fig. 6).

5 this upper bound is reached for COLOR SIZE==1.

13

258 ensures res: \result == 0 ∨ \result == 1;
259 ensures fltc: flatClrs(colors);
260 ensures vldp: IsValidPool(pool);
261 ensures fltp: flatPoolStatus(pool);

264 ensures suc: PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
265 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ⇒ \result == 1;
266 ensures wit1: \result == 1 ⇒
267 PSetInPool{Pre,Post}((u64*) gFoundPSet ,pool ,n,colors);
268 ensures wit2: \result == 1 ⇒
269 HasFreePages{Pre,Post}((u64*) gFoundPSet ,pool ,n);
270 ensures fct1: \result == 1 ⇒
271 PSetInPool{Post,Post}((u64*) gFoundPSet ,pool ,n,colors);
272 ensures fct2: \result == 1 ⇒ HasAllocPages ((u64*)gFoundPSet ,pool ,n);
273 ensures pps: \result == 1 ⇒ ppages->num_pages == n ∧
274 ppages->base == pool->base + (gFoundPSet [0]* P_SIZE);

279 ensures ppf: \result == 0 ⇒ ppages->num_pages == 0;
280 ensures ups: \result == 0 ⇒ ∀ Z i; 0 ≤ i < P_NB_MAX ⇒
281 \at(gPStatus[i],Pre) == \at(gPStatus[i],Post);
282 ensures upp: \result == 0 ⇒ \at(pool ,Pre) == \at(pool ,Post) ∧
283 \at(*pool ,Pre) == \at(*pool ,Post);

Fig. 6. Selected postconditions of the contract of pp_alloc_clr.

Additionally, we had to add a dozen of explicit separation clauses (omitted
in the paper) between the arguments and the ghost variables. Some of these
separation predicates are likely to become unnecessary in a future version of
Frama-C/Wp that will be capable to deduce that the modification of ghost vari-
ables cannot impact non-ghost variables, and vice versa.

Postconditions. At the end of the function, there are two possible return values,
0 and 1 (line 258). Other notable postconditions fall into two categories: those
for the success case and those for the failure case.

Predicates that hold on success (when the function returns 1) must ensure
that subsequent calls in the callers (cf. Sect. 4.1) to pp_next_clr starting from
the first allocated page—the only page returned in ppages—will really return
pages of a required pset in the pool (whose pages were free before the call and
then marked as allocated by the function). Since ACSL does not allow using the C
function pp_next_clr in the specification, we used predicates over the selected
pages. We capture these pages by their number offsets (with respect to the start-
ing page of the pool) in a global ghost array u64 gFoundPSet[P_NB_MAX], by
adding ghost code into the function. It is another illustration of an advantageous
usage of ghost code artifacts for the specificaiton.

Precisely, we state that n pages in gFoundPSet were free before the call
(lines 268–269) and are now allocated (line 272); and constitute a pset of size n
for colors (line 270–271). Moreover the ppages structure must contain n pages
and store the page address corresponding to the first cell of the gFoundPSet

(line 273–274).

In case of a failure, the function returns 0 (line 279), it has not modified the
page status array (lines 280–281) nor the pool (line 282–283).

14

Specification completeness. The completeness and disjointness of the two cases of
the specification was non-trivial to ensure because of the complexity of the calling
cases: either there exists a suitable subset of pages—free pset—on entry, or not.
As the size of the subset depends on an argument of the function, the conditions
involve an undetermined number of pages. Expressing such properties with an
undetermined number of quantifiers is not directly allowed in ACSL and would
only be possible indirectly (e.g. with a list, an array, or a set). However, since
solvers often have issues with complex conditions involving multiple quantifiers,
we decided to adopt another, more pragmatic approach.

We decided to represent the existence of a suitable subset of pages through
the existence of a witness array containing the number offsets of the pages.
Thus, we stated the existence case assumption by giving a witness pset in a
global companion ghost array u64 gExistPSet[P_NB_MAX], see lines 264–265.
This establishes that the function returns 1 in this case. But this unique impli-
cation is not sufficient: the function could still return 0 while a suitable free pset
existed on entry.

That is why we added another clause (lines 266–267) stating that the com-
panion ghost array gFoundPSet mentioned above—with its values on exit—was
a suitable pset (of size n with acceptable colors inside pool) already on entry.
Along with lines 268–269, we deduce a condition similar to that on the left of
the implication on lines 264–265.

Recall that the first label indicates when the property is evaluated while
the second label indicates at which state the array values are read. Notice that,
while the aforementioned clause on lines 270–271 looks similar, strictly speaking,
it does not directly state the same property as on lines 266–267, since it considers
the property at label Post instead of Pre (the values of gFoundPSet being, of
course, considered at Post in both cases as it is computed during the function).

Therefore, we can deduce that the function returns 1 if and only if a suitable
subset of pages existed on entry, before the call. As the function can only return
0 or 1 (line 258), our specification of both cases is complete and disjoint.

We did not use ACSL behaviors because Frama-C would not be capable to
prove that behaviors are complete and disjoint for this version of specification.
That is why we justify it here with an additional argument, external to Frama-C.

6.4 Selected Aspects and Difficulties of the Proof

The proof required carefully chosen predicates, ghost code and ghost variables,
loop invariants, assertions and lemmas. The predicates, ghost variables and our
approach to ensure the completeness of the specification of pp_alloc_clr were
presented above. A companion ghost model and flattening invariants helped to
efficiently deal with bit-level operations. This section presents some other selected
aspects and verification choices.

Termination of pp_next_clr. To prove termination, we compute (in ghost code)
an upper bound for the number offset index using the witness color gClrValid.
We distinguish two cases of relative position of the starting page in its periodic

15

337 loop invariant I3_ex:
338 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
339 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
340 i == 1 ∧ allocated < n ⇒ index ≤ gExistPSet [0];

371 loop invariant I1_ex:
372 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
373 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
374 i == 1 ∧ allocated < n ∧ gExistPSet [0] ≤ index ⇒
375 (∃ Z i; 0 ≤ i ≤ allocated ∧ gExistPSet[i] == index);

Fig. 7. Loop invariants for the loops on lines 48–58 (above) and lines 53–56 (below) of
pp_alloc_clr (in Fig. 3), used to prove the success when a pset exists on entry.

120 lemma arith_1: ∀ Z a,b,c,d; 0 ≤ a ∧ 0 ≤ b ∧ 0 < c ∧ 0 < d ⇒
121 ((a+b)/c)%d == ((a+b%(c*d))/c)%d;

Fig. 8. One of the four arithmetic lemmas used in the proof of pp_next_clr.

color block: either its color lies before the existing acceptable color gClrValid
or after it in (in the latter case, the upper bound is in the next color block).

Proof of pp_alloc_clr. With three levels of nested loops, a significant number
of carefully chosen loop invariants was necessary. For instance, to prove that the
function finds a pset in case there exists a suitable pset in the pool (lines 264–
265), we have to ensure that if such a pset exists in the pool, then it is located
in the part of the pool the function has not explored so far. Thus, if the function
fails to find such a pset after going through the entire pool, then the existing
pset must be located outside the memory, which is contradictory. Due to the
structure of the function, we express this property in the main loop and then
recursively in the nested loops to have it preserved. Figure 7 shows the invariants
for two of them. We constrain only the second phase since it runs—in the current
version—a full search from the beginning of the pool, that explains the condition
i==1. The second invariant is relatively tricky. Indeed, the loop on lines 53–56
in Fig. 3—that attempts to complete a previously identified first page to a full
pset—may possibly find the witness pset pExistPSet or another existing pset
starting before it. To address this, we adjust the loop invariant by stating that
we did not miss the witness pset pExistPSet: if the current candidate page is
greater or equal to the first page of pExistPSet, then it lies inside it (line 375).

Arithmetic lemmas. As page colors are computed with modulo and division op-
erations, reasoning about them involves such arithmetic operations. The solvers
we used were unable to handle them directly. To address this issue, we introduced
four arithmetic lemmas, and had to prove three of them in Coq (see the com-
panion artifact [27] for Coq proof scripts). One lemma, proving the equivalence
of (B) and (C) (see Sect. 4.3), is shown in Fig. 8.

Separation issues and Frama-C’s memory model. The need for additional sep-
aration clauses (in particular, between ghost and non-ghost variables) was al-
ready mentioned in Sect. 6.3. In many parts of the code, we also encountered

16

difficulties in proving the preservation of seemingly trivial properties through as-
signments. These difficulties stem from the memory model used in Frama-C/Wp,
where pointers are treated as indices within arrays, where cells correspond to the
pointed values. Consequently, properties involving pointers in ACSL are trans-
lated into properties over arrays in Wp. When a pointed value is modified, the
whole array is seen as possibly modified, making proofs non-trivial for solvers.
To prove such properties, we often had to manually create proof scripts in Wp
to demonstrate that the pointed values used in predicates remain unchanged
through assignments. This process introduced a significant specification and ver-
ification overhead making the verification process more complex to maintain.

Semantic lemmas. To show the preservation of the PSetInPool predicate be-
tween two program points despite the modification of some variables, a preser-
vation lemma was necessary (lemma PSetInPool_preserved in the companion
artifact [27]). While the idea is well-known, a very careful formulation with four
labels was necessary since each predicate has two labels. Moreover, its proof
required a manually crafted proof script in Wp with carefully selected tactics.

Function pp_next_clr must ensure that the pages of the found free pset
eventually become allocated. This task is handled in the loop on lines 62–65
in Fig. 3, which iterates through the found page indices and marks them as
allocated. However, the function moves to the next page of the pset by calculating
it through a call to pp_next_clr. To ensure that the function gets the same page
indices as that of the free pset found earlier, another interesting lemma (lemma
unique_next_clr_page in the companion artifact [27]) was necessary.

Linked lists. During the verification of higher-level function pp_alloc_ppages,
which looks for a free pset of a given size in a set of pools represented by a linked
list of pools (as mentioned in Sect. 4.2), an additional difficulty was related to
linked lists. Indeed, contrary to simple linked lists, in our case list nodes contain
several data fields and pointers to external arrays. Broadly inspired by previous
work [15,36,16], this issue was solved using a companion ghost array containing
the addresses of the nodes of the linked list and by defining and maintaining
a suitable linking predicate, which establishes the link between them. Detailed
specifications are available in the companion artifact [27].

Unstable proof scripts in Wp. During the last stages of the case study, we dis-
covered an issue in Frama-C/Wp related to proof scripts. A created script, which
leads to a successful proof at the time of its creation, fails with error messages
during the proof replay. Presumably, this comes from a different degree of proof
goal simplifications during the script creation and the proof replay, resulting in
slight differences in the proof goal. This issue has been reported to the Wp team.

6.5 Proof Statistics

This verification case study took approximately three months of intensive work,
including understanding the implementation, formal specification, verification,
detecting and fixing the bugs, readability improvements and restructuring of the

17

specification for the paper. Formal verification was, initially, carried out on the
four key functions: pp_next_clr, bitmap_get, bitmap_set and pp_alloc_clr.
To ensure the relevance of the proposed contracts, formal specification and ver-
ification for simplified versions of two upper-level functions, mem_alloc_ppages
and mem_map, were realized as well, focusing on the mapping of colored pages
(and excluding other behavior e.g. when cache coloring is deactivated). The for-
mer one searches for a pset in a linked list of pools, while the latter calls the
former to assign a pset of pages to a VM. They are not detailed in the paper,
but the annotated code is available in the companion artifact [27]. The claim
that formal verification is complete can be demonstrated with the artifact.

The specified functions total, approximately, 100 lines of C code and 600
lines of ACSL. ACSL annotations include ghost code (20 lines), predicates (100
lines), contracts (455 lines), assertions (30 lines), and lemmas (25 lines).

The proof goals include function contracts, assertions, lemmas, the absence
of run-time errors, smoke tests (to detect potential specification inconsistencies),
and memory hypotheses made by Wp’s typed memory model; they result in 463
proof goals and 60 extra goals for smoke tests; that is, 523 in total.

The proof was carried out with Frama-C v.29.0 and Why3 1.7.2, with the
external solvers Alt-Ergo 2.5.4, CVC5 1.0.9 and Z3 4.8.12 (run in that order),
and the proof assistant Coq 8.18.0. The proofs were run on a desktop computer
running Ubuntu 22.04.5 LTS, with an Intel® Core™ i5-1145G7 CPU @ 2.60
GHz, featuring 4 cores 8 threads, with 32 GB RAM. We ran Frama-C/Wp with
options -wp-par=8 and -wp-timeout=40.

The full proof takes approx. 5 minutes. All smoke tests passed. Over the 523
goals6, around 1% (6) were discharged by control-flow analysis; around 83% of
the goals (433) were proved by automatic solvers: the internal simplifier engine
Qed of Wp handled around 53% of the goals (277) in an average time of 146ms
per goal, then Alt-Ergo discharged around 28% of the goals (147) in an average
time of 110ms, CVC5 covered around 5% of the goals (26) in an average time
of 725ms, Z3 proved 2% of the goals (9) in an average time of 1.4s. Around
11% of the goals (55) were achieved through proof scripts in Wp, while less than
1% of the goals (3) were proved in Coq. At the end of the case study, when
the authors were used to proof contexts, the scripts in Wp required around 5
hours to be fully re-created manually, which was often necessary after code and
specification updates. The proof scripts in Coq required a couple of hours to be
created manually (and did not need to be re-created after the first attempt).

7 Conclusion and Future Work

Related work. A number of hypervisors are in use today. Some are used in IT
infrastructures (e.g cloud) for their flexibility and dynamic resource management
such as Xen [6], VMWare [4] or KVM [3]. Others are better suited to critical

6 The per-solver results are given as an indication of a possible proof run, can vary and
should not be used to compare solvers or draw any conclusions about their relative
efficiency; our purpose was to reach a full proof and not to compare the solvers.

18

embedded systems such as Xen Dom0-less [5], Jailhouse [2] or Xtratum [7]. In
this case, it is the static resource sharing property that is exploited. The use
of hypervisors in critical embedded systems requires a high level of confidence
in resource allocation, and particularly in maintaining isolation between VMs.
Formal verification has been applied to provide high confidence in some resource
allocation systems, such as ProvenCore [17] ans seL4 [32]. To the best of our
knowledge, formal verification of cache coloring has never been addressed in
previous work.

More generally, this work is related to other verification case studies on real-
life code and empirical evaluations of verification tools [29]. Among other exam-
ples, the KeY tool was used for verification of several libraries and applications
in Java [22,12]. Verification of a traffic tunnel control system [38] was realized
with VerCors [8]. Verification for a real-world avionics example [25] and for se-
curity properties [23] provided useful feedback on using Frama-C. SPARK was
used in the verification of a TCP Stack [19] and complex datastructures [26].
Verification of the Hyper-V hypervisor with VCC [34] highlighted some issues
specific to hypervisor verification. Deductive verification of smart contracts [18]
was realized with Dafny [35]. Several case studies [39] were performed using
VeriFast [30]. Each new case study contributes to enhance verification tools by
identifying their limitations and to push further the frontiers of what is achiev-
able for formal verification.

Conclusion. This paper has presented a formal verification case study for an
original, industrially relevant and security-critical target—the cache coloring in
Bao. We have given its pedagogical presentation and emphasized main aspects
of its verification with Frama-C. The target code is very elegant but challenging
for deductive verification (containing bit-level operations, non-trivial logic, com-
plex arithmetic operations, multiple nested loops, linked lists). This case study
contributes to a better understanding of the capacities of modern deductive veri-
fiers. It also allowed us to identify and fix two bugs in the target code, to suggest
its further optimizations, and to discover a minor issue in the verification tool.

Future work. Future work includes the verification of optimized versions of cache
coloring and a larger verification of critical parts of the Bao hypervisor, with a
long-term goal to reach a highly optimized, provably correct static hypervisor
ensuring strong isolation properties and suitable for modern embedded systems.
Another work direction is to enhance automatic proof script generation [21].

Data availability statement. The companion artifact [27] contains the annotated
code, counterexamples and a virtual machine (with all necessary tools installed),
ready to reproduce the proof.

Acknowledgment. Part of this work was supported by ANR (grants ANR-22-
CE39-0014, ANR-22-CE25-0018). We warmly thank Téo Bernier for his valu-
able advice and help, Allan Blanchard, Löıc Correnson and Frédéric Loulergue
for fruitful discussions, the whole Frama-C team for their support, and the anony-
mous referees for helpful comments.

19

References

1. Bao project, https://github.com/bao-project/bao-hypervisor

2. Jailhouse hypervisor, https://github.com/siemens/jailhouse

3. KVM hypervisor, https://linux-kvm.org/page/Main_Page

4. VmWare hypervisor, https://www.vmware.com

5. Xen Dom0-less hypervisor, https://xenproject.org/2019/12/16/

true-static-partitioning-with-xen-dom0-less/

6. Xen project, https://xenproject.org

7. XtratuM hypervisor, https://www.fentiss.com/xtratum/

8. Armborst, L., Bos, P., van den Haak, L.B., Huisman, M., Rubbens, R., Sakar, Ö.,
Tasche, P.: The VerCors verifier: A progress report. In: Proc. of the 36th Interna-
tional Conference on Computer Aided Verification (CAV 2024). LNCS, vol. 14682,
pp. 3–18. Springer (2024). https://doi.org/10.1007/978-3-031-65630-9_1

9. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Proc. of the 28th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2022).
LNCS, vol. 13243, pp. 415–442. Springer (2022). https://doi.org/10.1007/

978-3-030-99524-9_24

10. Baudin, P., Bobot, F., Bühler, D., Correnson, L., Kirchner, F., Kosmatov, N.,
Maroneze, A., Perrelle, V., Prevosto, V., Signoles, J., Williams, N.: The dogged
pursuit of bug-free C programs: the Frama-C software analysis platform. Commun.
ACM 64(8), 56–68 (2021). https://doi.org/10.1145/3470569

11. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

12. Beckert, B., Sanders, P., Ulbrich, M., Wiesler, J., Witt, S.: Formally verify-
ing an efficient sorter. In: Proc. of the 30th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2024).
LNCS, vol. 14570, pp. 268–287. Springer (2024). https://doi.org/10.1007/

978-3-031-57246-3_15

13. Bertot, Y., Castéran, P. (eds.): Interactive Theorem Proving and Program Devel-
opment: Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series, Springer (2004)

14. Bjørner, N.S.: Z3 and SMT in industrial R&D. In: Proc. of the 22nd Interna-
tional Symposium on Formal Methods (FM 2018). LNCS, vol. 10951, pp. 675–678.
Springer (2018). https://doi.org/10.1007/978-3-319-95582-7_44

15. Blanchard, A., Kosmatov, N., Loulergue, F.: Ghosts for lists: A critical module of
Contiki verified in Frama-C. In: Proc. of the 10th NASA Formal Methods Sympo-
sium (NFM 2018). LNCS, vol. 10811, pp. 37–53. Springer (2018)

16. Blanchard, A., Kosmatov, N., Loulergue, F.: Logic against ghosts: Comparison of
two proof approaches for a list module. In: Proc. of the 34th Annual ACM/SI-
GAPP Symposium on Applied Computing, Software Verification and Testing
Track (SAC-SVT 2019). pp. 2186–2195. ACM (2019). https://doi.org/10.1145/
3297280.3297495

17. Bolignano, P.: Formal models and verification of memory management in a hy-
pervisor. Ph.D. thesis, Université de Rennes ; Prove & Run (May 2017), https:
//theses.hal.science/tel-01637937

20

https://github.com/bao-project/bao-hypervisor
https://github.com/siemens/jailhouse
https://linux-kvm.org/page/Main_Page
https://www.vmware.com
https://xenproject.org/2019/12/16/true-static-partitioning-with-xen-dom0-less/
https://xenproject.org/2019/12/16/true-static-partitioning-with-xen-dom0-less/
https://xenproject.org
https://www.fentiss.com/xtratum/
https://doi.org/10.1007/978-3-031-65630-9_1
https://doi.org/10.1007/978-3-031-65630-9_1
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569
http://frama-c.com/acsl.html
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-319-95582-7_44
https://doi.org/10.1007/978-3-319-95582-7_44
https://doi.org/10.1145/3297280.3297495
https://doi.org/10.1145/3297280.3297495
https://doi.org/10.1145/3297280.3297495
https://doi.org/10.1145/3297280.3297495
https://theses.hal.science/tel-01637937
https://theses.hal.science/tel-01637937

18. Cassez, F., Fuller, J., Quiles, H.M.A.: Deductive verification of smart contracts
with Dafny. In: Proc. of the 27th International Conference on Formal Methods for
Industrial Critical Systems (FMICS 2022). LNCS, vol. 13487, pp. 50–66. Springer
(2022). https://doi.org/10.1007/978-3-031-15008-1_5

19. Cluzel, G., Georgiou, K., Moy, Y., Zeller, C.: Layered formal verification of a TCP
stack. In: Proc. of the IEEE Secure Development Conference (SecDev 2021). pp.
86–93. IEEE (2021). https://doi.org/10.1109/SecDev51306.2021.00028

20. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In:
SMT Workshop: International Workshop on Satisfiability Modulo Theories (2018),
https://hal.inria.fr/hal-01960203

21. Correnson, L., Blanchard, A., Djoudi, A., Kosmatov, N.: Automate where automa-
tion fails: Proof strategies for Frama-C/WP. In: Proc. of the 30th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2024), Held as Part of the European Joint Conferences on Theory and
Practice of Software (ETAPS 2024). LNCS, vol. 14570, pp. 331–339. Springer (Apr
2024). https://doi.org/10.1007/978-3-031-57246-3_18

22. de Boer, M., de Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal
specification and verification of JDK’s identity hash map implementation. Formal
Aspects Comput. 35(3), 18:1–18:26 (2023). https://doi.org/10.1145/3594729

23. Djoudi, A., Hána, M., Kosmatov, N.: Formal Verification of a JavaCard Virtual
Machine with Frama-C. In: Proc. of the 24th International Symposium on Formal
Methods (FM 2021). LNCS, vol. 13047, pp. 427–444. Springer (2021). https://
doi.org/10.1007/978-3-030-90870-6_23

24. Djoudi, A., Hána, M., Kosmatov, N., Kř́ıženecký, M., Ohayon, F., Mouy, P.,
Fontaine, A., Féliot, D.: A bottom-up formal verification approach for common
criteria certification: Application to JavaCard virtual machine. In: Proc. of the
11th European Congress on Embedded Real-Time Systems (ERTS 2022) (Jun
2022)

25. Dordowsky, F.: An experimental study using ACSL and Frama-C to formulate and
verify low-level requirements from a DO-178C compliant avionics project. Elec-
tronic Proceedings in Theoretical Computer Science 187, 28–41 (2015). https:
//doi.org/10.4204/EPTCS.187.3

26. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Proc. of
the 9th International Symposium on NASA Formal Methods (NFM 2017). LNCS,
vol. 10227, pp. 68–83 (2017). https://doi.org/10.1007/978-3-319-57288-8_5

27. Ferréol, A., Corbin, L., Kosmatov, N.: Prove your colorings: Formal verification of
cache coloring of Bao hypervisor. Companion artifact for the paper submitted to
FASE 2025 (2025). https://doi.org/10.5281/zenodo.14616331

28. Filliâtre, J.C., Paskevich, A.: Why3 - where programs meet provers. In: Proc. of
the 22nd European Symposium on Programming (ESOP 2013). LNCS, vol. 7792,
pp. 125–128. Springer (2013)

29. Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper
proofs to industrial tools. In: Computing and Software Science – State of the Art
and Perspectives, LNCS, vol. 10000, pp. 345–373. Springer (2019). https://doi.
org/10.1007/978-3-319-91908-9_18

30. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens,
F.: VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In:
Proc. of the Third International Symposium on NASA Formal Methods (NFM
2011). LNCS, vol. 6617, pp. 41–55. Springer (2011). https://doi.org/10.1007/
978-3-642-20398-5_4

21

https://doi.org/10.1007/978-3-031-15008-1_5
https://doi.org/10.1007/978-3-031-15008-1_5
https://doi.org/10.1109/SecDev51306.2021.00028
https://doi.org/10.1109/SecDev51306.2021.00028
https://hal.inria.fr/hal-01960203
https://doi.org/10.1007/978-3-031-57246-3_18
https://doi.org/10.1007/978-3-031-57246-3_18
https://doi.org/10.1145/3594729
https://doi.org/10.1145/3594729
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.1007/978-3-030-90870-6_23
https://doi.org/10.4204/EPTCS.187.3
https://doi.org/10.4204/EPTCS.187.3
https://doi.org/10.4204/EPTCS.187.3
https://doi.org/10.4204/EPTCS.187.3
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.5281/zenodo.14616331
https://doi.org/10.5281/zenodo.14616331
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

31. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: A software analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an OS kernel. In: Proc. of the 22nd ACM
Symposium on Operating Systems Principles (SOSP 2009). pp. 207–220. ACM
(2009). https://doi.org/10.1145/1629575.1629596

33. Kosmatov, N., Prevosto, V., Signoles, J. (eds.): Guide to Software Verification
with Frama-C. Core Components, Usages, and Applications. Computer Science
Foundations and Applied Logic Book Series, Springer (2024). https://doi.org/
10.1007/978-3-031-55608-1

34. Leinenbach, D., Santen, T.: Verifying the microsoft Hyper-V hypervisor with
VCC. In: Proc. of the Second World Congres on Formal Methods (FM 2009).
LNCS, vol. 5850, pp. 806–809. Springer (2009). https://doi.org/10.1007/

978-3-642-05089-3_51

35. Leino, K.R.M.: Program Proofs. The MIT Press (2023)
36. Loulergue, F., Blanchard, A., Kosmatov, N.: Ghosts for lists: from axiomatic to

executable specifications. In: Proc. of the 12th International Conference on Tests
and Proofs (TAP 2018). LNCS, vol. 10889, pp. 177–184. Springer (2018). https:
//doi.org/10.1007/978-3-319-92994-1_11

37. Martins, J., Tavares, A., Solieri, M., Bertogna, M., Pinto, S.: Bao: A lightweight
static partitioning hypervisor for modern multi-core embedded systems. In: Work-
shop on Next Generation Real-Time Embedded Systems (NG-RES 2020). Open
Access Series in Informatics (OASIcs), vol. 77, pp. 3:1–3:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/OASIcs.

NG-RES.2020.3

38. Oortwijn, W., Huisman, M.: Formal verification of an industrial safety-critical
traffic tunnel control system. In: Proc. of the 15th International Conference on
Integrated Formal Methods (IFM 2019). LNCS, vol. 11918, pp. 418–436. Springer
(2019). https://doi.org/10.1007/978-3-030-34968-4_23

39. Philippaerts, P., Mühlberg, J., Penninckx, W., Smans, J., Jacobs, B., Piessens, F.:
Software verification with VeriFast: Industrial case studies. Sci. Comput. Program.
82, 77–97 (2014). https://doi.org/10.1016/J.SCICO.2013.01.006

40. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr,

22

https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-031-55608-1
https://doi.org/10.1007/978-3-031-55608-1
https://doi.org/10.1007/978-3-031-55608-1
https://doi.org/10.1007/978-3-031-55608-1
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-319-92994-1_11
https://doi.org/10.1007/978-3-319-92994-1_11
https://doi.org/10.1007/978-3-319-92994-1_11
https://doi.org/10.1007/978-3-319-92994-1_11
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1007/978-3-030-34968-4_23
https://doi.org/10.1016/J.SCICO.2013.01.006
https://doi.org/10.1016/J.SCICO.2013.01.006
http://coq.inria.fr

A Appendix: Supplementary Material

The appendix includes two counterexamples—each one highlighting one cause
of faulty page allocation, as well as the specified version of the target code (in-
cluding the corrected version of the key functions presented in Fig. 3 and two
simplified higher-level functions), and some additional explanations.

The specified code and counterexamples were proved with the following ver-
sions of tools and provers:

– Frama-C v29.0
– Why3 1.7.2
– Alt-Ergo 2.4.5
– CVC5 1.0.9
– Z3 4.8.12
– Coq 8.18.0

The proofs were run on a desktop computer running Ubuntu 22.04.5 LTS,
with an Intel® Core™ i5-1145G7 CPU @ 2.60 GHz, featuring 4 cores 8 threads,
with 32 GB RAM.

A.1 Counterexample 1, Confirmed with Eva

This section details the faulty execution of pp_alloc_clr caused by the buggy
instruction index = 0; (on line 71 in Fig. 3) and provides a proof of its incorrect
result. The proof relies on Frama-C/Eva, a value analysis plugin of Frama-C,
which validates the provided ACSL assertions, as shown in Fig. 11. The claim
that the assertions of this example are proved with Eva can be demonstrated with
the artifact [27].

The pool layout is described in Fig. 9, where letters A,. . . ,G refer to various
pages or steps. The pool is made of 8 pages {p0, . . . , p7}, the field last is equal
to 7, it points to p7, the highest page of the pool (see A). The memory pages
are colored with alternate yellow and blue colors. The first page of the pool (p0)
is yellow. The first 2 pages (p0, p1) of the pool are free, the others are allocated.
The function pp_alloc_clr is called to find a free pset of 2 blue pages in that
pool.

During the execution, the function first sets index to 7 (corresponding to
page p7) on line 45 (see B), as p7 is a blue page. Then, in the first phase of
the search (i==0 in the loop on line 47), the function starts searching for the
free first page of the pset with index equal to 7. As p7 is not free, the loop
(line 51) increments index and calls pp_netx_clr on it to update its value,
leading to index being outside the pool. This causes the first phase to end.
Prior to the second phase, index is set to 0 (corresponding to p0) though the
buggy instruction on line 71 (see C).

In the second phase (i==1 in the loop on line 47), the function starts search-
ing from index set to 0. As p0 is free, it satisfies the loop conditions (on line 50),

23

Page p7
Page p6
Page p5
Page p4
Page p3
Page p2

D
F

Page p1
Page p0

1

1
1

1
1
1

0
0

1 allocated page0 free page

D: calculation of the second page

C: index, at the beginning of the second pass

E,G: call to pp_next_clr to retrieve the pages
of the pset in higher functions

B

A: pool->last, at the beginning of the function

F: index, after increment

G

C

A

B: index, at the beginning of the first pass

E

Fig. 9. Example of a pool of memory pages resulting in a wrong allocation of a free
pset of 2 blue pages. In that example, the pool is made of 8 pages {p0, . . . , p7},
pool->last points to p7, COLOR_SIZE is equal to 1 and COLOR_NUM is equal to 2.

so index is not updated and, p0 is considered as the first page of the pset. Ad-
ditionally, index also satisfies the loop conditions (on line 53). Consequently,
allocated is incremented to 1 and index is incremented to 1 and then updated
by a call to pp_next_clr; which sets index to 1 (see D), as the corresponding
page p1 is blue. Additionally, p1 is free so it satisfies the loop conditions. In con-
sequence, allocated is incremented to 2, successfully completing the allocation.

The function, then, exits the loop on line 48, setting ppages->base to
pool->base + p0*P_SIZE.

However, when upper-level functions attempt to retrieve the pages of the
pset, they will, first, call pp_next_clr on page p0, returning page p1 (see E) and
then on page p2—after increment (see F)—returning page p3 (see G). At this
point, page p3 may have already been allocated, possibly to the same
VM or another VM accepting the blue color!

The concrete counterexample in Fig. 11 reproduces this scenario exactly.
The blue color is encoded by color number 1, and, the pool’s base is set to
0 for simplicity. Accordingly, for all integer i within the pool’s range, page pi
corresponds to page number i. We use Eva with option -eva-slevel=4, which

24

Page p7
Page p6

H

G
Page p5 E FPage p4

DPage p3
Page p2

C

B
Page p1
Page p0

0

0
1

0
0
1

0
0

1 allocated page0 free page

C,E: loop calculating the second page

D: buggy increment of index

F,H: call to pp_next_clr to retrieve the
pages of the pset in higher functions

A

A: pool->last on entry, index at the
beginning of the first pass

B,G: increment of index

Fig. 10. Example of a pool of memory pages resulting in a wrong allocation of a free
pset of 2 blue pages. In that example, the pool is made of 8 pages {p0, . . . , p7},
pool->last points to p1, COLOR_SIZE is equal to 1 and COLOR_NUM is equal to 2.

basically considers four additional abstract states in parallel and thus performs
semantic loop unfolding for a better precision of the analysis, which allows Eva
to realize a sound analysis for this example.

A.2 Counterexample 2, Confirmed with Eva

This section details the faulty execution of pp_alloc_clr mentioned in Sec. 5,
caused by the buggy instruction index++; (on line 57 in Fig. 3) and provides a
proof of its incorrect result. The proof relies on Frama-C/Eva, a value analysis
plugin of Frama-C, which validates the provided ACSL assertions, as shown in
Fig. 12. The claim that the assertions of this example are proved with Eva can
be demonstrated with the artifact [27].

The pool layout described in Fig. 10, where letters A,. . . ,H refer to various
pages or steps. The pool is made of 8 pages {p0, . . . , p7}, the field last is equal to
1, it points to p1, the first page of the pool (see A). The memory pages are colored
with alternate blue and yellow colors. The first page of the pool (p0) is yellow.

25

Pages p3 and p7 are allocated, the others are free. The function pp_alloc_clr

is called to find a free pset of 2 blue pages in that pool.
During the execution of pp_alloc_clr, the function first sets index equal

to 1 (corresponding to page p1) on line 45 (see A), as p1 is a blue page. Then, in
the first phase of the search (i==0 in the loop on line 47), the function starts
searching for the first free page of the pset with index equal to 1 (in loop line 50).
As p1 is free, it suits for the first page, and the loops stops.

Then the function searches for a second blue page in the loop on line 53. As
p1 satisfies the loop condition, it increments index to 2 (see B) and updates
index with a call to pp_next_clr, which sets index to 3 (see C). Unfortunately,
this page is not free, so the loop stops, and the function increments index to 4

through the buggy instruction on line 57 (see D).
At this point, the function resumes searching from index set to 4, corre-

sponding to page p4. As this page is free, it satisfies the conditions of the loop
(on line 50) leaving index unchanged, and page p4 is considered as the first page
of the candidate pset. Additionally, as index also satisfies the loop conditions
(on line 53), allocated is incremented to 1 and index is incremented to 5 and
updated by a call pp_next_clr, which sets index to 5 (see E), as page p5 is blue.
Again page p5 satisfies the loop conditions and allocated can be incremented
to 2, completing the allocation successfully.

The function then exits the loop on line 48, setting ppages->base to
pool->base + p4*P_SIZE.

However, when higher functions attempt to retrieve the pages of the pset,
they will, first, call pp_next_clr on page p4, returning page p5 (see F) and then
on page p6—after increment (see G)—returning page p7 (see H). At this point,
page p7 may have already been allocated, possibly to the same VM or
another VM accepting the blue color!!

The concrete counterexample in Fig. 12 reproduces this scenario exactly.
The blue color is encoded by color number 1, and, the pool’s base is set to
0 for simplicity. Accordingly, for all integer i within the pool’s range, page pi
corresponds to page number i.

In a slightly modified version of this example, where pool->size equals to 6,
after the same steps, the same page p7 would lie outside the considered
pool, and would be assigned to a VM, while this page can be non-
existing, or belong to the hypervisor or be already allocated to the
same or another VM.

A.3 Complete corrected and verified code

Figures 13–23 give the complete version of the corrected, annotated and fully
proved version of the Bao’s cache coloring code, whose key functions are dis-
played in Fig. 3. The command used to run the proof is given at the end of the
file.

Disclaimer: The proof results can vary depending on available resources
(RAM, number of cores, timeout, etc.). This variation is expected. If the re-

26

sources are insufficient and the proof is incomplete, the reader can update the
command to increase the timeout (option -wp-timeout) and/or reduce the num-
ber of processes run in parallel (option -wp-par) and/or try on another machine
with more RAM.

The next sections give additional explanations of the contracts for the two
key functions presented in the paper, whose contracts were not detailed in the
paper (as relatively straightforward and for lack of space).

A.4 Specification of bitmap_get

In the code, the function bitmap_get is always called with the map parameter
equal to pool->bitmap for a certain pool. To enhance the scope of the speci-
fication and ensure that the function’s behavior remains consistent within the
broader context of memory, we added a pointer to the associated pool as a ghost
argument, see line 211.

Preconditions. Before expressing properties with the pool ghost argument, we
ensured that pool points to an existing and consistent pool of memory (line 201).
Additionally, we ensure that the bitmap of pool is equivalent to its companion
model (line 202). Finally, we bound the map parameter to the bitmap of pool
(line 203) and constrain bit to ensure it fits within the pool’s pages (line 204).

Postconditions. We express that the function always terminates (line 205) and
does not modify memory locations (line 206). We ensure that the pool remains
consistent after the function call (line 207) and maintains the equivalence with
the companion model (line 208). This enables us to express that the function’s re-
sult corresponds to the status of the page in the companion ghost array (line 209).

A.5 Specification of bitmap_set

Preconditions. The preconditions are similar to those of bitmap_get.

Postconditions. The preconditions are almost similar to those of bitmap_get.
The difference is that, except for the page represented by bit, which must be
marked as allocated (line 225), the status of all other pages remains unchanged
(line 226).

27

1 #include "bao_cache_coloring.c"
2 #define NULL ((void *)0)
3 /*@
4 logic Z P_CLR(Z page_num) = (page_num / COLOR_SIZE) % COLOR_NUM;
5 */
6 void main() {
7 COLOR_NUM = 2; // Blue and yellow pages
8 COLOR_SIZE = 1;
9 u64 colors = 0b10; // Search for blue pages

10 u32 bit_map [1];
11 page_pool pool = {
12 .node = NULL ,
13 .base = 0,
14 .size = 8,
15 .last = 7,
16 .bitmap = &bit_map
17 };
18 pool.bitmap [0] = 0b11111100;
19 ppages pp;
20

21 // Pool layout
22 /*
23 -----------------------------------
24 | Page | Page Nb | Status | Color |
25 -----------------------------------
26 | p7 | 7 | Alloc. | 1 | <-- pool.last
27 | p6 | 6 | Alloc. | 0 |
28 | p5 | 5 | Alloc. | 1 |
29 | p4 | 4 | Alloc. | 0 |
30 | p3 | 3 | Alloc. | 1 |
31 | p2 | 2 | Alloc. | 0 |
32 | p1 | 1 | Free | 1 |
33 | p0 | 0 | Free | 0 |
34 -----------------------------------
35 */
36

37 // Status of page p1 before allocation: Free
38 u32 p1_status = bitmap_get(pool.bitmap ,1);
39 //@ assert p1_status == 0;
40

41 // Status of page p3 before allocation: Allocated
42 u32 p3_status = bitmap_get(pool.bitmap ,3);
43 //@ assert p3_status == 1;
44

45 // Allocate a pset of 2 pages of color 1
46 // The first page is p0
47 u8 res = pp_alloc_clr (&pool , 2, colors , &pp);
48 //@ assert res == 1;
49 //@ assert pp.num_pages == 2;
50 //@ assert P_NB(pp.base) == 0;
51

52 // First call to pp_next_clr over the pset
53 // It retruns the offset corresponding to page p1
54 u64 p_offset_call_1 = pp_next_clr(pp.base , 0, colors);
55 //@assert P_NB(pp.base) + p_offset_call_1 == 1;
56

57 // Second call to pp_next_clr over the pset
58 // It retruns the offset corresponding to page p3
59 // However p3 had already been allocated !
60 u64 p_offset_call_2 = pp_next_clr(pp.base , ++ p_offset_call_1 , colors);
61 //@assert P_NB(pp.base) + p_offset_call_2 == 3;
62

63 return;
64 }
65

66 // To run:
67 // frama-c -eva -eva-slevel =4 counterexample_1.c

Fig. 11. Counterexample illustrating a faulty allocation due to the execution of the
buggy instruction on line 71 in Fig. 3.

28

1 #include "bao_cache_coloring.c"
2 #define NULL ((void *)0)
3 /*@
4 logic Z P_CLR(Z page_num) = (page_num / COLOR_SIZE) % COLOR_NUM;
5 */
6 void main() {
7 COLOR_NUM = 2; // Blue and yellow pages
8 COLOR_SIZE = 1;
9 u64 colors = 0b10; // Search for blue pages

10 u32 bit_map [1];
11 page_pool pool = {
12 .node = NULL ,
13 .base = 0,
14 .size = 8,
15 .last = 1,
16 .bitmap = &bit_map
17 };
18 pool.bitmap [0] = 0b10001001;
19 ppages pp;
20

21 // Pool layout
22 /*
23 -----------------------------------
24 | Page | Page Nb | Status | Color |
25 -----------------------------------
26 | p7 | 7 | Alloc. | 1 |
27 | p6 | 6 | Free | 0 |
28 | p5 | 5 | Free | 1 |
29 | p4 | 4 | Free | 0 |
30 | p3 | 3 | Alloc. | 1 |
31 | p2 | 2 | Free | 0 |
32 | p1 | 1 | Free | 1 | <-- pool.last
33 | p0 | 0 | Alloc. | 0 |
34 -----------------------------------
35 */
36

37 // Status of page p5 before allocation: Free
38 u32 p5_status = bitmap_get(pool.bitmap ,5);
39 //@ assert p5_status == 0;
40

41 // Status of page p7 before allocation: Allocated
42 u32 p7_status = bitmap_get(pool.bitmap ,7);
43 //@ assert p7_status == 1;
44

45 // Allocate a pset of 2 pages of color 1
46 // The first page is p4
47 u8 res = pp_alloc_clr (&pool , 2, colors , &pp);
48 //@ assert res == 1;
49 //@ assert pp.num_pages == 2;
50 //@ assert P_NB(pp.base) == 4;
51

52 // First call to pp_next_clr over the pset
53 // It retruns the offset corresponding to page p5
54 u64 p_offset_call_1 = pp_next_clr(pp.base , 0, colors);
55 //@assert P_NB(pp.base) + p_offset_call_1 == 5;
56

57 // Second call to pp_next_clr over the pset
58 // It retruns the offset corresponding to page p7
59 // However p7 had already been allocated !
60 u64 p_offset_call_2 = pp_next_clr(pp.base , ++ p_offset_call_1 , colors);
61 //@assert P_NB(pp.base) + p_offset_call_2 == 7;
62

63 return;
64 }
65

66 // To run:
67 // frama-c -eva -eva-slevel =4 counterexample_2.c

Fig. 12. Counterexample illustrating a faulty allocation due to the execution of the
buggy instruction on line 57 in Fig. 3.

29

1 #include <limits.h>
2 typedef unsigned char u8;
3 typedef unsigned int u32;
4 typedef unsigned long u64;
5 typedef struct page_pool {
6 struct page_pool *node;
7 u64 base;
8 u64 size;
9 u64 last;

10 u32 *bitmap;
11 } page_pool;
12 typedef struct {
13 u64 base;
14 u64 num_pages;
15 u64 colors;
16 } ppages;
17 #define P_SIZE (0 x1000)
18 #define CELL_SIZE (sizeof(u32) * 8)

19 u64 COLOR_NUM;
20 u64 COLOR_SIZE;
21 #define P_NB(addr) ((addr)/P_SIZE)
22 #define P_NB_MAX (1UL << 52)
23 #define PL_NB_MAX (100)
24 #define NULL ((void *)0)
25 page_pool *page_pool_list;
26 /*@ ghost
27 u64 gClrValid;
28 u64 gExistPool;
29 u64 gFoundPool;
30 u8 gFlatClrs [64];
31 u8 gPStatus[P_NB_MAX];
32 u64 gFoundPSet[P_NB_MAX];
33 u64 gExistPSet[P_NB_MAX];
34 u64 gPageTable[P_NB_MAX];
35 page_pool* gPools[PL_NB_MAX];
36 */

37 /*@
38 logic Z P_CLR(Z page_num) = (page_num / COLOR_SIZE) % COLOR_NUM;
39

40 predicate ValidCacheCfg = 0 < COLOR_NUM ≤ 64 ∧ 0 < COLOR_SIZE < P_NB_MAX;
41 predicate IsValidPool(page_pool* pool) =
42 \valid(pool) ∧ 0 ≤ P_NB(pool->base) < P_NB_MAX ∧
43 0 ≤ pool->size < P_NB_MAX ∧ 0 ≤ pool->last ≤ pool->size ∧
44 0 ≤ P_NB(pool->base) + pool->size ≤ P_NB_MAX ∧
45 \valid(pool->bitmap + (0.. pool->size/CELL_SIZE)) ∧
46 \separated(pool ,&(pool->bitmap [0.. pool->size/CELL_SIZE]));
47 predicate flatPoolStatus(page_pool* pool) =
48 \valid read(pool) ∧ \valid read(pool->bitmap + (0.. pool->size/CELL_SIZE)) ∧
49 \valid read(& gPStatus[P_NB(pool->base)..(P_NB(pool->base)+pool->size-1)]) ∧
50 ∀ Z idx; 0 ≤ idx < pool->size ⇒
51 (((pool->bitmap[idx/CELL_SIZE] >> (idx%CELL_SIZE)) & 1)⇐⇒
52 gPStatus[P_NB(pool->base) + idx]);
53 predicate flatClrs(u64 colors) = ∀ Z clr; 0 ≤ clr < 64 ⇒
54 (((colors >> clr) & 1) ⇐⇒ gFlatClrs[clr]);
55 predicate IsInClrs(Z clr) = gFlatClrs[clr] ̸= 0;
56 predicate IsNotInClrs(Z clr) = gFlatClrs[clr] == 0;
57 predicate HasClrPages{L1 ,L2}(u64* PArr , Z p_base , u64 n) =
58 \at(\valid read(PArr + (0.. n-1)),L2) ∧
59 ∀ Z i; 0 ≤ i < n ⇒ IsInClrs{L1}(P_CLR{L1}(p_base + \at(PArr[i],L2)));
60 predicate NoClrPBtw(Z p_base , Z start , Z end) =
61 ∀ Z index; start ≤ index < end ⇒ IsNotInClrs(P_CLR(p_base + index));
62 predicate HasSeqPages{L1 ,L2}(u64* PArr , Z p_base , u64 n) =
63 \at(\valid read(PArr + (0.. n-1)),L2) ∧
64 ∀ Z i; 1 ≤ i < n ⇒ \at(PArr[i-1],L2) < \at(PArr[i],L2) ∧
65 NoClrPBtw{L1}(p_base ,\at(PArr[i-1],L2)+1,\at(PArr[i],L2));
66 predicate HasPagesInPool{L1 ,L2}(u64* PArr , page_pool* pool , u64 n) =
67 \at(\valid read(PArr + (0.. n-1)),L2) ∧ \at(\valid read(pool),L1) ∧
68 ∀ Z i; 0 ≤ i < n ⇒ 0 ≤ \at(PArr[i],L2) < \at(pool->size ,L1);
69 predicate PSetInPool{L1,L2}(u64* PArr , page_pool* pool , u64 n, u64 colors) =
70 \at(\valid read(pool),L1) ∧ flatClrs{L1}(colors) ∧
71 HasPagesInPool{L1 ,L2}(PArr ,pool ,n) ∧
72 HasClrPages{L1 ,L2}(PArr ,P_NB(\at(pool->base ,L1)),n) ∧
73 HasSeqPages{L1 ,L2}(PArr ,P_NB(\at(pool->base ,L1)),n);
74 predicate HasFreePages{L1,L2}(u64* PArr , page_pool* pool , u64 n) =
75 \at(\valid read(PArr + (0.. n-1)),L2) ∧
76 ∀ Z i; 0 ≤ i < n ⇒ \at(gPStatus[P_NB(pool->base)+\at(PArr[i],L2)],L1) == 0;
77 predicate HasAllocPages(u64* PArr , page_pool* pool , u64 n) =
78 \valid read(PArr + (0.. n-1)) ∧
79 ∀ Z i; 0 ≤ i < n ⇒ gPStatus[P_NB(pool->base) + PArr[i]] ̸= 0;

Fig. 13. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 1/11.

30

80 predicate IsHeadOfPoolList(page_pool * pool) =
81 gPools [0] == pool ∧ gPools[PL_NB_MAX-1] == NULL ∧
82 (∀ Z i; 0≤i<PL_NB_MAX-1 ⇒\valid(gPools[i]) ∧ gPools[i]->node==gPools[i+1])∧
83 (∀ Z i, j; 0 ≤ i < PL_NB_MAX ∧ 0 ≤ j < PL_NB_MAX ∧ i ̸= j ⇒
84 \separated(gPools[i],gPools[j])) ∧
85 (∀ Z i,j; 0 ≤ i < PL_NB_MAX -1 ∧ 0 ≤ j < PL_NB_MAX -1 ∧ i ̸= j ⇒
86 \separated(&(gPools[i]->bitmap)[0.. gPools[i]->size/CELL_SIZE],

&(gPools[j]->bitmap)[0.. gPools[j]->size/CELL_SIZE]) ∧
87 (P_NB(gPools[i]->base) + gPools[i]->size ≤ P_NB(gPools[j]->base) ∨
88 P_NB(gPools[j]->base) + gPools[j]->size ≤ P_NB(gPools[i]->base))) ∧
89 (∀ Z i,j; 0 ≤ i < PL_NB_MAX -1 ∧ 0 ≤ j < PL_NB_MAX -1 ⇒
90 \separated(&(gPools[i]->bitmap)[0.. gPools[i]->size/CELL_SIZE],gPools[j]))∧
91 (∀ Z i; 0 ≤ i < PL_NB_MAX -1 ⇒
92 \separated(gPools[i], &gExistPSet [0..(P_NB_MAX -1)]) ∧
93 \separated(gPools[i], &gFoundPSet [0..(P_NB_MAX -1)]) ∧
94 \separated(gPools[i], &gPageTable [0..(P_NB_MAX -1)])) ∧
95 (∀ Z i; 0 ≤ i < PL_NB_MAX -1 ⇒
96 \separated(&(gPools[i]->bitmap)[0.. gPools[i]->size/CELL_SIZE],

&gExistPSet [0..(P_NB_MAX -1)]) ∧
97 \separated(&(gPools[i]->bitmap)[0.. gPools[i]->size/CELL_SIZE],

&gFoundPSet [0..(P_NB_MAX -1)]) ∧
98 \separated(&(gPools[i]->bitmap)[0.. gPools[i]->size/CELL_SIZE],

&gPageTable [0..(P_NB_MAX -1)])) ∧
99 (∀ Z i; 0 ≤ i < PL_NB_MAX -1 ⇒

100 IsValidPool(gPools[i]) ∧ flatPoolStatus(gPools[i]));
101 predicate uPools{L1,L2} =
102 \at(gPools ,L1) == \at(gPools ,L2) ∧
103 \at(gPools[PL_NB_MAX-1],L1) == \at(gPools[PL_NB_MAX-1],L2) ∧
104 ∀ Z i; 0 ≤ i < PL_NB_MAX-1 ⇒ \at(gPools[i],L1) == \at(gPools[i],L2) ∧
105 (∀ Z bit; 0 ≤ bit < \at(gPools[i]->size/CELL_SIZE ,L1) ⇒
106 \at(gPools[i]->bitmap[bit],L1) == \at(gPools[i]->bitmap[bit],L2));
107 predicate uPStatus{L1,L2} =
108 \at(gPStatus ,L1) == \at(gPStatus ,L2) ∧
109 (∀ Z i; 0 ≤ i < P_NB_MAX ⇒ \at(gPStatus[i],L1) == \at(gPStatus[i],L2));
110 predicate uExistPSet{L1,L2} =
111 \at(gExistPSet ,L1) == \at(gExistPSet ,L2) ∧
112 (∀ Z i; 0 ≤ i < P_NB_MAX ⇒ \at(gExistPSet[i],L1) == \at(gExistPSet[i],L2));
113 predicate uPageTable{L1,L2} =
114 \at(gPageTable ,L1) == \at(gPageTable ,L2) ∧
115 (∀ Z i; 0 ≤ i < P_NB_MAX ⇒ \at(gPageTable[i],L1) == \at(gPageTable[i],L2));
116 predicate IsMappedTo(u64 vp , u64* PArr , page_pool* pool , u64 n) =
117 ∀ Z i; 0 ≤ i < n ⇒ gPageTable[vp+i] == P_NB(pool->base) + PArr[i];
118 */
119 /*@
120 lemma arith_1: ∀ Z a,b,c,d; 0 ≤ a ∧ 0 ≤ b ∧ 0 < c ∧ 0 < d ⇒
121 ((a+b)/c)%d == ((a+b%(c*d))/c)%d;
122 lemma arith_2: ∀ Z a,b,c,d; 0 ≤ a ∧ 0 ≤ b ∧ 0 < c ∧ 0 < d ∧ (a/c)%d ≤ b ⇒
123 ((a+c*(b-(a/c)%d))/c)%d == b%d;
124 lemma arith_3: ∀ Z a,b,c,d; 0 ≤ a ∧ 0 ≤ b ∧ 0 < c ∧ 0 < d ⇒
125 ((a+c*(d+b-(a/c)%d))/c)%d == b%d;
126 lemma arith_4: ∀ Z a, b, c; 0 ≤ a ∧ 0 < b ∧ 0 < c ⇒ 0 ≤ (a/b)%c < c;
127 lemma unique_next_clr_page: ∀ Z p_base , from , r1 , r2;
128 NoClrPBtw(p_base ,from ,r1) ∧ from≤r1 ∧ NoClrPBtw(p_base ,from ,r2) ∧ from≤r2 ∧
129 IsInClrs(P_CLR(p_base+r1)) ∧ IsInClrs(P_CLR(p_base+r2)) ⇒ r1 == r2;

Fig. 14. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 2/11.

31

130 lemma PSetInPool_preserved{L1,L2 ,L3,L4}:
131 ∀ page_pool* pool , u64 allocated , u64 colors , u64* PArr;
132 PSetInPool{L1,L3}(PArr ,pool ,allocated ,colors) ∧
133 \at(\valid read(pool),L2) ∧ \at(pool ,L1) == \at(pool ,L2) ∧
134 \at(pool->base ,L1) == \at(pool->base ,L2) ∧
135 \at(pool->size ,L1) == \at(pool->size ,L2) ∧
136 flatClrs{L2}(colors) ∧ \at(COLOR_SIZE ,L1) == \at(COLOR_SIZE ,L2) ∧
137 \at(COLOR_NUM ,L1) == \at(COLOR_NUM ,L2) ∧
138 0 < \at(COLOR_SIZE ,L1) ∧ 0 < \at(COLOR_NUM ,L1) ≤ 64 ∧
139 \at(\valid read(PArr + (0.. allocated-1)),L4) ∧
140 (∀ Z i; 0 ≤ i < allocated ⇒ \at(PArr[i],L3) == \at(PArr[i],L4)) ⇒
141 PSetInPool{L2,L4}(PArr ,pool ,allocated ,colors);
142 */
143 /*@
144 requires ValidCacheCfg;
145 requires 0 ≤ from < P_NB_MAX;
146 requires flatClrs(colors);
147 requires \valid read(gFlatClrs + (0..63));
148 requires 0 ≤ gClrValid < COLOR_NUM ∧ IsInClrs(gClrValid);
149 terminates \true;
150 assigns \nothing;
151 ensures flatClrs(colors);
152 ensures clr: IsInClrs(P_CLR(P_NB(base) + \result));
153 ensures cons: NoClrPBtw(P_NB(base),from ,\result);
154 ensures bnd: from ≤ \result < from + COLOR_NUM*COLOR_SIZE;
155 */
156 u64 pp_next_clr(u64 base , u64 from , u64 colors){
157 u64 clr_offset = (base / P_SIZE) % (COLOR_NUM * COLOR_SIZE);
158 u64 index = from;
159 /*@ ghost
160 u64 gBasePageNum = (base / P_SIZE);
161 u64 gFromPageNum = gBasePageNum + from;
162 u64 gFromClr = (gFromPageNum / COLOR_SIZE) % COLOR_NUM;
163 u64 gIndexMax;
164 i f (gFromClr ≤ gClrValid){
165 gIndexMax = index + (gClrValid - gFromClr) * COLOR_SIZE;
166 //@ assert aif: 0≤(gClrValid-gFromClr)*COLOR_SIZE<COLOR_NUM*COLOR_SIZE;
167 //@ assert aif: index ≤ gIndexMax < index + COLOR_NUM * COLOR_SIZE;
168 /@ assert aif: ∀ Z x,c,d,e; 0 ≤ x ∧ 0 < d ∧ 0 < e ∧ 0 ≤ c ∧ (x/d)%e ≤ c ⇒
169 ((x+d*(c-(x/d)%e))/d)%e == c%e;
170 @/
171 //@ assert aif: P_CLR(gBasePageNum + gIndexMax) == gClrValid;
172 }
173 else {
174 gIndexMax = index + (COLOR_NUM + gClrValid - gFromClr) * COLOR_SIZE;
175 /@ assert aelse:
176 0 ≤ (COLOR_NUM-(gFromClr-gClrValid))*COLOR_SIZE < COLOR_NUM*COLOR_SIZE;
177 @/
178 //@ assert aelse: index ≤ gIndexMax < index + COLOR_NUM * COLOR_SIZE;
179 /@ assert aelse: ∀ Z x,c,d,e; 0 ≤ x ∧ 0 < d ∧ 0 < e ∧ 0 ≤ c ⇒
180 ((x+d*(e+ c-(x/d)%e))/d)%e == c%e;
181 @/
182 //@ assert aelse: P_CLR(gBasePageNum + gIndexMax) == gClrValid;
183 }
184 */
185 //@ assert clrim1: P_CLR(gBasePageNum + gIndexMax) == gClrValid;
186 //@ assert clrim2: P_CLR(clr_offset + gIndexMax) == gClrValid;
187 //@ assert frame: index ≤ gIndexMax < index + COLOR_NUM * COLOR_SIZE;
188 /*@
189 loop invariant Icons:
190 ∀ Z i; from ≤ i < index ⇒ IsNotInClrs(P_CLR(P_NB(base) + i));
191 loop invariant Ibnd: from ≤ index ≤ gIndexMax;

Fig. 15. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 3/11.

32

192 loop assigns A: index;
193 loop variant V: gIndexMax - index;
194 */
195 while (!((colors >> ((index + clr_offset) / COLOR_SIZE % COLOR_NUM)) & 1))
196 index ++;
197 return index;
198 }
199

200 /*@
201 requires IsValidPool(pool);
202 requires flatPoolStatus(pool);
203 requires map == pool->bitmap;
204 requires 0 ≤ bit < pool->size;
205 terminates \true;
206 assigns \nothing;
207 ensures IsValidPool(pool);
208 ensures flatPoolStatus(pool);
209 ensures \result ⇐⇒ gPStatus[P_NB(pool->base) + bit];
210 */
211 u32 bitmap_get(u32*map , u64 bit) /*@ ghost (page_pool * pool) */{
212 return (map[bit / CELL_SIZE] & (1U << (bit % CELL_SIZE))) ? 1U : 0U;
213 }
214

215 /*@
216 requires IsValidPool(pool);
217 requires flatPoolStatus(pool);
218 requires map == pool->bitmap;
219 requires 0 ≤ bit < pool->size;
220 terminates \true;
221 assigns map[bit/ CELL_SIZE];
222 assigns gPStatus[P_NB(pool->base) + bit];
223 ensures IsValidPool(pool);
224 ensures flatPoolStatus(pool);
225 ensures gPStatus[P_NB(pool->base) + bit] ̸= 0;
226 ensures cps: ∀ Z pNb; 0 ≤ pNb < P_NB_MAX ∧ pNb ̸= P_NB(pool->base) + bit ⇒
227 \at(gPStatus[pNb],Pre) == \at(gPStatus[pNb],Post);
228 */
229 void bitmap_set(u32*map , u64 bit) /*@ ghost (page_pool * pool) */{
230 map[bit / CELL_SIZE] |= 1U << (bit % CELL_SIZE);
231 //@ ghost gPStatus[P_NB(pool->base) + bit] = 1;
232 }
233

234 /*@
235 requires ValidCacheCfg;
236 requires \valid read(gFlatClrs + (0..63)) ∧ flatClrs(colors);
237 requires 0 ≤ gClrValid < COLOR_NUM ∧ IsInClrs(gClrValid);
238 requires IsValidPool(pool) ∧ flatPoolStatus(pool);
239 requires 0 < n < P_NB_MAX;
240 requires \separated(pool , ppages);
241 requires \separated(pool , &gFlatClrs [0..63]);
242 requires \separated(pool , &gFoundPSet [0..(P_NB_MAX-1)]);
243 requires \separated(pool , &gExistPSet [0..(P_NB_MAX-1)]);
244 requires \separated(pool , &gPStatus [0..(P_NB_MAX-1)]);
245 requires \separated(ppages , &gFlatClrs [0..63]);
246 requires \separated(ppages , &gFoundPSet [0..(P_NB_MAX-1)]);
247 requires \separated(ppages , &gExistPSet [0..(P_NB_MAX-1)]);
248 requires \separated(ppages , &gPStatus [0..(P_NB_MAX-1)]);
249 requires \separated(& gFoundPSet [0..(P_NB_MAX-1)], &gFlatClrs [0..63]);
250 requires \separated(&(pool->bitmap [0.. pool->size/CELL_SIZE]),
251 &gFoundPSet [0..(P_NB_MAX-1)]);
252 requires \valid(ppages);
253 terminates \true;
254 assigns A: *ppages , gFoundPSet [0..(n-1)];
255 assigns A: pool->last , pool->bitmap [0.. pool->size/CELL_SIZE];
256 assigns A: gPStatus[P_NB(pool->base)..(P_NB(pool->base) + pool->size - 1)];

Fig. 16. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 4/11.

33

257 // ALWAYS
258 ensures res: \result == 0 ∨ \result == 1;
259 ensures fltc: flatClrs(colors);
260 ensures vldp: IsValidPool(pool);
261 ensures fltp: flatPoolStatus(pool);
262 ensures ppclr: ppages->colors == colors;
263 // ON SUCCESS
264 ensures suc: PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
265 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ⇒ \result == 1;
266 ensures wit1: \result == 1 ⇒
267 PSetInPool{Pre,Post}((u64*) gFoundPSet ,pool ,n,colors);
268 ensures wit2: \result == 1 ⇒
269 HasFreePages{Pre,Post}((u64*) gFoundPSet ,pool ,n);
270 ensures fct1: \result == 1 ⇒
271 PSetInPool{Post,Post}((u64*) gFoundPSet ,pool ,n,colors);
272 ensures fct2: \result == 1 ⇒ HasAllocPages ((u64*)gFoundPSet ,pool ,n);
273 ensures pps: \result == 1 ⇒ ppages->num_pages == n ∧
274 ppages->base == pool->base + (gFoundPSet [0]* P_SIZE);
275 ensures pss: \result == 1 ⇒ ∀ Z pNb; 0 ≤ pNb < P_NB_MAX ⇒
276 (∀ Z i; 0 ≤ i < n ⇒ pNb ̸= P_NB(pool->base) + gFoundPSet[i]) ⇒
277 \at(gPStatus[pNb],Pre) == gPStatus[pNb];
278 // ON FAILURE
279 ensures ppf: \result == 0 ⇒ ppages->num_pages == 0;
280 ensures ups: \result == 0 ⇒ ∀ Z i; 0 ≤ i < P_NB_MAX ⇒
281 \at(gPStatus[i],Pre) == \at(gPStatus[i],Post);
282 ensures upp: \result == 0 ⇒ \at(pool ,Pre) == \at(pool ,Post) ∧
283 \at(*pool ,Pre) == \at(*pool ,Post);
284 ensures ubm: \result == 0 ⇒ ∀ Z i; 0 ≤ i ≤ pool->size/CELL_SIZE ⇒
285 \at(pool->bitmap[i],Pre) == pool->bitmap[i];
286 */
287 u8 pp_alloc_clr(page_pool *pool , u64 n, u64 colors , ppages *ppages){
288 u64 allocated = 0;
289 u64 first_index = 0;
290 u8 ok = 0;
291 ppages->colors = colors;
292 ppages->num_pages = 0;
293 //@ ghost u64 gIndex;
294 u64 index = pp_next_clr(pool->base , pool->last , colors);
295 u64 top = pool->size;
296 /*@
297 loop invariant I4_idx_clr: IsInClrs(P_CLR(P_NB(pool->base) + index));
298 loop invariant I4_PSetInPool:
299 PSetInPool{Pre,Here}((u64*) gFoundPSet ,pool ,allocated ,colors);
300 loop invariant I4_FP:
301 HasFreePages{Pre,Here}((u64*) gFoundPSet ,pool ,allocated);
302 loop invariant I4_flatPS: flatPoolStatus(pool);
303 loop invariant I4_flatClrs: flatClrs(colors);
304 loop invariant I4_VP: IsValidPool(pool);
305 loop invariant I4_pp: 0 < allocated ⇒ gFoundPSet [0] == first_index;
306 loop invariant I4_pp_num_pages: ppages->num_pages == 0;
307 loop invariant I4_pp_clr: ppages->colors == colors;
308 loop invariant I4_ok: ok == 0;
309 loop invariant I4_ex_i1:
310 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
311 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
312 i == 1 ⇒ index ≤ gExistPSet [0];
313 loop invariant I4_ex_i2:
314 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
315 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
316 i == 2 ⇒ gIndex ≤ gExistPSet [0];
317 loop invariant I4_i: 0 ≤ i ≤ 2;
318 loop invariant I4_top : i == 2 ⇒ top ≤ gIndex;
319 loop invariant I4_allocated: 0 ≤ allocated ≤ n;

Fig. 17. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 5/11.

34

320 loop assigns A4: i, allocated , index , first_index;
321 loop assigns A4: gIndex , gFoundPSet [0..(n-1)];
322 loop variant V4: 2 - i;
323 */
324 for (u64 i = 0; i < 2 ∧ !ok; i++){
325 /*@
326 loop invariant I3_idx_clr: IsInClrs(P_CLR(P_NB(pool->base) + index));
327 loop invariant I3_PSetInPool:
328 PSetInPool{Pre,Here}((u64*) gFoundPSet ,pool ,allocated ,colors);
329 loop invariant I3_FP:
330 HasFreePages{Pre,Here}((u64*) gFoundPSet ,pool ,allocated);
331 loop invariant I3_flatPS: flatPoolStatus(pool);
332 loop invariant I3_pp: 0 < allocated ⇒ gFoundPSet [0] == first_index;
333 loop invariant I3_allocated: 0 ≤ allocated ≤ n;
334 loop invariant I3_ex:
335 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
336 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
337 i == 1 ∧ allocated < n ⇒ index ≤ gExistPSet [0];
338 loop assigns A3: allocated , index , first_index , gFoundPSet [0..(n-1)];
339 loop variant V3: top - index;
340 */
341 while ((allocated < n) ∧ (index < top)){
342 allocated = 0;
343 /*@
344 loop invariant I2_idx_clr: IsInClrs(P_CLR(P_NB(pool->base) + index));
345 loop invariant I2_VP: IsValidPool(pool);
346 loop invariant I2_ex:
347 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
348 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
349 i == 1 ⇒ index ≤ gExistPSet [0];
350 loop invariant I2_dec: \at(index ,LoopEntry) ≤ index ∧ allocated < n;
351 loop assigns A2: index;
352 loop variant V2: top - index;
353 */
354 while ((index<top)∧(bitmap_get(pool->bitmap ,index)/*@ ghost (pool)*/))
355 index = pp_next_clr(pool->base , ++index , colors);
356 first_index = index;
357 /*@
358 loop invariant I1_flatPS: flatPoolStatus(pool);
359 loop invariant I1_PSetInPool:
360 PSetInPool{Pre,Here}((u64*) gFoundPSet ,pool ,allocated ,colors);
361 loop invariant I1_FP:
362 HasFreePages{Pre,Here}((u64*) gFoundPSet ,pool ,allocated);
363 loop invariant I1_idx_clr: IsInClrs(P_CLR(P_NB(pool->base) + index));
364 loop invariant I1_VP: IsValidPool(pool);
365 loop invariant I1_flatClrs: flatClrs(colors);
366 loop invariant I1_idx_NoClrPagesBtw: 0 < allocated ⇒
367 NoClrPBtw(P_NB(pool->base),gFoundPSet[allocated-1]+1, index) ∧
368 gFoundPSet[allocated-1] < index;
369 loop invariant I1_idx_0: 0 == allocated ⇒ index == first_index;
370 loop invariant I1_fst_idx: 0 < allocated ⇒ gFoundPSet [0]==first_index;
371 loop invariant I1_ex:
372 PSetInPool{Pre,Pre}((u64*) gExistPSet ,pool ,n,colors) ∧
373 HasFreePages{Pre,Pre}((u64*) gExistPSet ,pool ,n) ∧
374 i == 1 ∧ allocated < n ∧ gExistPSet [0] ≤ index ⇒
375 (∃ Z i; 0 ≤ i ≤ allocated ∧ gExistPSet[i] == index);
376 loop invariant I1_allocated: 0 ≤ allocated ≤ n;
377 loop invariant I1_idx_inc: \at(index ,LoopEntry) ≤ index;
378 loop invariant I1_idx_inc_s: 0<allocated ⇒ \at(index ,LoopEntry)<index;
379 loop assigns A1: allocated , index , gFoundPSet [0..(n-1)];
380 loop variant V1: top - index;
381 */
382 while ((index<top)∧(bitmap_get(pool->bitmap ,index)/* @ghost (pool)*/==0)
383 ∧ (allocated < n)){

Fig. 18. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 6/11.

35

384 //@ ghost gFoundPSet[allocated] = index;
385 allocated ++;
386 index = pp_next_clr(pool->base , ++index , colors);
387 }
388 // index ++; // FIXED: removed this line
389 }
390 i f (allocated == n){
391 ppages->num_pages = n;
392 ppages->base = pool->base + (first_index * P_SIZE);
393 //@ ghost u64 gFirst_index = first_index;
394 /*@
395 loop invariant I0_pp:
396 ppages->base == \at(pool->base ,Pre) + (gFoundPSet [0] * P_SIZE);
397 loop invariant I0_variant: 0 ≤ j ≤ n;
398 loop invariant I0_PSetInPool:
399 PSetInPool{Pre,Here}((u64*) gFoundPSet ,pool ,n,colors);
400 loop invariant I0_AP: HasAllocPages ((u64*)gFoundPSet ,pool ,j);
401 loop invariant I0_size: \at(pool->size ,Pre) == pool->size;
402 loop invariant I0_FP:
403 HasFreePages{Pre,Here}((u64*) gFoundPSet ,pool ,n);
404 loop invariant I0_flatPS: flatPoolStatus(pool);
405 loop invariant I0_flatClrs: flatClrs(colors);
406 loop invariant I0_VP: IsValidPool(pool);
407 loop invariant I0_pp_clr: ppages->colors == colors;
408 loop invariant I0_gFirst_index:
409 (0 == j ⇒ gFirst_index == gFoundPSet [0]) ∧
410 (0 < j ⇒ gFirst_index == gFoundPSet[j-1]);
411 loop invariant I0_fst_idx:
412 (0 == j ⇒ first_index == gFirst_index) ∧
413 (0 < j ⇒ first_index == gFirst_index + 1);
414 loop invariant I0_ps_mod: ∀ Z pNb; 0 ≤ pNb < P_NB_MAX ⇒
415 (∀ Z i; 0 ≤ i < n ⇒ pNb ̸= P_NB(pool->base) + gFoundPSet[i]) ⇒
416 \at(gPStatus[pNb],Pre) == \at(gPStatus[pNb],Here);
417 loop assigns A0: j, first_index;
418 loop assigns A0: {pool->bitmap[gFoundPSet[i]/ CELL_SIZE] | Z i; 0≤i<n};
419 loop assigns A0: {gPStatus[P_NB(pool->base)+gFoundPSet[i]]|Z i;0≤i<n};
420 loop assigns A0: gFirst_index;
421 loop variant V0: n - j;
422 */
423 for (u64 j = 0; j < n; j++){
424 first_index = pp_next_clr(pool->base , first_index , colors);
425 //@ ghost gFirst_index = first_index;
426 /*@ assert S0: NoClrPBtw(P_NB(pool->base),\at(first_index ,LoopCurrent),
427 gFoundPSet[j]);*/
428 //@ assert S0: IsInClrs(P_CLR(P_NB(pool->base)+gFoundPSet[j]));
429 //@ assert S0: \at(first_index ,LoopCurrent) ≤ gFoundPSet[j];
430 /*@ assert S0: NoClrPBtw(P_NB(pool->base),\at(first_index ,LoopCurrent),
431 gFirst_index);*/
432 //@ assert S0: IsInClrs(P_CLR(P_NB(pool->base) + gFirst_index));
433 //@ assert S0: \at(first_index ,LoopCurrent) ≤ gFirst_index;
434 //@ assert S0 : gFirst_index == gFoundPSet[j];
435 bitmap_set(pool->bitmap , first_index ++) /*@ ghost (pool)*/;
436 }
437 pool->last = first_index;
438 ok = 1;
439 //@ assert B_wit1:

PSetInPool{Pre,Here}((u64*) gFoundPSet ,pool ,n,colors);
440 //@ assert B_fct1:

PSetInPool{Here,Here}((u64*) gFoundPSet ,pool ,n,colors);
441 //@ assert B_VP: IsValidPool(pool);
442 //@ assert B_flatPS: flatPoolStatus(pool);
443 //@ assert B_flatClrs: flatClrs(colors);
444 //@ assert B_pp_clr: ppages->colors == colors;
445 break;
446 }

Fig. 19. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 7/11.

36

447 else {
448 /*@ ghost
449 i f (i == 1){ gIndex = index; }
450 */
451 // index = 0; // FIXED: replaced this line by the next one
452 index = pp_next_clr(pool->base , 0, colors);
453 }
454 }
455 return ok;
456 }
457

458 /*@
459 requires ValidCacheCfg;
460 requires \valid read(gFlatClrs + (0..63)) ∧ flatClrs(colors);
461 requires 0 ≤ gClrValid < COLOR_NUM ∧ IsInClrs(gClrValid);
462 requires 0 < num_pages < P_NB_MAX;
463 requires 0 ≤ gExistPool < PL_NB_MAX-1;
464 requires IsHeadOfPoolList(page_pool_list);
465 assigns A: gFoundPSet [0..(num_pages-1)];
466 assigns A: { gPools[i]->last | Z i; 0 ≤ i < PL_NB_MAX-1 };
467 assigns A: { gPools[i]->bitmap[j] | Z i, j; 0 ≤ i < PL_NB_MAX-1 ∧
468 0 ≤ j ≤ (gPools[i]->size/CELL_SIZE)};
469 assigns A: gPStatus [0..(P_NB_MAX -1)];
470 assigns A: gFoundPool;
471 // ALWAYS
472 ensures res: \result.num_pages == 0 ∨ \result.num_pages == num_pages;
473 ensures Epl: IsHeadOfPoolList(page_pool_list);
474 ensures fltc: flatClrs(colors);
475 // ON SUCCESS
476 ensures suc:
477 PSetInPool{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages ,colors)∧
478 HasFreePages{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages) ⇒
479 \result.num_pages == num_pages;
480 ensures witres: \result.num_pages == num_pages ⇒ 0≤gFoundPool<PL_NB_MAX-1;
481 ensures wit1: \result.num_pages == num_pages ⇒
482 PSetInPool{Pre,Post}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages ,colors);
483 ensures wit2: \result.num_pages == num_pages ⇒
484 HasFreePages{Pre,Post}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages);
485 ensures fct1: \result.num_pages == num_pages ⇒
486 PSetInPool{Post,Post}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages ,colors);
487 ensures fct2: \result.num_pages == num_pages ⇒
488 HasAllocPages ((u64*)gFoundPSet ,gPools[gFoundPool],num_pages);
489 ensures pps: \result.num_pages == num_pages ⇒
490 \result.base == gPools[gFoundPool]->base + (gFoundPSet [0] * P_SIZE) ∧
491 \result.colors == colors;
492 ensures cps: \result.num_pages == num_pages ⇒
493 ∀ Z pNb; 0 ≤ pNb < P_NB_MAX ∧ (∀ Z i; 0 ≤ i < num_pages ⇒
494 pNb ̸= P_NB(gPools[gFoundPool]->base) + gFoundPSet[i]) ⇒
495 \at(gPStatus[pNb],Pre) == gPStatus[pNb];
496 ensures cpl: \result.num_pages == num_pages ⇒
497 ∀ Z i; 0≤i<PL_NB_MAX-1 ∧ i̸=gFoundPool ⇒ \at(gPools[i],Pre)==gPools[i] ∧
498 (∀ Z bit; 0 ≤ bit < \at(gPools[i]->size/CELL_SIZE ,Pre) ⇒
499 \at(gPools[i]->bitmap[bit],Pre) == gPools[i]->bitmap[bit]);
500 // ON FAILURE
501 ensures ups: \result.num_pages == 0 ⇒ uPStatus{Pre,Post};
502 ensures upl: \result.num_pages == 0 ⇒ uPools{Pre,Post};
503 */
504 ppages mem_alloc_ppages(u64 colors , u64 num_pages){
505 ppages pages = {. num_pages = 0};
506 //@ghost u64 i = 0;
507 /*@
508 loop invariant Ires: pages.num_pages == 0;
509 loop invariant i: 0 ≤ i < PL_NB_MAX;
510 loop invariant ll: pool == gPools[i];
511 loop invariant pl: IsHeadOfPoolList(page_pool_list);
512 loop invariant I_PS: uPStatus{Pre,Here};

Fig. 20. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 8/11.

37

513 loop invariant I_PL: uPools{Pre,Here};
514 loop invariant I_EPS: uExistPSet{Pre,Here};
515 loop invariant I_clr: flatClrs(colors);
516 loop invariant I_sc:
517 PSetInPool{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages ,colors) ∧
518 HasFreePages{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages) ⇒
519 PSetInPool{Here,Here}((u64*) gExistPSet ,gPools[gExistPool],num_pages ,colors)∧
520 HasFreePages{Here,Here}((u64*) gExistPSet ,gPools[gExistPool],num_pages);
521 loop invariant I_succ:
522 PSetInPool{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages ,colors)∧
523 HasFreePages{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages) ⇒
524 i ≤ gExistPool;
525 loop assigns A0: pages , pool , i, gFoundPool;
526 loop assigns A0: gFoundPSet [0..(num_pages-1)];
527 loop assigns A0: { gPools[i]->last | Z i; 0 ≤ i < PL_NB_MAX-1 };
528 loop assigns A0: { gPools[i]->bitmap[j] | Z i, j; 0 ≤ i < PL_NB_MAX -1 ∧

0 ≤ j ≤ (gPools[i]->size /CELL_SIZE)};
529 loop assigns A0: gPStatus [0..(P_NB_MAX-1)];
530 loop variant v0: PL_NB_MAX - i;
531 */
532 for (page_pool *pool = page_pool_list; pool ̸= (page_pool *)0; pool =

pool->node){
533 u8 ok = pp_alloc_clr(pool , num_pages , colors , &pages);
534 i f (ok)
535 //@ghost gFoundPool = i;
536 //@ assert succ_pl: IsHeadOfPoolList(page_pool_list);
537 break;
538 //@ghost i++;
539 }
540 return pages;
541 }
542

543 /*@
544 requires 0 ≤ vp < P_NB_MAX;
545 requires 0 ≤ pp < P_NB_MAX;
546 assigns gPageTable[vp];
547 ensures gPageTable[vp] == pp;
548 */
549 void pte_set(u64 vp, u64 pp);
550

551 /*@
552 requires ValidCacheCfg;
553 requires \valid read(gFlatClrs + (0..63)) ∧ flatClrs(colors);
554 requires 0 ≤ gClrValid < COLOR_NUM ∧ IsInClrs(gClrValid);
555 requires 0 < num_pages < P_NB_MAX;
556 requires 0 ≤ gExistPool < PL_NB_MAX-1;
557 requires IsHeadOfPoolList(page_pool_list);
558 requires 0 ≤ vp;
559 requires vp + num_pages ≤ P_NB_MAX;
560 assigns A: gFoundPSet [0..(num_pages-1)];
561 assigns A: { gPools[i]->last | Z i; 0 ≤ i < PL_NB_MAX-1 };
562 assigns A: { gPools[i]->bitmap[j] | Z i, j; 0 ≤ i < PL_NB_MAX-1 ∧
563 0 ≤ j ≤ (gPools[i]->size/CELL_SIZE)};
564 assigns A: gFoundPool;
565 assigns A: gPStatus [0..(P_NB_MAX-1)], gPageTable [0..(P_NB_MAX-1)];
566 // ALWAYS
567 ensures res: \result == 0 ∨ \result == 1;
568 ensures Epl: IsHeadOfPoolList(page_pool_list);
569 ensures fltc: flatClrs(colors);
570 // ON SUCCESS
571 ensures suc:
572 PSetInPool{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages ,colors) ∧
573 HasFreePages{Pre,Pre}((u64*) gExistPSet ,gPools[gExistPool],num_pages) ⇒

Fig. 21. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 9/11.

38

574 \result == 1;
575 ensures witres: \result == 1 ⇒ 0 ≤ gFoundPool < PL_NB_MAX-1;
576 ensures wit1: \result == 1 ⇒
577 PSetInPool{Pre,Post}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages ,colors);
578 ensures wit2: \result == 1 ⇒
579 HasFreePages{Pre,Post}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages);
580 ensures fct1: \result == 1 ⇒
581 PSetInPool{Post,Post}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages ,colors);
582 ensures fct2: \result == 1 ⇒
583 HasAllocPages ((u64*)gFoundPSet ,gPools[gFoundPool],num_pages);
584 ensures fct3: \result == 1 ⇒
585 IsMappedTo(\at(vp ,Pre),(u64*)gFoundPSet ,gPools[gFoundPool],num_pages);
586 ensures cps: \result == 1 ⇒
587 ∀ Z pNb; 0 ≤ pNb < P_NB_MAX ∧ (∀ Z i; 0 ≤ i < num_pages ⇒
588 pNb ̸= P_NB(gPools[gFoundPool]->base) + gFoundPSet[i]) ⇒
589 \at(gPStatus[pNb],Pre) == gPStatus[pNb];
590 ensures cpl: \result == 1 ⇒
591 ∀ Z i; 0 ≤i<PL_NB_MAX-1 ∧ i̸=gFoundPool ⇒ \at(gPools[i],Pre)==gPools[i] ∧
592 (∀ Z bit; 0 ≤ bit < \at(gPools[i]->size ,Pre)/CELL_SIZE ⇒
593 \at(gPools[i]->bitmap[bit],Pre) == gPools[i]->bitmap[bit]);
594 ensures cpt: \result == 1 ⇒
595 ∀ Z pNb; 0 ≤pNb<P_NB_MAX ∧ (∀ Z i; 0≤i<num_pages ⇒ pNb ̸= \at(vp ,Pre)+i) ⇒
596 \at(gPageTable[pNb],Pre) == gPageTable[pNb];
597 // ON FAILURE
598 ensures ups: \result == 0 ⇒ uPStatus{Pre,Post};
599 ensures upl: \result == 0 ⇒ uPools{Pre,Post};
600 ensures upl: \result == 0 ⇒ uPageTable{Pre,Post};
601 */
602 u8 mem_map(u64 colors , u64 vp , u64 num_pages){
603 ppages temp_ppages = mem_alloc_ppages(colors , num_pages);
604 i f (temp_ppages.num_pages < num_pages)
605 return 0;
606 u64 index = 0;
607 /*@
608 loop invariant I_i: 0 ≤ i ≤ num_pages;
609 loop invariant I_idx0: i == 0 ⇒ index == 0;
610 loop invariant I_idxi: 0 < i ⇒ index == gFoundPSet[i-1]-gFoundPSet [0]+1;
611 loop invariant I_base: temp_ppages.base == gPools[gFoundPool]->base +

(gFoundPSet [0] * P_SIZE);
612 loop invariant I_vp: vp == \at(vp ,Pre) + i;
613 loop invariant I_pt:
614 IsMappedTo(\at(vp ,Pre),(u64*)gFoundPSet ,gPools[gFoundPool],i);
615 loop invariant I_pl: IsHeadOfPoolList(page_pool_list);
616 loop invariant I_fltc: flatClrs(colors);
617 loop invariant I_wit:
618 PSetInPool{Pre,Here}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages ,colors)∧
619 HasFreePages{Pre,Here}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages);
620 loop invariant I_fct:
621 PSetInPool{Here,Here}((u64*) gFoundPSet ,gPools[gFoundPool],num_pages ,colors)∧
622 HasAllocPages ((u64*)gFoundPSet ,gPools[gFoundPool],num_pages);
623 loop invariant I_PS: uPStatus{LoopEntry,Here};
624 loop invariant I_PL: uPools{LoopEntry,Here};
625 loop invariant I_upt:
626 ∀ Z pNb; 0 ≤ pNb < P_NB_MAX ∧
627 (∀ Z i; 0 ≤ i < num_pages ⇒ pNb ̸= \at(vp ,Pre) + i) ⇒
628 \at(gPageTable[pNb],Pre) == gPageTable[pNb];
629 loop assigns A0: i, index , vp , gPageTable [0..(P_NB_MAX-1)];
630 loop variant temp_ppages.num_pages - i;
631 */
632 for (u64 i = 0; i < temp_ppages.num_pages; i++){
633 index = pp_next_clr(temp_ppages.base , index , temp_ppages.colors);
634 //@ assert A_idx: index == gFoundPSet[i] - gFoundPSet [0];
635 u64 pp = P_NB(temp_ppages.base) + index;
636 //@ assert A_pp: pp == P_NB(gPools[gFoundPool]->base) + gFoundPSet[i];

Fig. 22. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 10/11.

39

637 pte_set(vp, pp);
638 vp += 1;
639 index ++;
640 }
641 return 1;
642 }
643

644

645 // To run:
646 // frama-c-gui -wp -wp-rte -wp-smoke-tests -wp-par =4 -wp-timeout =30

-wp-prover=script ,alt-ergo ,cvc5 ,z3,coq specified_cache_coloring.c

Fig. 23. Corrected and specified version of the key functions ensuring the allocation
and mapping of pages using the cache coloring mechanism of Bao, part 11/11.

40

	Prove your Colorings: Formal Verification of Cache Coloring of Bao Hypervisor

