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COMPUTATION OF THE YONEDA ALGEBRAS
FOR ALGEBRAS OF DIHEDRAL TYPE

1. INTRODUCTION

The algebras of dihedral, semidihedral and quaternion type were de-
fined and classified by Karin Erdmann in [1]. They generalize the blocks
with dihedral, semidihedral and generalized quaternion defect groups re-
spectively. The classification contains dozens of infinite families of alge-
bras. Each family is defined by a quiver with relations containing some
parameters.

In 1987, David Benson and Jon Carlson [2] proposed some diagram-
matic methods for modular representations and cohomology, which were
further developed by the first author and used in several papers ([3-9]) to
compute the Yoneda algebras of some dihedral and semidihedral algebras.
This computation contains two steps: to find the projective resolutions of
simple modules, and to determine the Yoneda algebra. For the algebras
that appear as principal blocks of group algebras, these results allowed
to find the cohomology ring of the corresponding groups.

It turns out that for all considered algebras, the minimal projective
resolution of a simple module 1s periodic or can be represented as to-
talization of an infinite bicomplex. The bicomplex repeats itself in some
regular way, but in general is not periodic. To find the structure of the
bicomplex, 1t 1s often necessary to determine its first 10-20 diagonals.
This computation being rather difficult to do by hand, the object of this
work is not only to determine the Yoneda algebras for other families of
dihedral algebras, but also to use computer-based techniques to find the
projective resolutions.

In this paper, we determine the Yoneda algebras for one infinite family
of dihedral algebras: the family D(3L) in the notation of [1]. The projec-
tive resolutions for this family were computed by an original C++ program
implemented by the second author. The computations made for other di-
hedral algebras show that this program can be also efficiently used for
most of them.

The algorithm of the program finds the algebra defined by the given
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quiver with relations (with fixed values of parameters) and computes the
minimal projective resolutions of the simple modules over this algebra.
For every simple module S;, the program tries to construct a bicomplex
lying in the first quadrant of the plane and consisting of projective mod-
ules, such that its totalization gives the minimal projective resolution
of S;. After computing a new diagonal of the bicomplex, the program
compares the dimensions of the corresponding image and kernel in the
totalization to check the exactness.

It takes less than one second to compute sufficiently many modules
in the bicomplex to see its structure. Running the program for different
parameters allows to conjecture the general form of the bicomplex for
arbitrary parameters. The conjecture is easy to prove by hand, as the
bicomplex contains only finitely many different squares. A more complete
presentation of the program will be the object of a separate article.

Let K be a field, A be an associative K-algebra with identity, M be a
A-module (all the considered modules are left modules). The K-module
E(M) = @m>0 Ext? (M, M) can be endowed with the structure of an
associative K-algebra using the Yoneda product (see [10]). The algebra
E(M) is called the Ext-algebra of M.

If A is a basic finite dimensional K-algebra, we set A = A/J(A) where
J(A) is the Jacobson radical of A. The Ext-algebra £(A) of A is called
the Yoneda algebra of A and is denoted by Y(A).

Let k, s be integers > 2. We define the K-algebra Rgfs) by the following
quiver with relations (we write down a composition from the right to the

left):
’ Co —
ARV
2

Ba=0=a), §(BA)F =0, o =(N6p)". (1.1)

The algebras Rgfs), k, s > 2, compose an infinite family of dihedral
algebras, which is denoted in [1] by D(3L). Every R;fs) is a symmetric
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algebra (and therefore a QF-algebra). To describe the Yoneda algebra
y(REfQ) of Rgfs), let us consider the quiver 7"

Let K[T] be the path algebra of T'. We define the following grading on
K[T]:

deg(z;) =1, i=1,2,34; deg(y;) =2, j=1,2;

deg(t;) =4, { =1,2; deg(w) =5.
Consider the following relations on the quiver 7"

T3Ty = Tad3 = Tola = Toyy = Y14 = yj = 0,
TaYyaXo = l‘ztl = t11‘4 = WT4 = T2W = 0, (12)
yizr =z, e = it by = b, wnh = iw, biw = wiy,

YoXax1x4 = T3, Tax1T4Ys = lax3, x3loxs = 0,} (13)

tayads = —TaL W, TayYals = —WT1L4,
0, if s>2, 0, if k>2,
2 = ] w? = 5 . (1.4)
Yy, if s=2, —yity, if k=2

Let SISLS) be the K-algebra defined by the quiver T with the relations

(1.2)-(1.4). As all these relations are homogeneous, the algebra SISLS) in-
herits a grading from K[T].
Theorem 1.1. The Yoneda algebra y(REfQ) is isomorphic, as a graded

£)
78 :

algebra, to 5,5

The proof of Theorem 1.1 occupies the rest of the paper. We also give
a description of the Ext-algebras of simple Rgfs)—modules in Corollary 3.5.
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2. RESOLUTIONS

To simplify notation, we set R = R;fs) and £ = S,gfs). For an R-module
M, let

d_1 (M)

i Qo(m) 22 g

Qu(M)
denote the minimal projective resolution of M. We will write Q™ (M) for
its n-th syzygy Im (d,,—1(M)), n > 0. We denote by ¢; the idempotents
of R corresponding to the vertices i = 0,1,2 of ). The corresponding
indecomposable projective and simple R-modules are denoted P; = Re;
and S; = P;/(J(R)F;), respectively. The multiplication on the right by an
element x € e; Re; induces a homomorphism from F; into P;, we denote
this homomorphism by the same letter x.

We refer the reader to [2] for the main notions of the diagrammatic
method of Benson and Carlson (see also [3, 5]). If M is a uniserial module
of length ¢ with the diagram

Sit%"'%sila

we write M = U(S;,,...,5;,).
It is easily seen that the indecomposable projective modules P; = Re;,
i = 0,1,2, have the following diagrams (cf. [1]):

So S Sy

o BN\ | s |
SO Sl SQ SO
| |5 |A |6
SO SQ So Sl
| |A |6 |5

Py: S0 So pp S Py 2 (2.1)

| |6 |5 |A
| |5 |A |6
SO SQ So Sl
o\ A |5 | s
So ; Sy S .

Set b= (BA6)F~1 d = (68A)*~1, I = (A6B)* 1. By abuse of notation,
we will use the same letters for the elements of the path algebra K[Q] as
well as for their images in R. For abbreviation, we denote a sequence of
edges in a diagram by one edge and write the composition of the original
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edges nearby. For example, the diagrams (2.1) can be written in this
notation as

So
/a
So
ozs_l\

S
| 8260
Sl )

S
|682d
Sy .

AN
S
/Asb
SO 3

Proposition 2.1. a) The diagrams of Q°(Sy) and Q'(Sy) are, respec-
tively,
So S1
as=tN S aeb
So

So

and

b) Let m > 2 be an integer. Suppose m = r (mod 6) with 0 < r < b.
Let D be the diagram of Q™~2(Sy). Then the diagram of the module
1™ (Sy) can be obtained from D by adjoining or omitting some subdia-
grams (depending on r) on both sides of D. The following table shows
the subdiagrams to adjoin (+) and to omit (—) on the left and on the
right side of D:

So So So
r=20 AN — D4+ a0\ Sys—1
So SO
So Sa So S1
r=1 ozs—l\ /)x + D+ oz\ /)xéb
So So
S1 So So
r=2 ap N o D4 g\
So S1
So S1
r=23 /@ + D — /5
S Sy
S1 S1
r=4 s\ — D4+ 5\
Sy Sy
S1 Sa
r=95 s +D— A
So So
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For example, the diagram of Q3(Sp) is obtained from that of Q!(Sy)
as follows (we have r = 3, A\§b = Adé):

So So Sl Sl
St s — s =
Sh So Sy
So So
= /ﬁ ozs—l\ /)xd
Sh So

The proof of Proposition 2.1 is similar to [2] (see also [3, 4]) and is left to
the reader. Note that the diagrams of syzygies Q7(Sp) have the property
called D-uniqueness (see [2, p. 68]). This fact can be established as in [2,

Lemma 11.1].
Consider the following bicomplex By, lying in the first quadrant of the
plane (i.e., its rows and columns are numbered by 0,1,2,...):
o e e |
P ~_p = p  TME p_ a
| e Jas |» =
p 2 p 2 p 2 p2 pF
léﬁ las—l lAd
p =2 p=* p = p
Bl las—l lAéb
P—2 PR 2 P

(2.2)
The nonzero horizontal differentials Ag;): Bi; — B;_1; of the bicomplex
are defined by the following:

(1) a, if i—j=1(mod?2),j<i<2j+1,
(=1y¥Aé6B, if i—j=0 (mod?2), j+1<i<2j,
— 1Y a5~ if i—j=1 (mo 1< g < 22—
(—1)as=1, if ] (mod 2), J<2i—1,
A ) DL i i— =0 (mod 2), i< < 2i-2,
ij 3, f j=0 (mod 2), 25+ 2,
Y if =1 (mod 2), i=2j+1,
—X6-b, if j=2i-1,
A-d, it j=2i—2.
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The vertical differentials are determined by anti-commutativity of squares
and the relations (1.1). For example, the nonzero part of the the 4¢-th
and (4i 4+ 1)-th rows (¢ > 0) is contained between the columns 2¢ and
8¢ + 3 and has the form:

B 4541
—A8b ot _ -l
p 2 p P P
gl Ji o8 Ji
as—1 1 as—1 l
Fy —_— Fy Fy Fy
Bay; 4541
s—1 —_
—a P -l p = _p A6
o8 wt] !
l PO @ PO A3 PO @
Bsit3,4i41
—a P “ME p o= po =80 P,
ll as—ll Aébl
AP Py * _p -2 p.

The proof of Proposition 2.2 is similar to [4, Theorem 2] (see also
[2, 3]) and is left to the reader. A straightforward verification shows the
exactness of the periodic sequences of Proposition 2.3.

Proposition 2.2. The minimal projective resolution of the R-module
Sy coincides with the totalization of the bicomplex (2.2).

Proposition 2.3. The minimal projective resolutions of S; and Sy are

the following:
5 (BA8) (661
— P — e

P1LPQL>P0L>P2 PQLP1—>51—>O,

k k
LPQ(M—AE szl(ﬁA—éz P1LPOL>P0L>P2—>SQ—>O.
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Corollary 2.4.

m

9 {—J +2, ifm=5 (mod6),
a) dimg Ext'% (So, So) = 6
2 {%J + 1, otherwise;
b) dlmk Eth(SO, Sl) = dlmk Eth(SZ, SO) = dlmk EXt%(Sl, 52)

_{1, if m=1or2 (mod 6),
=10,

otherwise;

¢) dimyg Ext% (Sp, S2) = dimy, ExtB(S1, So) = dimy, Ext? (52, .51)

_{ 1, if m=3or4 (mod 6),
L0, otherwise;

d) dimg Ext (51, 1) = dimy, Ext}(Ss, S2)
_{ 1, if m=0o0rb5 (mod 6),
=10,

otherwise.

Remark 2.5. By Proposition 2.2, we have @, (Sp) = @iﬂ':m
Bas is the bicomplex (2.2). The modules in this direct sum will be always
ordered with respect to the second index, for example, we write Q4(Sp) =
Bs1 @ By = P @& Py. The simple direct summands of top Q™(S;) =~
top @m(Sk) will be ordered in the same way: top Q4(Sy) = S2® Sy (where
top M stands for M/Rad(M)). We call such decompositions of @, (Sk)
and top Qm (Sk) the canonical decompositions. The differentials dy, (Sk)
in the minimal projective resolution of S will be denoted in the sequel
by d%ﬂ), m > —1.

B;; where

3. GENERATORS

In this section, we indicate a finite set of generators for the Yoneda

algebra of R:

Y(R)=E(R/I(R)) = P €P ExtE (S, 5)).

m30 4,j=0

Let us recall some facts and notation related to the Yoneda algebra (see
also [3, 5]). As the R-module S; is simple, we have Ext(S;,S;) =~
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Homp(Q7™(5;), Sj). Let ¥ be an element of Ext}(S;,S;). Its image 1Z
in Homp(Q2™(S;), S;) induces a morphism of projective resolutions f; :
Qm+i1-1(5:) — Qi=1(S;), [ = 1, and a homomorphism fy : Qm-1(S;) —

P;. We have a commutative diagram:

Qm(S;)) —— Q™ (S) C Qm-1(S:)

lfl l@ lfu (31)

a4
Qo(Sj)) —— 55 C B

We see that 1Z can be represented by the commutative square:

d(’)

-1

| Js

Qo(5;) —— B

because this commutative square uniquely defines the map 1Z in (3.1).

~

Moreover, v is uniquely defined by providing only a homomorphism f; :

Qm(Si) — Qo(S;) such that d(_j%fl annihilates Ker dg,?_l. In this case we
write 1Z =sq (Qm(SZ) LN Qo(S; )) The homomorphisms

Q') - QmH(S) — QU(Sy), QD) = filamtics.s

are called the Q-translates 0f1Z. If ¢ € Ext}(S;, Se) ~ Homp(Q2*(S;), Se),
the Yoneda product @i € Ext;1(S;, S,) has the image ¢y = §- Q" (%)
in Hompg(Q™+"(S;), S.). Although the maps f; and the Q-translates are

not uniquely defined by v, it is easily seen that the resulting map into a
simple module does not depend on their choice.
Consider the homogeneous elements of Y(R):

21 € ExtR(So, 50), @2 € Exth(So,S1),
Sa, So),

S1,52),
t1 € BExts(S0,S0), t2 € Exth(S2,S1),
w € Ext(So, So)

)
r3 € EXt}:i Sl, 52), ra € EXt}:i(
) (

(
y1 € ExtH(So,S0), y2 € Exth
(
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defined as follows:

r1 = sq(Q1(S50) (.9 Py), %2 =15q(Q1(50) ©1 Pr),

T3 =sq(Q1(S51) Lpz), Ty =sq(Q1(52) L>Po),
—~ (0,1) —~ 1

Y1 =59(Q2(50) = Po), Y2 =59(Q2(S1) — P»),
" (0,1)

i1 = 59(Qa(S0) == Fv), Tz = sa(Qu(S2) — Py,

=5q(Q5(So0) ©1) Py).

Proposition 3.1. The extension groups presented below have the fol-
lowing K-bases:

Ext%(So, S1) = {xaw1), Ext%(Sa, So) = {x174),
Exth(S1,92) = (y2), Ext (S0, 50) = (z1y1),
t?ij(So, S2) = {y222), Ext%(SQ, S1)={xawix4),
Extg(So, 52) = (yowaz1),  Ext®(So, o) = (t),

Ext%(So, So) = {x1t1, w), Ext%(S1,S1) = {taxs),

Proof. We consider only Ext%(Sp,Sg). For the other groups,
dimg Ext}(S;,S;) = 1 by Corollary 2.4, therefore it is sufficient to veri-
fy that the given elements are nonzero in the corresponding Ext-groups,
which is done in the same manner.
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We have 711, = 7, ~Ql(tA1). The Q-translate Ql(tAl) is defined by the
left square of the commutative diagram

o~

Ql(tAl)Z tli

d(D) d(D)
Qs5(5) —— Qa(So) —— Qs(5)

1) w0 Jeoo

1 (S) —— Qo(Soy) —— Py.
o (A58

The map z; - Ql(tAl) is described by the outer square of the following
commutative diagram:

d(D)
Qs(SO) — Q4 So)

[

(
Ql(?l): ((1J ,\05)
01(50) =2 Qo(50)

Py 1o | [om

A68)F
Q0(S52) o6y, Py

Comparing the composition 1 ~Ql(tA1) =sq(Qs(So) (&.9) Py) and @ =

5q(Q5(S50) @) Py), we see that z1t; and @ are linearly independent. It
remains to note that dimg Ext%(So,Sp) = 2 by Corollary 2.4. O

Proposition 3.2. The set
Xﬁ:{xla$2a$3a$4ay1ay2atlat2aw} (32)
generates the Yoneda algebra Y(R) as a K-algebra.

Proof. We prove by induction on m that the groups Ext%(S;, S;) are
generated by some products of elements of X';. For m < 5, this follows
directly from Proposition 3.1, Corollary 2.4 and the definition of the
elements of Xz. Assume that m > 6 and that our statement holds for all
Ext”RlI(SZ», S;) with m’ < m, we will prove it for m.

If j € {1,2}, we notice that the multiplication on the left by y» and
by 2 induces the isomorphisms

Ext”R?_Z(SZ», Sl) = Eth};(SZ', Sz),
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_4 ~
Eth}; (SZ', Sz) — EXt%(Si, Sl),

respectively, and our statement for Ext’(5;,.S;) follows from the induc-
tion hypothesis. Similar arguments apply to the case i € {1, 2}. It remains
to prove our statement for ¢ = j = 0.

Using the isomorphism ExtR(Sp, Sp) ~ Homp(Q2™(Sy), So), we rep-
resent an element of the group Ext}(Sy, So) by the corresponding map
F Q™ (Sy) — Sp. Without loss of generality we can assume that f induces
a nonzero map on at most one simple direct summand in the canonical
decomposition of top 2™ (Sy) (see Remark 2.5).

Case 1: m =1 (mod 6). a) Assume that f: Q™(Sy) — Sy induces zero
maps on the extreme (the left and the right) simple direct summands of
the module top 2™ (S). Tt follows from Proposition 2.1 that the diagram
of Q™=%(Sy) is a closed subdiagram in that of Q™(Sy), hence Q™~2(Sy)
is a quotient of Q™(Sg). Let p : Q™(Sg) — Q™=2(Sy) be the canonical
epimorphism. Then there exists a homomorphism f/ : Q™~%(5;) — Sp
such that f = f'p. Since p = Q™= %(p) for some homomorphism p :
Q?(Sy) — So, the desired statement follows from f = f' - Q™~%(j) and
the induction hypothesis.

b) Assume now that f induces a nonzero map on an extreme direct
summand of top Q™ (Sp). As the right one is Sy, f can induce a nonzero
map only on the left one. By Proposition 2.1, the diagram of Q™(Sp)
contains on the left side the closed subdiagram

So So

as—l\ /)\5@ (33)
So

(the edges § and 3 being added while constructing Qm=2(Sy) from
Q"=4(Sp) and Q™~4(Sy) from Q" ~°(Sp)). Let M be the quotient module
of Q™(Sy) having the diagram (3.3), and let 7: Q™(Sy) — M denote the
corresponding epimorphism. As the diagram of Q!(Sy) also contains (3.3)
on the left, we have a monomorphism i: M — Q*(Sp) and can identify M
with its image i(M) C Q(So).

The map f factors through 7, so f = f’# for some homomorphism f” :
M — Sp. We claim that there exists a homomorphism f": Q(S5) — Sp
such that f”i = f’. Since

Soc M ~ Sy ~ Soc Q(S),
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factoring out the socles gives the embedding M /Sy — Q*(Sp)/So. More-
over, we have Q1(S5)/So = X &Y with

X = U(So,SQ,...,SQ) and Y = U(Sl,SQ,SQ,...,SQ),

and M/Sy = X @Y, with Y1 = U(Sg, S1,52) C Y. Since Soc M = Sy is
contained in Kerf’  f" factors through M/Sy, and the restriction of the
induced map ¢: M/Sy — Sp onto Y] is zero. Hence g can be extended
(by zero on Y') to a homomorphism ¢': Q(50)/So — So. Let f be the
composition of g’ and the canonical epimorphism Q*(Sp) — Q*(.S0)/So.
It is easy to see that f' = f”4, hence f = f"im. The map p = iw :
Q™ (Sg) — QY(So) has the form p = Q(p) for some p : Q™71(Sy) —
Sop. Our statement follows now from f = f” - Q!(p) and the induction
hypothesis.

Case 2: m = 2 (mod 6). In this case Q™~?(Sp) is again a quotient
of Q™(Sy). As the extreme left simple direct summand of top Q™ (Sp) is
isomorphic to Sy, f:Q™(Sp) — Sp induces a zero map on it, and we can
proceed analogously to the case la).

Case 3: m =3 (mod 6). Let D be the diagram of Q™~%(Sp). By Propo-
sition 2.1, the diagram of Q™(Sp) contains D as a closed subdiagram and
can be obtained as follows:

So Sz SO SZ

Saas-IN S+ D4+ N
Sl SO SO

As the extreme right simple direct summand of top 2™ (Sp) is isomorphic
to Ss, f induces a zero map on it. If f induces a zero map on the extreme
left one, we can proceed again as in the case la).

Assume now that f induces a nonzero map on the extreme left direct
summand of top 2™ (Sp). Let M be a module having the diagram

So
/ﬁ o \
S1 So.
We can consider M as a quotient of Q7 (Sp) and a submodule of Q%(Sp).
As in the proof of the case 1b), we find a factorization f = f - p, where
p:Q™(Sy) — Q2(Sp) is a map such that Im p = M. It implies the required
statement.

Case 4: m = 4 (mod 6). As in the case 3, we see that Qm=%(Sp) is
a quotient of Q™(Sy). Since the extreme left simple direct summand of
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top 2 (Sp) is isomorphic to Sa, f induces a zero map on it. The proof is
completed as in the case la).

Case 5: m = 5 (mod 6). Let D be the diagram of Q™~5(Sp). In this
case, D is a closed subdiagram of the diagram of Q™ (Sy), which has the
following form:

So SQ SO SO

S as-tN Sx + D+ PN
SZ SO SO

If the given map f induces zero maps on the extreme simple direct sum-
mands of top 2™ (Sp), we apply the argument of the case la).

If f induces a nonzero map on the extreme right direct summand of the
top 2 (Sy), then f goes through the module M defined by the diagram

So So

oz\ /l
So

As this module can be embedded into Q!(.5y), we can find a factorization
f = fp, where p: Q™(Sp) — QY(Sp) is a map such that Imp = M, and
our statement follows.

Let us now assume that f induces a nonzero map on the extreme left
direct summand of top Q™ (Sp). In this case f goes through the module
M defined by the diagram

S So

The module M can be embedded into 2?(Sy). Hence, we obtain a factor-
ization f = fp, where p: Q™ (S) — Q%(Sp) is a map such that Imp = M,
which implies our statement.

Case 6: m = 0 (mod 6). This case is also proved by reduction to the
syzygy QM 7%(Sp). If D is the diagram of Q™=%(Sp), then that of Q™ (Sp)

1s obtained as follows:

So So SO SO

I S+ D+ oasg N\ e
So SO
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If the given map f induces zero maps on the extreme simple direct sum-
mands of top 2 (Sp), we can apply the argument of the case 1a). If f in-
duces a nonzero map on the extreme right direct summand of top Q™ (Sp),
we can repeat the arguments of the case 1b).

Finitely, assume that f induces a nonzero map on the extreme left
direct summand of top 2™(Sg). We proceed as in the case 1b) and use
the module M defined by the diagram

So So
l\ /oz
So
and considered as a quotient of 2™ (Sy) and a submodule of Q1(Sy). O

Proposition 3.3. The generators (3.2) of the algebra Y(R) satisfy the
relations (1.2)—(1.4).

Proof. Let us prove only the last relation in (1.4). The verification of
the other relations is similar and 1s left to the reader.

Since (w?)” = @ - Q°(w), we have to compute the Q-translate Q°(w)
of the map

w: Q5(S0) — Qo(So)-
Lifting @ to a morphism of minimal projective resolutions of Q2°(Sp) and
So step by step, we obtain that Q5(w@) can be represented by the matrix

0 0 0 1
(0 0 —(A8B)F2 0)1Q10(50)—>Q5(So),

which is written, as usually, with respect to the canonical decompositions
of Q10(So) and Q5(So) (see Remark 2.5). Hence the composition w-Q(w)
can be represented by

(00 —(A8)"=* 0):Quo(S) — Qo(So)-

If & > 2, this map obviously induces a zero map Q'°(Sp) — Sg, which
implies w? = 0.

On the other hand,
(nit])” =1 Q%) - Q°(t1).

Computing the Q-translates of the map t1, we obtain

-~ A0 0 0 -~
Qz(tl) — ( 0 1 0) , 96(t1) =

o OO

1
0
0

O = O
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and hence, (y1¢2)" = (0 0 1 0). We conclude for k = 2 that y,¢? =
—w?. |

Let & = S,st) = KJ[T]/I be the graded K-algebra defined in Sec-
tion 1, where I C K[T] is the ideal defined by the relations (1.2)—(1.4).
By Propositions 3.2 and 3.3, there exists an epimorphism of graded K-
algebras £ — Y(R) which takes the canonical generators of the alge-
bra & (represented by the edges of T') to the corresponding elements of
Xe C Y(R).

Let & = @m>0 E™ be the decomposition of £ into homogeneous direct
summands. Let ¢; denote the idempotents of K[T] corresponding to the
vertices ¢ = 0,1,2 of T'; we use the same notation for their images in &.
Theorem 1.1 now follows from the following result.

Proposition 3.4. For any i,j € {0,1,2} and m > 0, we have

dimK(EiSmEj) = lelK Eth};(Sj s Sz) (34)

Proof. For m < 5, the relations (3.4) are verified directly. Let us assume
that m > 5. We suppose additionally that & > 2 and s > 2. The cases
where & = 2 or s = 2 are proved in a similar way, and we leave their
proof to the reader.

a) First we consider the case ¢ = j = 0. It follows from the relations
(1.2)-(1.4) that the K-algebra £1€¢; is generated by elements x1, y1, ¢1,
w, and any nonzero monomial in €;EM¢; (i.e., the image of a path in
K[T)) is equal to one of the following:

yiti(erw), Yt (wen)', yfte (wen)', yitiw(zw), (3.5)
with n € {0,1}, r, 4 > 0.

Put d,, = dimg €0€Meq. We claim that d,,, — d;,_4 18 equal to the
number of monomials in (3.5) for which » = 0. Indeed, the monomials of
degree m in (3.5) form a K-basis of ¢g€™¢q. Replacing » by r + 1 in the
elements of the similar basis of £0&™ %ey gives those basis elements of
c0&Meq for which r > 0. It shows that the basis elements of €g&™¢eq for
which » > 0, are in one-to-one correspondence with the basis elements
of ¢0&™ *¢y, which implies our claim. If » = 0, then we have for the
monomials in (3.5)

m=2n+6f, or m=2n+6t+1, or m=2n+46t+5,
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whence we obtain that

—_

, ifm=3orb (mod6),
dm —dm_a =< 0, ifm=4 (mod 6),
2

, otherwise.

Corollary 2.4 a) implies that the sequence {dimg Ext}(Sy, Sp)} also sat-
isfies a similar recursive relation. The assertion (3.4) can be now estab-
lished by induction on m.

b) Assume now that ¢ = 1, j = 0. It is clear that any nonzero monomial
in €1€Mey is equal to 25 - u for some monomial w € 5™ ey, As z
annihilates y;,%; and w, the monomial v have to be of the form
u = (x1w)" or u=wx(wr), (3.6)
where r € N. Consequently, m — 1 = 1 4+ 6r or m — 1 = 67, hence
1, ifm=1or2 (mod6),
0, otherwise.

lelK ElngO = {

The relation (3.4) is now obtained from Corollary 2.4b).

¢) Let ¢ = 2, j = 0. In this case any nonzero monomial in £2E™ ¢y is
equal to ysxs - u for some monomial 4 € 2™ 3¢y, As in the case b), u
has the form (3.6), and we see that m —3 = 0 or 1 (mod 6). Corollary
2.4 ¢) gives the relation (3.4).

d) Suppose that i = j = 1. A nonzero monomial f in £;€e; is either
f=z5-f or f =t3 - f for some monomial f’. In the first case, f has to
be of the form f = x5 -u- x4 - v, where u € 9€cq, v € £2E™ €. Moreover,
it follows from (1.2) that u = za(wz1)", r € Nyand v = ya ', v/ € £18¢;.
Hence, we have f = woz1(wa1) ®4y2 - v'. The relations (1.3) imply that

(w1) x4 = (=1) 24(yata)", (xaz124)(y2ta)” = (tay2) (vax124).

Consequently, in any case we can represent the given monomial f in the
form f =toxs-g or f =12ys - ¢ for some g € £:E¢1. From this, 1t follows
that £;€¢; is generated as a K-algebra by the elements & = ¢;x3 and

¢ = tyys which satisfy relations (% = 0, (¢ = £(. It is easily seen that
1, ifm=0orb (mod6),
0, otherwise.

lelK €1gm€1 = {

Using Corollary 2.4b), we deduce (3.4).
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e) Let ¢ = 2,5 = 1. We begin by proving that any nonzero monomial
f € e2&¢1 can be represented in the form f = ys - f/, where f' € ¢1&¢;.
Indeed, if f = x5 - u with u € £1€¢, the relations (1.2) and (1.3) imply
that f = x3ts - u' = ysxsx1x4 - v’ for some u' € £5€¢;. Consequently, we
have

lelK 628m61 = lelK Elgm_2€1
_{ 1, ifm—2=0orb (mod6), _{

0, otherwise,

1, ifm=1or2 (mod6),
0, otherwise,

= dimg Ext% (51, S2)
by Corollary 2.4b).

f) Assume i = j = 2. As in the case d), we observe that K-algebra
€9€¢9 18 generated by the elements nn = x3ty, kK = yots which satisfy the
relations n? = 0, nk = k7, and we obtain (3.4) for this case.

g) Assume i = 2, j = 0. Any nonzero monomial f € g€¢s has the
form f = u - x4 - v, where u € ¢p€cp, v € €3€e5. Since yrx4 = 0 = t124,
a3 = 0, we see that elements u, v have the form u = x1(wx1)" or
u = (wz1)", r > 0, and v = (yat2)’, ¢ > 0 (see the proof of a) and f)
above). Using the relation

(wy) x4 = (=1) 24(yat2)",

which is a consequence of a relation in (1.3), we see that f = z z4(yats)’
or f = x4(xats)', | € N. Hence, we have

1, ifm=1or2 (mod6),

0, otherwise,

bl

lelK EongQ = {

= dim Eth(SQ, So)
(see Corollary 2.4b)).

h) Finally, let ¢ = 1,j = 2. Any nonzero monomial f € ¢;€¢, has the
form f =wu-ts-vor f=u-xewixg- v, where u € €161, v € £3E¢5. As
in the case g), using the relations (1.2) and (1.3), we obtain

f=(tay2)" - ta - (z3t2)” - (yata)',
where o € {0,1}, r,t > 0. Hence,
degf=4450+6(r+¢t)=3 or 4 (mod 6),
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and the required statement follows from Corollary 2.4 c). |

Consider the graded K-algebra K{z,y,t, w) with
degx =1, degy =2, degt =4, degw =25,
and the subset

M = {zy — yx, xt — tx, yt —ty, yw — wy, tw — wt, y*} C K{x,y,t,w).

Let
MU {22, w?}, if k>2 and s> 2,
M. — MU {z? — y,w?}, if k>2ands=2,
* MU {22, w? + yt?}, if k=2ands>?2,

MU{z? —y,w? +yt?}, if k=s=2.

Let I, C K{z,y,t,w) be the ideal generated by the set My ,, and By ,
be the quotient algebra K(x,y,t, w)/I) ;. Then By , inherits a grading
from K{xz,y,t, w).

Corollary 3.5. There are the following isomorphisms of graded K-
algebras:

a) £(So) = Brs;
b) £(S1) = £(S2) = K[(,€]/(¢?), where deg( = 5, deg& = 6.

Proof. If k > 2 and s > 2, then the above statements follow immediately
from the proof of Proposition 3.4. If £ = 2 or s = 2, the argument is
similar. d
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