
Zapiski nauqnyhseminarov POMITom 305, 2003 g.A. I. Generalov, N. V. KosmatovCOMPUTATION OF THE YONEDA ALGEBRASFOR ALGEBRAS OF DIHEDRAL TYPE1. IntroductionThe algebras of dihedral, semidihedral and quaternion type were de-�ned and classi�ed by Karin Erdmann in [1]. They generalize the blockswith dihedral, semidihedral and generalized quaternion defect groups re-spectively. The classi�cation contains dozens of in�nite families of alge-bras. Each family is de�ned by a quiver with relations containing someparameters.In 1987, David Benson and Jon Carlson [2] proposed some diagram-matic methods for modular representations and cohomology, which werefurther developed by the �rst author and used in several papers ([3{9]) tocompute the Yoneda algebras of some dihedral and semidihedral algebras.This computation contains two steps: to �nd the projective resolutions ofsimple modules, and to determine the Yoneda algebra. For the algebrasthat appear as principal blocks of group algebras, these results allowedto �nd the cohomology ring of the corresponding groups.It turns out that for all considered algebras, the minimal projectiveresolution of a simple module is periodic or can be represented as to-talization of an in�nite bicomplex. The bicomplex repeats itself in someregular way, but in general is not periodic. To �nd the structure of thebicomplex, it is often necessary to determine its �rst 10{20 diagonals.This computation being rather di�cult to do by hand, the object of thiswork is not only to determine the Yoneda algebras for other families ofdihedral algebras, but also to use computer-based techniques to �nd theprojective resolutions.In this paper, we determine the Yoneda algebras for one in�nite familyof dihedral algebras: the familyD(3L) in the notation of [1]. The projec-tive resolutions for this family were computed by an original C++ programimplemented by the second author. The computations made for other di-hedral algebras show that this program can be also e�ciently used formost of them.The algorithm of the program �nds the algebra de�ned by the given101



102 A. I. GENERALOV, N. V. KOSMATOVquiver with relations (with �xed values of parameters) and computes theminimal projective resolutions of the simple modules over this algebra.For every simple module Si, the program tries to construct a bicomplexlying in the �rst quadrant of the plane and consisting of projective mod-ules, such that its totalization gives the minimal projective resolutionof Si. After computing a new diagonal of the bicomplex, the programcompares the dimensions of the corresponding image and kernel in thetotalization to check the exactness.It takes less than one second to compute su�ciently many modulesin the bicomplex to see its structure. Running the program for di�erentparameters allows to conjecture the general form of the bicomplex forarbitrary parameters. The conjecture is easy to prove by hand, as thebicomplex contains only �nitely many di�erent squares. A more completepresentation of the program will be the object of a separate article.Let K be a �eld, � be an associative K-algebra with identity,M be a�-module (all the considered modules are left modules). The K-moduleE(M ) = Lm>0 Extm� (M;M ) can be endowed with the structure of anassociative K-algebra using the Yoneda product (see [10]). The algebraE(M ) is called the Ext-algebra of M .If � is a basic �nite dimensional K-algebra, we set � = �=J(�) whereJ(�) is the Jacobson radical of �. The Ext-algebra E(�) of � is calledthe Yoneda algebra of � and is denoted by Y(�).Let k, s be integers > 2. We de�ne the K-algebra R(L)k;s by the followingquiver with relations (we write down a composition from the right to theleft):
�� = 0 = ��; �(���)k = 0; �s = (���)k : (1.1)The algebras R(L)k;s , k, s > 2, compose an in�nite family of dihedralalgebras, which is denoted in [1] by D(3L). Every R(L)k;s is a symmetric



COMPUTATION OF THE YONEDA ALGEBRAS 103algebra (and therefore a QF -algebra). To describe the Yoneda algebraY(R(L)k;s ) of R(L)k;s , let us consider the quiver T :
Let K[T ] be the path algebra of T . We de�ne the following grading onK[T ]: deg(xi) = 1; i = 1; 2; 3; 4; deg(yj) = 2; j = 1; 2;deg(tl) = 4; l = 1; 2; deg(w) = 5:Consider the following relations on the quiver T :x3x2 = x4x3 = x2x4 = x2y1 = y1x4 = y21 = 0;x4y2x2 = x2t1 = t1x4 = wx4 = x2w = 0;y1x1 = x1y1; t1x1 = x1t1; t1y1 = y1t1; wy1 = y1w; t1w = wt1;9>=>; (1.2)y2x2x1x4 = x3t2; x2x1x4y2 = t2x3; x3t2x3 = 0;t2y2x2 = �x2x1w; x4y2t2 = �wx1x4; � (1.3)x21 = � 0; if s > 2;y1; if s = 2, w2 = � 0; if k > 2;�y1t21; if k = 2. (1.4)Let E (L)k;s be the K-algebra de�ned by the quiver T with the relations(1.2){(1.4). As all these relations are homogeneous, the algebra E (L)k;s in-herits a grading from K[T ].Theorem 1.1. The Yoneda algebra Y(R(L)k;s ) is isomorphic, as a gradedalgebra, to E (L)k;s .The proof of Theorem 1.1 occupies the rest of the paper. We also givea description of the Ext-algebras of simple R(L)k;s -modules in Corollary 3.5.



104 A. I. GENERALOV, N. V. KOSMATOV2. ResolutionsTo simplify notation, we set R = R(L)k;s and E = E (L)k;s . For an R-moduleM , let : : : d1(M)�! Q1(M ) d0(M)�! Q0(M ) d�1(M)�! M ! 0denote the minimal projective resolution of M . We will write 
n(M ) forits n-th syzygy Im(dn�1(M )), n > 0. We denote by ei the idempotentsof R corresponding to the vertices i = 0; 1; 2 of Q. The correspondingindecomposable projective and simple R-modules are denoted Pi = Reiand Si = Pi=(J(R)Pi), respectively. The multiplication on the right by anelement x 2 eiRej induces a homomorphism from Pi into Pj, we denotethis homomorphism by the same letter x.We refer the reader to [2] for the main notions of the diagrammaticmethod of Benson and Carlson (see also [3, 5]). IfM is a uniserial moduleof length t with the diagramSit  � � � �  � Si1 ;we write M = U(Si1 ; : : : ; Sit).It is easily seen that the indecomposable projective modules Pi = Rei,i = 0; 1; 2, have the following diagrams (cf. [1]):P0: S0�� ��S0 S1j� j�S0 S2j� j�S0 S0j� j�... ...j� j�S0 S2�� ��S0 ; P1: S1j �S2j�S0j�S1j �...j�S0j�S1 P2: S2j�S0j�S1j �S2j�...j�S1j �S2 : (2.1)Set b = (���)k�1, d = (���)k�1, l = (���)k�1. By abuse of notation,we will use the same letters for the elements of the path algebra K[Q] aswell as for their images in R. For abbreviation, we denote a sequence ofedges in a diagram by one edge and write the composition of the original



COMPUTATION OF THE YONEDA ALGEBRAS 105edges nearby. For example, the diagrams (2.1) can be written in thisnotation as S0�� ��S0 S1�s�1� ���bS0 ; S1j ���bS1 ; S2j���dS2 :Proposition 2.1. a) The diagrams of 
0(S0) and 
1(S0) are, respec-tively, S0 and S0 S1�s�1� ���bS0 :b) Let m > 2 be an integer. Suppose m � r (mod 6) with 0 6 r 6 5.Let D be the diagram of 
m�2(S0). Then the diagram of the module
m(S0) can be obtained from D by adjoining or omitting some subdia-grams (depending on r) on both sides of D. The following table showsthe subdiagrams to adjoin (+) and to omit (�) on the left and on theright side of D:r = 0 S2� �S0 �D + S2 S0� � ��s�1S0r = 1 S0 S2�s�1� ��S0 +D + S0 S1�� ���bS0r = 2 S1 S0��b � ��S0 +D + S0��S1r = 3 S0��S1 +D � S1��S2r = 4 S1� �S2 �D + S1� �S2r = 5 S1��S2 +D � S2��S0



106 A. I. GENERALOV, N. V. KOSMATOVFor example, the diagram of 
3(S0) is obtained from that of 
1(S0)as follows (we have r = 3, ��b = �d�):S0��S1 + S0 S1�s�1� ���bS0 � S1��S2 == S0 S2�� �s�1� ��dS1 S0 :The proof of Proposition 2.1 is similar to [2] (see also [3, 4]) and is left tothe reader. Note that the diagrams of syzygies 
n(S0) have the propertycalled D-uniqueness (see [2, p. 68]). This fact can be established as in [2,Lemma 11.1].Consider the following bicomplex B�� lying in the �rst quadrant of theplane (i.e., its rows and columns are numbered by 0; 1; 2; : : :):: : : : : : : : : : : :??y� ??y��� ??y�s�1 ??ylP0 �l ����� P0 �� ����� P0 ���� ����� P0 �� ����� � � �??y��� ??y�s�1 ??y� ??y�s�1P2 �d ����� P0 � ����� P0 ��� ����� P0 � ����� P0 � ����� � � �??y�� ??y�s�1 ??y�dP1 ���b ����� P0 �� ����� P0 ��� ����� P2�??y ??y�s�1 ??y��bP0 � ����� P0 � ����� P1 : (2.2)The nonzero horizontal di�erentials �(h)ij :Bij ! Bi�1;j of the bicomplexare de�ned by the following:�(h)ij = 8>>>>>>>>>>>>><>>>>>>>>>>>>>: (�1)j�; if i � j � 1 (mod 2); j < i 6 2j + 1;(�1)j���; if i � j � 0 (mod 2); j + 1 < i 6 2j;(�1)j�s�1; if i � j � 1 (mod 2); i < j < 2i� 1;(�1)j l; if i � j � 0 (mod 2); i 6 j < 2i� 2;�; if j � 0 (mod 2); i = 2j + 2;���; if j � 1 (mod 2); i = 2j + 1;��� � b; if j = 2i � 1;� � d; if j = 2i � 2:



COMPUTATION OF THE YONEDA ALGEBRAS 107The vertical di�erentials are determined by anti-commutativity of squaresand the relations (1.1). For example, the nonzero part of the the 4i-thand (4i + 1)-th rows (i > 0) is contained between the columns 2i and8i+ 3 and has the form:B2i;4i+1


P1 ���b ����� P0 ��s�1 ����� P0 �l ����� P0 ��s�1 ����� : : :�??y �??y ���??y �??yP0 �s�1 ����� P0 l ����� P0 �s�1 ����� P0 l ����� : : :B4i;4i+1


: : : ��s�1 ����� P0 �l ����� P0 �� ����� P0 ���� ����� : : :���??y �s�1??y l??y: : : l ����� P0 � ����� P0 ��� ����� P0 � ����� : : :B8i+3;4i+1


: : : �� ����� P0 ���� ����� P0 �� ����� P0 ��� ����� P2l??y �s�1??y ��b??y: : : ��� ����� P0 � ����� P0 � ����� P1:The proof of Proposition 2.2 is similar to [4, Theorem 2] (see also[2, 3]) and is left to the reader. A straightforward veri�cation shows theexactness of the periodic sequences of Proposition 2.3.Proposition 2.2. The minimal projective resolution of the R-moduleS0 coincides with the totalization of the bicomplex (2:2).Proposition 2.3. The minimal projective resolutions of S1 and S2 arethe following:: : : ��!P1 (���)k�! P1 ��!P0 ��!P0 ��! P2 (���)k�! P2 ��!P1�!S1�!0;: : : ��!P2 (���)k�! P2 ��!P1 (���)k�! P1 ��!P0 ��!P0 ��!P2�!S2�!0:



108 A. I. GENERALOV, N. V. KOSMATOVCorollary 2.4.a) dimK ExtmR (S0; S0) = 8>>><>>>: 2 jm6 k+ 2; if m � 5 (mod 6);2 jm6 k+ 1; otherwise;b) dimk ExtmR (S0; S1) = dimk ExtmR (S2; S0) = dimk ExtmR (S1; S2)= � 1; if m � 1 or 2 (mod 6);0; otherwise;c) dimk ExtmR (S0; S2) = dimk ExtmR (S1; S0) = dimk ExtmR (S2; S1)= � 1; if m � 3 or 4 (mod 6);0; otherwise;d) dimk ExtmR (S1; S1) = dimk ExtmR (S2; S2)= � 1; if m � 0 or 5 (mod 6);0; otherwise:Remark 2.5. By Proposition 2.2, we have Qm(S0) =Li+j=m Bij whereB�� is the bicomplex (2.2). The modules in this direct sum will be alwaysordered with respect to the second index, for example, we write Q4(S0) =B31 � B22 = P2 � P0: The simple direct summands of top
m(Sk) 'topQm(Sk) will be ordered in the same way: topQ4(S0) = S2�S0 (wheretopM stands for M=Rad(M )). We call such decompositions of Qm(Sk)and topQm(Sk) the canonical decompositions. The di�erentials dm(Sk)in the minimal projective resolution of Sk will be denoted in the sequelby d(k)m , m > �1. 3. GeneratorsIn this section, we indicate a �nite set of generators for the Yonedaalgebra of R:Y(R) = E(R=J(R)) = Mm>0 2Mi;j=0ExtmR (Si; Sj):Let us recall some facts and notation related to the Yoneda algebra (seealso [3, 5]). As the R-module Sj is simple, we have ExtmR (Si; Sj) '



COMPUTATION OF THE YONEDA ALGEBRAS 109HomR(
m(Si); Sj). Let  be an element of ExtmR (Si; Sj). Its image b in HomR(
m(Si); Sj) induces a morphism of projective resolutions fl :Qm+l�1(Si) ! Ql�1(Sj), l > 1, and a homomorphism f0 : Qm�1(Si) !Pj. We have a commutative diagram:Qm(Si) ����! 
m(Si) � Qm�1(Si)??yf1 ??yb ??yf0Q0(Sj) d(j)�1����! Sj � Pj : (3.1)We see that b can be represented by the commutative square:Qm(Si) d(i)m�1����! Qm�1(Si)??yf1 ??yf0Q0(Sj) ����! Pjbecause this commutative square uniquely de�nes the map b in (3.1).Moreover, b is uniquely de�ned by providing only a homomorphism f1 :Qm(Si)! Q0(Sj) such that d(j)�1f1 annihilates Ker d(i)m�1. In this case wewrite b = sq�Qm(Si) f1�! Q0(Sj )�. The homomorphisms
l( b ) : 
m+l(Si)! 
l(Sj); 
l( b ) = flj
m+l(Si);are called the 
-translates of b . If ' 2 ExtnR(Sj ; Se) ' HomR(
n(Sj); Se),the Yoneda product ' 2 Extm+nR (Si; Se) has the image c' = b' �
n( b )in HomR(
m+n(Si); Se): Although the maps fl and the 
-translates arenot uniquely de�ned by b , it is easily seen that the resulting map into asimple module does not depend on their choice.Consider the homogeneous elements of Y(R):x1 2 Ext1R(S0; S0); x2 2 Ext1R(S0; S1);x3 2 Ext1R(S1; S2); x4 2 Ext1R(S2; S0);y1 2 Ext2R(S0; S0); y2 2 Ext2R(S1; S2);t1 2 Ext4R(S0; S0); t2 2 Ext4R(S2; S1);w 2 Ext5R(S0; S0)



110 A. I. GENERALOV, N. V. KOSMATOVde�ned as follows:bx1 = sq(Q1(S0) (1;0)�! P0); bx2 = sq(Q1(S0) (0;1)�! P1);bx3 = sq(Q1(S1) 1�! P2); bx4 = sq(Q1(S2) 1�! P0);by1 = sq(Q2(S0) (0;1)�! P0); by2 = sq(Q2(S1) 1�! P2);bt1 = sq(Q4(S0) (0;1)�! P0); bt2 = sq(Q4(S2) 1�! P1);bw = sq(Q5(S0) (0;1)�! P0):Proposition 3.1. The extension groups presented below have the fol-lowing K-bases:Ext2R(S0; S1) = hx2x1i; Ext2R(S2; S0) = hx1x4i;Ext2R(S1; S2) = hy2i; Ext3R(S0; S0) = hx1y1i;Ext3R(S0; S2)= hy2x2i; Ext3R(S2; S1)= hx2x1x4i;Ext4R(S0; S2) = hy2x2x1i; Ext4R(S0; S0) = ht1i;Ext5R(S0; S0) = hx1t1; wi; Ext5R(S1; S1) = ht2x3i;Ext2R(S0; S0) = hy1i;Ext3R(S1; S0) = hx4y2i;Ext4R(S1; S0)= hx1x4y2i;Ext4R(S2; S1) = ht2i;Ext5R(S2; S2) = hx3t2i:Proof. We consider only Ext5R(S0; S0). For the other groups,dimK ExtmR (Si; Sj) = 1 by Corollary 2.4, therefore it is su�cient to veri-fy that the given elements are nonzero in the corresponding Ext-groups,which is done in the same manner.



COMPUTATION OF THE YONEDA ALGEBRAS 111We have dx1t1 = bx1 �
1(bt1). The 
-translate 
1(bt1) is de�ned by theleft square of the commutative diagram
1(bt1): bt1:Q5(S0) d(0)4����! Q4(S0) d(0)3����! Q3(S0)� 1 00 �� �??y (1;0)??y ??y(�;0)Q1(S0) ����!d(0)0 Q0(S0) ����!(���)k P0 :The map bx1 � 
1(bt1) is described by the outer square of the followingcommutative diagram: Q5(S0) d(0)4����! Q4(S0)
1(bt1): �1 00 �� �??y ??y(0;1)Q1(S0) d(0)0����! Q0(S0)bx1: (1;0)??y ??y�s�1Q0(S2) (���)k����! P0 :Comparing the composition bx1 �
1(bt1) = sq(Q5(S0) (1;0)�! P0) and bw =sq(Q5(S0) (0;1)�! P0), we see that dx1t1 and bw are linearly independent. Itremains to note that dimK Ext2R(S0; S0) = 2 by Corollary 2.4. �Proposition 3.2. The setXL = fx1; x2; x3; x4; y1; y2; t1; t2; wg (3.2)generates the Yoneda algebra Y(R) as a K-algebra.Proof. We prove by induction on m that the groups ExtmR (Si; Sj) aregenerated by some products of elements of XL. For m 6 5, this followsdirectly from Proposition 3.1, Corollary 2.4 and the de�nition of theelements of XL. Assume that m > 6 and that our statement holds for allExtm0R (Si; Sj) with m0 < m, we will prove it for m.If j 2 f1; 2g, we notice that the multiplication on the left by y2 andby t2 induces the isomorphismsExtm�2R (Si; S1) '�! ExtmR (Si; S2);



112 A. I. GENERALOV, N. V. KOSMATOVExtm�4R (Si; S2) '�! ExtmR (Si; S1);respectively, and our statement for ExtmR (Si; Sj) follows from the induc-tion hypothesis. Similar arguments apply to the case i 2 f1; 2g. It remainsto prove our statement for i = j = 0.Using the isomorphism ExtmR (S0; S0) ' HomR(
m(S0); S0), we rep-resent an element of the group ExtmR (S0; S0) by the corresponding mapf : 
m(S0)! S0. Without loss of generality we can assume that f inducesa nonzero map on at most one simple direct summand in the canonicaldecomposition of top
m(S0) (see Remark 2.5).Case 1: m � 1 (mod 6). a) Assume that f : 
m(S0)! S0 induces zeromaps on the extreme (the left and the right) simple direct summands ofthe module top
m(S0). It follows from Proposition 2.1 that the diagramof 
m�2(S0) is a closed subdiagram in that of 
m(S0), hence 
m�2(S0)is a quotient of 
m(S0). Let � : 
m(S0) ! 
m�2(S0) be the canonicalepimorphism. Then there exists a homomorphism f 0 : 
m�2(S0) ! S0such that f = f 0�. Since � = 
m�2(~�) for some homomorphism ~� :
2(S0) ! S0, the desired statement follows from f = f 0 � 
m�2(~�) andthe induction hypothesis.b) Assume now that f induces a nonzero map on an extreme directsummand of top
m(S0). As the right one is S1, f can induce a nonzeromap only on the left one. By Proposition 2.1, the diagram of 
m(S0)contains on the left side the closed subdiagramS0 S0�s�1� ����S0 (3.3)(the edges � and � being added while constructing 
m�2(S0) from
m�4(S0) and 
m�4(S0) from 
m�6(S0)). LetM be the quotient moduleof 
m(S0) having the diagram (3.3), and let �: 
m(S0)!M denote thecorresponding epimorphism. As the diagram of 
1(S0) also contains (3.3)on the left, we have a monomorphism i:M ! 
1(S0) and can identifyMwith its image i(M ) � 
1(S0).The map f factors through �, so f = f 0� for some homomorphism f 0 :M ! S0. We claim that there exists a homomorphism f 00: 
1(S0) ! S0such that f 00i = f 0. SinceSocM ' S0 ' Soc
1(S0);



COMPUTATION OF THE YONEDA ALGEBRAS 113factoring out the socles gives the embeddingM=S0 ,! 
1(S0)=S0: More-over, we have 
1(S0)=S0 = X � Y withX = U(S0; S0; : : : ; S0) and Y = U(S1; S2; S0; : : : ; S2);and M=S0 = X � Y1 with Y1 = U(S0; S1; S2) � Y . Since SocM = S0 iscontained in Kerf 0, f 0 factors through M=S0, and the restriction of theinduced map g:M=S0 ! S0 onto Y1 is zero. Hence g can be extended(by zero on Y ) to a homomorphism g0: 
1(S0)=S0 ! S0. Let f 00 be thecomposition of g0 and the canonical epimorphism 
1(S0) ! 
1(S0)=S0.It is easy to see that f 0 = f 00i, hence f = f 00i�. The map � = i� :
m(S0) ! 
1(S0) has the form � = 
1(~�) for some ~� : 
m�1(S0) !S0. Our statement follows now from f = f 00 � 
1(~�) and the inductionhypothesis.Case 2: m � 2 (mod 6). In this case 
m�2(S0) is again a quotientof 
m(S0). As the extreme left simple direct summand of top
m(S0) isisomorphic to S1, f : 
m(S0)! S0 induces a zero map on it, and we canproceed analogously to the case 1a).Case 3:m � 3 (mod 6). LetD be the diagramof 
m�4(S0). By Propo-sition 2.1, the diagram of 
m(S0) contains D as a closed subdiagram andcan be obtained as follows:S0 S2�� �s�1� ��S1 S0 + D + S0 S2�� ��dS0 :As the extreme right simple direct summand of top
m(S0) is isomorphicto S2, f induces a zero map on it. If f induces a zero map on the extremeleft one, we can proceed again as in the case 1a).Assume now that f induces a nonzero map on the extreme left directsummand of top
m(S0). Let M be a module having the diagramS0�� � �S1 S0:We can consider M as a quotient of 
m(S0) and a submodule of 
2(S0).As in the proof of the case 1b), we �nd a factorization f = ~f � �, where�: 
m(S0)! 
2(S0) is a map such that Im� =M . It implies the requiredstatement.Case 4: m � 4 (mod 6). As in the case 3, we see that 
m�4(S0) isa quotient of 
m(S0). Since the extreme left simple direct summand of



114 A. I. GENERALOV, N. V. KOSMATOVtop
m(S0) is isomorphic to S2, f induces a zero map on it. The proof iscompleted as in the case 1a).Case 5: m � 5 (mod 6). Let D be the diagram of 
m�6(S0). In thiscase, D is a closed subdiagram of the diagram of 
m(S0), which has thefollowing form: S0 S2��� �s�1� ��S2 S0 + D + S0 S0� � � lS0 :If the given map f induces zero maps on the extreme simple direct sum-mands of top
m(S0), we apply the argument of the case 1a).If f induces a nonzero map on the extreme right direct summand of thetop
m(S0), then f goes through the moduleM de�ned by the diagramS0 S0� � � lS0 :As this module can be embedded into 
1(S0), we can �nd a factorizationf = ~f�, where �: 
m(S0) ! 
1(S0) is a map such that Im� = M , andour statement follows.Let us now assume that f induces a nonzero map on the extreme leftdirect summand of top
m(S0). In this case f goes through the moduleM de�ned by the diagram S0�� � �S1 S0 :The moduleM can be embedded into 
2(S0). Hence, we obtain a factor-ization f = ~f�, where �: 
m(S0)! 
2(S0) is a map such that Im� =M ,which implies our statement.Case 6: m � 0 (mod 6). This case is also proved by reduction to thesyzygy 
m�6(S0). If D is the diagram of 
m�6(S0), then that of 
m(S0)is obtained as follows:S0 S0l � ��S0 + D + S0 S0��� � ��s�1S0 :



COMPUTATION OF THE YONEDA ALGEBRAS 115If the given map f induces zero maps on the extreme simple direct sum-mands of top
m(S0), we can apply the argument of the case 1a). If f in-duces a nonzero map on the extreme right direct summand of top
m(S0),we can repeat the arguments of the case 1b).Finitely, assume that f induces a nonzero map on the extreme leftdirect summand of top
m(S0). We proceed as in the case 1b) and usethe module M de�ned by the diagramS0 S0l � ��S0and considered as a quotient of 
m(S0) and a submodule of 
1(S0). �Proposition 3.3. The generators (3:2) of the algebra Y(R) satisfy therelations (1:2){(1:4).Proof. Let us prove only the last relation in (1.4). The veri�cation ofthe other relations is similar and is left to the reader.Since (w2)b = bw � 
5( bw), we have to compute the 
-translate 
5( bw)of the map bw:Q5(S0)! Q0(S0):Lifting bw to a morphism of minimal projective resolutions of 
5(S0) andS0 step by step, we obtain that 
5( bw) can be represented by the matrix� 0 0 0 10 0 �(���)k�2 0� :Q10(S0)! Q5(S0);which is written, as usually, with respect to the canonical decompositionsof Q10(S0) and Q5(S0) (see Remark 2.5). Hence the composition bw�
5( bw)can be represented by( 0 0 �(���)k�2 0 ) :Q10(S0)! Q0(S0):If k > 2, this map obviously induces a zero map 
10(S0) ! S0; whichimplies w2 = 0.On the other hand,(y1t21)b = by1 �
2(bt1) �
6(bt1):Computing the 
-translates of the map bt1, we obtain
2(bt1) = ��� 0 00 1 0� ; 
6(bt1) = 0@ 0 1 0 00 0 1 00 0 0 11A ;



116 A. I. GENERALOV, N. V. KOSMATOVand hence, (y1t21)b = ( 0 0 1 0 ). We conclude for k = 2 that y1t21 =�w2. �Let E = E (L)k;s = K[T ]=I be the graded K-algebra de�ned in Sec-tion 1, where I � K[T ] is the ideal de�ned by the relations (1.2){(1.4).By Propositions 3.2 and 3.3, there exists an epimorphism of graded K-algebras E �! Y(R) which takes the canonical generators of the alge-bra E (represented by the edges of T ) to the corresponding elements ofXL � Y(R).Let E =Lm>0 Em be the decomposition of E into homogeneous directsummands. Let "i denote the idempotents of K[T ] corresponding to thevertices i = 0; 1; 2 of T ; we use the same notation for their images in E .Theorem 1.1 now follows from the following result.Proposition 3.4. For any i; j 2 f0; 1; 2g and m > 0, we havedimK("iEm"j) = dimK ExtmR (Sj ; Si): (3.4)Proof. For m 6 5, the relations (3.4) are veri�ed directly. Let us assumethat m > 5. We suppose additionally that k > 2 and s > 2. The caseswhere k = 2 or s = 2 are proved in a similar way, and we leave theirproof to the reader.a) First we consider the case i = j = 0. It follows from the relations(1.2){(1.4) that the K-algebra "1E"1 is generated by elements x1, y1, t1,w, and any nonzero monomial in "1Em"1 (i.e., the image of a path inK[T ]) is equal to one of the following:y�1 tr1(x1w)t; y�1 tr1(wx1)t; y�1 tr1x1(wx1)t; y�1 tr1w(x1w)t; (3.5)with � 2 f0; 1g, r; t > 0.Put dm = dimK "0Em"0. We claim that dm � dm�4 is equal to thenumber of monomials in (3.5) for which r = 0. Indeed, the monomials ofdegree m in (3.5) form a K-basis of "0Em"0. Replacing r by r + 1 in theelements of the similar basis of "0Em�4"0 gives those basis elements of"0Em"0 for which r > 0: It shows that the basis elements of "0Em"0 forwhich r > 0, are in one-to-one correspondence with the basis elementsof "0Em�4"0, which implies our claim. If r = 0, then we have for themonomials in (3.5)m = 2� + 6t; or m = 2� + 6t+ 1; or m = 2� + 6t+ 5;



COMPUTATION OF THE YONEDA ALGEBRAS 117whence we obtain thatdm � dm�4 =8><>: 1; if m � 3 or 5 (mod 6);0; if m � 4 (mod 6);2; otherwise:Corollary 2.4 a) implies that the sequence fdimK ExtmR (S0; S0)g also sat-is�es a similar recursive relation. The assertion (3.4) can be now estab-lished by induction on m.b) Assume now that i = 1; j = 0. It is clear that any nonzero monomialin "1Em"0 is equal to x2 � u for some monomial u 2 "0Em�1"0. As x2annihilates y1; t1 and w, the monomial u have to be of the formu = (x1w)r or u = x1(wx1)r; (3.6)where r 2 N. Consequently, m � 1 = 1 + 6r or m� 1 = 6r, hencedimK "1Em"0 = � 1; if m � 1 or 2 (mod 6);0; otherwise:The relation (3.4) is now obtained from Corollary 2.4b).c) Let i = 2, j = 0. In this case any nonzero monomial in "2Em"0 isequal to y2x2 � u for some monomial u 2 "2Em�3"0. As in the case b), uhas the form (3.6), and we see that m � 3 � 0 or 1 (mod 6). Corollary2.4 c) gives the relation (3.4).d) Suppose that i = j = 1. A nonzero monomial f in "1E"1 is eitherf = x2 � f 0 or f = t2 � f 0 for some monomial f 0. In the �rst case, f has tobe of the form f = x2 �u �x4 � v, where u 2 "0E"0, v 2 "2Em"1. Moreover,it follows from (1.2) that u = x2(wx1)r , r 2 N, and v = y2 �v0, v0 2 "1E"1.Hence, we have f = x2x1(wx1)rx4y2 � v0. The relations (1.3) imply that(wx1)rx4 = (�1)rx4(y2t2)r ; (x2x1x4)(y2t2)r = (t2y2)r(x2x1x4):Consequently, in any case we can represent the given monomial f in theform f = t2x3 � g or f = t2y2 � g for some g 2 "1E"1. From this, it followsthat "1E"1 is generated as a K-algebra by the elements � = t2x3 and� = t2y2 which satisfy relations �2 = 0, �� = ��. It is easily seen thatdimK "1Em"1 = � 1; if m � 0 or 5 (mod 6);0; otherwise:Using Corollary 2.4b), we deduce (3.4).



118 A. I. GENERALOV, N. V. KOSMATOVe) Let i = 2; j = 1. We begin by proving that any nonzero monomialf 2 "2E"1 can be represented in the form f = y2 � f 0, where f 0 2 "1E"1.Indeed, if f = x3 � u with u 2 "1E"1, the relations (1.2) and (1.3) implythat f = x3t2 � u0 = y2x2x1x4 � u0 for some u0 2 "2E"1. Consequently, wehave dimK "2Em"1 = dimK "1Em�2"1= � 1; if m� 2 � 0 or 5 (mod 6);0; otherwise; = � 1; if m � 1 or 2 (mod 6);0; otherwise;= dimK ExtmR (S1; S2)by Corollary 2.4b).f) Assume i = j = 2. As in the case d), we observe that K-algebra"2E"2 is generated by the elements � = x3t2; � = y2t2 which satisfy therelations �2 = 0, �� = ��, and we obtain (3.4) for this case.g) Assume i = 2, j = 0. Any nonzero monomial f 2 "0E"2 has theform f = u � x4 � v, where u 2 "0E"0, v 2 "2E"2. Since y1x4 = 0 = t1x4,x4x3 = 0, we see that elements u, v have the form u = x1(wx1)r oru = (wx1)r , r > 0, and v = (y2t2)t, t > 0 (see the proof of a) and f)above). Using the relation(wx1)rx4 = (�1)rx4(y2t2)r;which is a consequence of a relation in (1.3), we see that f = x1x4(y2t2)lor f = x4(x2t2)l, l 2 N. Hence, we havedimK "0Em"2 = � 1; if m � 1 or 2 (mod 6);0; otherwise;= dimExtmR (S2; S0)(see Corollary 2.4b)).h) Finally, let i = 1; j = 2. Any nonzero monomial f 2 "1E"2 has theform f = u � t2 � v or f = u � x2x1x4 � v, where u 2 "1E"1, v 2 "2E"2. Asin the case g), using the relations (1.2) and (1.3), we obtainf = (t2y2)r � t2 � (x3t2)� � (y2t2)t;where � 2 f0; 1g, r; t > 0. Hence,deg f = 4 + 5� + 6(r + t) � 3 or 4 (mod 6);



COMPUTATION OF THE YONEDA ALGEBRAS 119and the required statement follows from Corollary 2.4 c). �Consider the graded K-algebra Khx; y; t; wi withdeg x = 1; deg y = 2; deg t = 4; degw = 5;and the subsetM = fxy � yx; xt� tx; yt � ty; yw � wy; tw � wt; y2g � Khx; y; t; wi:Let Mk;s = 8>>><>>>: M [ fx2; w2g; if k > 2 and s > 2;M [ fx2 � y; w2g; if k > 2 and s = 2;M [ fx2; w2 + yt2g; if k = 2 and s > 2;M [ fx2 � y; w2 + yt2g; if k = s = 2:Let Ik;s � Khx; y; t; wi be the ideal generated by the set Mk;s; and Bk;sbe the quotient algebra Khx; y; t; wi=Ik;s. Then Bk;s inherits a gradingfrom Khx; y; t; wi.Corollary 3.5. There are the following isomorphisms of graded K-algebras:a) E(S0) ' Bk;s;b) E(S1) ' E(S2) ' K[�; �]=(�2), where deg � = 5, deg � = 6.Proof. If k > 2 and s > 2, then the above statements follow immediatelyfrom the proof of Proposition 3.4. If k = 2 or s = 2, the argument issimilar. �References1. K. Erdmann,Blocks of tame representation type and related algebras. | LectureNotes in Math., Vol. 1428, Berlin, Heidelberg (1990), 311 p.2. D. J. Benson, J. F. Carlson, Diagrammatic methods for modular representationsand cohomology. | Commun. Algebra 15, No. 1/2 (1987), 53{121.3. A. I. Generalov, Cohomology of algebras of dihedral type, I. | Zap. Nauchn.Semin. POMI 265 (1999), 139{162.4. O. I. Balashov, A. I. Generalov, The Yoneda algebras for some class of dihedralalgebras. | Vestnik St.Peterburg Univ., Ser. 1, Vyp. 3. No. 15 (1999), 3{10.5. O.I. Balashov, A. I. Generalov, Cohomology of algebras of dihedral type, II. |Algebra Analiz 13, No. 1 (2001), 3{25.6. A. I. Generalov, Cohomology of algebras of semidihedral type, I. | AlgebraAnaliz 13, No. 4 (2001), 54{85.7. M. A. Antipov, A. I. Generalov,Cohomology of algebras of semidihedral type, II.| Zap. Nauchn. Semin. POMI 289 (2002), 9{36.
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