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Abstract

One classical approach to ensuring memory safety of C programs is based on storing
block metadata in a tree-like datastructure. However it becomes relatively slow when
the number of memory locations in the tree becomes high. Another solution, based
on shadow memory, allows very fast constant-time access to metadata and led to de-
velopment of several highly optimized tools for the detection of memory safety errors.
However, this solution appears to be insufficient for evaluation of complex memory-
related properties of an expressive specification language.

In this work, we address memory monitoring in the context of runtime assertion
checking of C programs annotated in E-ACSL, an expressive specification language
offered by the FRAMA-C framework for the analysis of C code. We present an original
combination of a tree-based and a shadow-memory-based techniques that reconciles
the efficiency of shadow memory and the higher expressiveness of annotations that
can be evaluated using a tree of metadata. Shadow memory with its instant access to
stored metadata is used whenever small shadow metadata suffices to evaluate required
annotations, while richer metadata stored in a compact prefix tree (Patricia trie) is used
for evaluation of more complex memory annotations supported by E-ACSL. We also
present a preliminary static analysis step that determines which variables should be
monitored (and in which way) in order to be able to evaluate annotations present in the
program.

The combined monitoring technique and the pre-analysis step have been imple-
mented in the runtime assertion checking tool for E-ACSL. Our initial experiments
confirm that the proposed hybrid approach leads to a significant speedup with respect
to an earlier implementation based on a Patricia trie alone without any loss of preci-
sion, while the proposed static analysis reduces the monitoring of irrelevant variables
and further improves the performances of the instrumented code.
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1. Introduction

Over the past few decades, memory safety of C programs has been addressed in
numerous research efforts and tools. Many tools for dynamic verification answer ques-
tions regarding the memory of programs: how much memory is used, is memory cor-
rectly accessed, allocated and deallocated, etc. Such tools address memory-related
errors, including invalid pointers, out-of-bounds memory accesses, uninitialized vari-
ables and memory leaks, that are very common. A study for IBM MVS software [1]
reports that about 50% of detected software errors were related to pointers and array
accesses. This is particularly an issue for a programming language like C that is para-
doxically both the most commonly used for development of critical system software
and one of the most poorly equipped with adequate protection mechanisms. The C de-
veloper remains responsible for correct allocation and deallocation of memory, pointer
dereferencing and manipulation (like casts, offsets, etc.), as well as for the validity of
indices in array accesses.

Among the most useful techniques for detecting and locating software errors, run-
time assertion checking has become a widely-used programming practice [2]. Runtime
checking of memory-related properties can be realized using systematic monitoring of
memory operations. However, to do so efficiently is difficult, because of the large num-
ber of memory accesses of a normal program. An efficient memory monitoring for C
programs is the purpose of the present work.

This paper addresses the memory monitoring of C programs for runtime assertion
checking in FRAMA-C [3], a platform for the analysis of C code. FRAMA-C offers an
expressive executable specification language E-ACSL and a translator, called E-ACSL2C
in this paper, that automatically translates an E-ACSL specification into C code [4]. In
order to support memory-related E-ACSL annotations for pointers and memory loca-
tions (such as being valid, initialized, in a particular block, with a particular offset,
etc.), we need to keep track of relevant memory operations previously executed by the
program. E-ACSL2C comes with a runtime memory monitoring library for recording
and retrieving necessary information (memory block metadata) on the state of the pro-
gram’s memory locations. During the translation of an original C code annotated with
E-ACSL specification into a new C code, E-ACSL2C instruments the original source
code by inserting necessary calls to the library. It realizes a non-invasive source code
instrumentation, that is, monitoring routines do not change the observed behavior of
the program. In particular, it does not modify the memory layout and size of vari-
ables and memory blocks already present in the original program, and may only record
additional monitoring data in a separate memory store.

The current version of the library [5] records memory block metadata in a com-
pact prefix tree (Patricia trie) [6], that appeared to be very efficient compared to other
datastructures constructed on-demand. While the current metadata storage was subject
to a careful choice of datastructures and optimizations [5], it remains one of the bot-
tlenecks in terms of performance for programs instrumented by E-ACSL2C, which can
be subject to a slowdown of more than 100x when the number of memory locations in
the tree becomes high. Lookup operations in the Patricia trie still imply traversing the
tree from the root to the node which contains the metadata needed, and thus several
memory accesses.
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Recent advanced tools for the detection of memory safety issues used an alterna-
tive approach, based on a statically allocated fixed array for metadata that allows a
fast offset-based access [7, 8]. Such an array is called a shadow memory, since each
address of the user-memory is shadowed by an element of this array. This approach
assumes that a sufficiently long array for shadow memory can be allocated in the pro-
gram memory, that is possible for the great majority of modern programs (except for
architectures with very little memory available, or for programs using dispersed fixed
addresses). In the context of runtime assertion checking of E-ACSL annotations, this
approach alone would not be sufficient to store all metadata necessary to support var-
ious memory-related predicates offered by E-ACSL. Indeed, it can address properties
on validity and initialization of memory locations, but it stores no information about
the base address or the size of a given memory block, which is required to treat some
memory-related E-ACSL predicates.

Goals. The first objective of this paper is to study how the existing tree-based memory
monitoring solution can be improved using the shadow memory approach. We present
an original combination of a tree-based and a shadow-memory-based techniques that
reconciles the efficiency of shadow memory and the higher expressiveness of annota-
tions that can be evaluated using a tree of metadata. Rather than providing detailed
(but more difficult to follow) algorithms, we give comprehensive design principles of
the combined technique. One current limitation of the technique is related to the de-
tection of some subtle temporal errors1 that are not yet fully supported. As usually in
instrumentation-based techniques, we also assume that the complete source code of the
target program is available.

Exhaustive memory monitoring of all program variables can be costly and is not
necessary when only some of the variables occur in memory-related annotations. Our
second objective is to describe another optimization that reduces irrelevant monitoring
with respect to the user-defined verification objectives. We present a preliminary static
analysis step (also called pre-analysis below) that computes an over-approximation
of the set of memory locations whose monitoring is required to evaluate the given an-
notations. Moreover, the same pre-analysis step also determines which program vari-
ables should be monitored by the tree-based technique. We implement the combined
monitoring technique and the pre-analysis step in the runtime assertion checking tool
E-ACSL2C of FRAMA-C [3] and evaluate them on several experiments.

Contributions. The contributions of this paper include

• a classification of memory-related predicates of E-ACSL with regard to their
monitoring level as byte-level and block-level,

• design and implementation for E-ACSL2C of a shadow memory storage of block
metadata for byte-level annotations,

1For instance, in a progam fragment p=malloc(N); q=p; free(p); p=malloc(N);, pointer q that
becomes dangling after the memory deallocation can be erroneously reported as valid again after the second
allocation if it happens to allocate a new block at the same location.
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• rough complexity evaluation for the Patricia trie and the shadow memory store,

• an original hybrid memory monitoring solution combining both kinds of storage,

• a rigorous semi-formal presentation of the pre-analysis step,

• implementation of the combined monitoring and pre-analysis for E-ACSL2C,

• evaluation of the proposed optimizations on several examples.

The present paper is an extended version of an earlier conference paper [9], completed
in particular by a description of the pre-analysis (Sec. 5), a more detailed presentation
of the E-ACSL specification language (Sec. 2), as well as additional experiments and
analysis of results (Sec. 6).

Outline. The paper is organized as follows. Sec. 2 presents the E-ACSL specification
language, while Sec. 3 describes the translation of the annotations into instrumented C
code with E-ACSL2C. Sec. 4 introduces the monitoring level of memory-related predi-
cates and describes the tree-based, the shadow-memory-based, and the hybrid monitor-
ing solutions. Sec. 5 presents the pre-analysis step. These solutions are evaluated and
compared in Sec. 6. Finally, Sec. 7 presents some related work, and Sec. 8 concludes
the paper.

2. The E-ACSL Specification Language

Overview of E-ACSL. This section presents E-ACSL [4, 10], an executable specifica-
tion language designed to support runtime assertion checking2 in FRAMA-C.

FRAMA-C [3] is a framework dedicated to the analysis of C programs that offers
various analyzers, such as abstract interpretation based plugin VALUE for value anal-
ysis, dependency analysis, program slicing, JESSIE and WP plugins for proof of pro-
grams, etc. ACSL [11] is a behavioral specification language shared by all FRAMA-C
analyzers. It is inspired by JML [12, 13] and takes the best of the specification lan-
guages of earlier tools CAVEAT [14] and CADUCEUS [15].

ACSL is sufficiently rich to express most functional properties of C programs. It has
already been used in many projects, including large-scale industrial ones [3]. It is based
on a typed first-order logic in which terms may contain pure (i.e. side-effect free) C
expressions and special keywords. An EIFFEL-like contract [16] may be associated to
each function in order to specify its pre- and postconditions. The contract can be split
into several named guarded behaviors. ACSL annotations also include assertions, loop
invariants and loop variants, definitions of (inductive) predicates, axiomatics, lemmas,
logic functions, data invariants and ghost code.

To illustrate ACSL, let us consider the C function allZeros of Fig. 1 annotated
in ACSL. It checks whether all elements of given array t of size n are equal to 0 and
returns a nonzero value in that case, and 0 otherwise. The function contract includes a

2Runtime annotation checking would be here a more suitable term since various kinds of annotations are
supported.
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1 /*@ requires n >= 0 && \valid( t + (0 .. n-1) );
2 @ assigns \nothing;
3 @ ensures \result <==> ( \forall integer i ; 0 <= i < n ==> t [ i ] == 0 );
4 @*/
5 int allZeros( int t[], int n ){
6 int k;
7 /*@ loop invariant \forall integer i ; 0 <= i < k ==> t [ i ] == 0;
8 @ loop invariant 0 <= k <= n;
9 @ loop assigns k;

10 @ loop variant n-k;
11 @*/
12 for( k = 0; k < n; k++ ){
13 if( t[k] != 0 )
14 return 0;
15 }
16 //@ assert \forall integer i ; 0 <= i < n ==> t [ i ] == 0;
17 return 1;
18 }

Figure 1: Function allZeros annotated in ACSL, returning a nonzero value if and only if all elements in
the given array t of n integers are zeros

precondition (line 1) saying that t should be a valid array with n ≥ 0 allocated elements
(that is, these elements can be safely read and written). The postcondition at line 3
states that the returned value is nonzero if and only if all elements of t are zero. The
frame rule (line 2) ensures that the function does not modify any non-local variable.
The loop annotations specify the loop invariant (lines 7–8), loop variant (giving an
upper bound on the number of remaining loop iterations, line 10) and the variables
modified in the loop (line 9). The FRAMA-C/WP plugin can automatically prove that
this function is correct with respect to the given specification.

E-ACSL [4, 10] is a large subset of ACSL that preserves ACSL semantics in the
following sense. Every valid (resp. invalid) predicate in E-ACSL is valid (resp. invalid)
in ACSL. Conversely, every valid (resp. invalid) predicate in ACSL is either valid (resp.
invalid) or undefined in E-ACSL. Undefined predicates are those which would lead,
according to the C standard [17], to an undefined runtime behavior when executed (e.g.
predicates containing a division by zero or derefencing an invalid pointer). Indeed, the
E-ACSL language is executable: its annotations can be translated into C monitors and
executed at runtime. This makes it suitable for runtime assertion checking.

The requirement of being executable brings some natural limitations on ACSL an-
notations that can be supported in E-ACSL. E-ACSL syntactically limits quantifications
to range over finite domains of integers in order to be computable. Loop invariants
in E-ACSL lose their inductive nature: a loop invariant in E-ACSL is equivalent to two
assertions: the first one before entering the loop and the second one at the end of each
iteration of the loop body. In E-ACSL there are no lemmas (which usually express non-
executable mathematical properties) nor axiomatics (non-executable by nature3). There
is also no way to express termination properties of a loop or a recursive function, since

3It would be actually possible to generate executable code for some axiomatics, in particular those cor-
responding to (simple) inductive schemes. However, it is unclear what precise subset of ACSL axiomatics
could be reasonably supported in E-ACSL. This study is left as future work.
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E-ACSL Its semantics Monitoring
keyword level

\base_addr(p) base address of the block containing pointer p Block
\block_length(p) size (in bytes) of the block containing pointer p Block
\offset(p) offset (in bytes) of p in its block Block
\valid_read(p) is true iff reading *p is safe byte
\valid(p) is true iff reading and writing *p is safe byte
\initialized(p) is true iff *p has been initialized byte

Figure 2: Memory-related E-ACSL constructs currently supported by E-ACSL2C. In the last three constructs,
p must be a non-void pointer.

1 int main(){
2 int arr[10]={3,1,4,1,5,9,2,6,5,3}, subarr[3]={4,1,5}, *result;
3 unsigned len=10, sublen=3;
4 //@ assert \forall int i; 0 <= i < len ==> \valid(arr+i);
5 //@ assert \forall int j; 0 <= j < sublen ==> \valid(subarr+j);
6 // search an occurrence of the list subarr in the list arr
7 unsigned i, j, found = 0;
8 for(i = 0; i <= len-sublen; i++){
9 found = 1;

10 for(j = 0; found && j < sublen; j++)
11 if(arr[i+j] != subarr[j])
12 found = 0;
13 if(found)
14 break;
15 }
16 if(found){
17 result = arr+i; // found, result points to the occurrence
18 // check the result
19 //@ assert \base_addr(arr) == \base_addr(result);
20 //@ assert \offset(arr)<=\offset(result)<=\offset(arr)+(len-sublen)*sizeof(int);
21 //@ assert \forall int j; 0 <= j < sublen ==> result[j] == subarr[j];
22 } else
23 result = (void*)0; // not found, NULL
24 }

Figure 3: Program findSubarray that looks for an occurrence of array subarr with sublen integers
as a subarray in array arr with len integers, and assigns to result the pointer to such an occurrence if
found

detecting non-termination at runtime in finite time is not possible. All other features of
ACSL are fully supported in E-ACSL, including mathematical integers, predicates and
functions over C pointers. We refer the reader to [10] for a systematic description of
E-ACSL constructs.

The first two columns of Fig. 2 present some memory-related annotations supported
by E-ACSL. (The third column will be explained in Section 4.) We use the term (mem-
ory) block for any (statically, dynamically or automatically) allocated object. A block
is characterized by its size and its base address, that is, the address of its first byte. The
offset of a pointer inside its block is computed with respect to the base address.

Example. Fig. 3 contains a toy example illustrating memory-related predicates of
E-ACSL. The code at lines 6–17, 22–23 checks if the array of integers arr contains an-
other array subarr as a subarray. If an occurrence of the subarray is found, result
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will point to the first element of such an occurrence. Otherwise, it will be null. For the
given values of arrays and their lengths (lines 2–3), the sublist subarr will be found
starting from index 2 in arr. This simplified example is inspired by the strstr stan-
dard library function that looks for a substring in a given string. The assertion at line 4
of Fig. 3 states that the cells at indices 0..len-1 of array arr must be valid, while
that of line 5 checks the validity of elements in subarr. The assertions at lines 19–21
ensure that result points to an occurrence of subarr in arr. We write them in
the most general form for any values of arrays and covering the case where the arrays
can be part of bigger blocks, so arr is not necessarily a base address itself like in this
toy example. We check that arr and result belong to the same block (line 19), that
result points to an element inside the appropriate part of arr (line 20) and that this
element starts indeed an occurrence of the subarray subarr (line 21).

3. Runtime Assertion Checking of E-ACSL Annotations

Instrumentation of C code with E-ACSL2C. Translation into C of basic E-ACSL fea-
tures (including overflow-free arithmetic operations for integers, behaviors, quantifi-
cations over finite sets, some special keywords, values at the Pre, Post or any labeled
state, etc.) relies on a non-invasive instrumentation4 of C code by E-ACSL2C as de-
scribed in [4]. However, runtime assertion checking of E-ACSL specifications involving
memory-related constructs of Fig. 2 requires particular care.

In order to evaluate memory-related E-ACSL annotations (cf. Fig. 2), we record
metadata on validity, initialization, size, etc. of memory locations during program
execution in a dedicated data store, that we call the store. The instrumented code relies
on a memory monitoring library that provides primitives for both evaluating memory-
related E-ACSL annotations (by making queries to the store) and recording in the store
all necessary data on allocation, deallocation and initialization of memory blocks. Thus
E-ACSL2C inserts calls to library primitives for two purposes:

• to translate into C and evaluate memory-related E-ACSL annotations, and

• to record memory-related program operations (allocation, deallocation, initial-
ization) in the store.

For instance, assuming sizeof(int) is 8 bytes, the predicate \valid(arr+i) at
line 4 of Fig. 3 is translated into a call to a library primitive __valid(arr+i, 8)
that is supposed to query the store and to determine if the pointer arr+i is valid.
It can be determined since E-ACSL2C records the automatic allocation of an array of
10 integers by inserting another library call __store_block(arr, 8*10) after
the allocation at line 2. It also deregisters this allocation from the store by inserting
a library call __delete_block(arr) at the end of the scope. Similarly, all other
memory-related operations (static, dynamic and automatic allocations, deallocations
and initializations) are instrumented as well, as presented in more detail in the example
of Sec. 5 and in [5].

4A formal description of a translation similar to E-ACSL2C in a different context (test generation instead
of monitoring) can be found in [18].
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0010****

00100110 00101***

00101001 00101101

a) 0010****

0010011*

00100110 00100111

00101***

00101001 00101101

b)

Figure 4: Example of a compact prefix tree (Patricia trie) a) before, and b) after inserting 00100111

Two ways to optimize the instrumented code. In this instrumentation-based approach,
frequent calls to library primitives can significantly decrease the performance of the
instrumented program. One way to reduce this slow-down is to reduce the number of
library calls, that is, to restrict the monitoring to memory locations that are necessary
to evaluate the existing memory-related annotations, and avoid the monitoring of irrel-
evant ones. E-ACSL2C offers a pre-analysis step that performs a backward data-flow
analysis computing an over-approximated set of memory locations that are sufficient
to monitor in order to verify memory-related annotations. For example, to evaluate the
annotations of the program in Fig. 3 it would be sufficient to monitor the locations
pointed by arr, subarr and &result (the last one being required e.g. to check
if result is valid before dereferencing result at line 21). The data-flow analysis
will indeed exclude from monitoring the locations at addresses &len, &sublen, &i
and &j. If the assertion of line 5 were removed from the program, subarr would
be excluded from monitoring as well, and thus only arr and &result would be
monitored. The pre-analysis step is described in detail in Section 5.

Another way to improve the performance of instrumented code is providing an
efficient design of the store, since the efficiency of the instrumented code strongly
depends on the speed of the library. This is the purpose of the following section.

4. Hybrid Memory Monitoring

This section presents our hybrid memory monitoring solution. First, we introduce
the notions of byte-level and block-level monitoring. Then we present the tree-based
storage and the shadow-memory-based storage approaches, give some complexity eval-
uation insights and descibe the proposed combination. Finally, we illustrate our solu-
tion on an example.

Byte-Level and Block-Level Monitoring. Memory-related annotations of E-ACSL pre-
sented in Fig. 2 can be classified into two groups. On the one hand, the predicates
related to validity and initialization of the memory location referred to by p do not
require any information of the relative position (offset) of p in its block, or the size or
base address of this block. Local (validity or initialization) information for the specific
bytes composing *p is sufficient to evaluate these predicates. We say that these pred-
icates require byte-level monitoring (as indicated in the third column of Fig. 2). On
the other hand, local information does not suffice for the first three predicates whose
evaluation requires global block characteristics: base address and size. We say that
such predicates require block-level monitoring.

For instance, the assertions at lines 4–5 in Fig. 3 include only byte-level predicates,
while the assertions at lines 19–20 include block-level constructs. Since the assertion at
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line 5 is the only assertion to be evaluated for subarr (or its aliases), byte-level mon-
itoring of the array subarr would be sufficient. The array arr requires block-level
monitoring because of the assertions at lines 19–20. The required level of monitor-
ing of program variables can be determined by the pre-analysis step as we show in
Section 5.

Let us now present a tree-based and a shadow-memory-based storage of user mem-
ory metadata, as well as the hybrid memory monitoring solution we propose to support
memory-related annotations of E-ACSL.

Tree-Based Storage of Metadata. A previous work [5] proposed a memory monitor-
ing solution for E-ACSL based on a compact prefix tree (Patricia trie) [6] for storing
block metadata. The keys of tree nodes are base addresses (that is, 32-bit or 64-bit
words) or address prefixes. Any leaf contains a block metadata with the block base ad-
dress. Routing from the root to a block metadata is ensured by internal nodes, each of
which contains the greatest common prefix of base addresses stored in its successors.
Fig. 4a illustrates a Patricia trie, for simplicity, over 8-bit addresses. It contains three
blocks in its leaves (only block base addresses are shown here), and greatest common
prefixes in internal nodes. A “*” denotes one of undefined bits following the greatest
common prefix. Fig. 4b presents another trie obtained from the first one by adding
the base address 00100111, that required to create a new internal node 0010011*.
Conversely, removing 00100111 from the trie of Fig. 4b would give that of Fig. 4a.

Although the Patricia trie came out on top out of the different on-demand-construc-
ted datastructures which were evaluated during the design of the store [5], it has still
a significant cost attached to updating the store while the verified program is running,
as well as the cost of querying the store to retrieve the metadata. The trie is a tree
structure, and each level of the tree explored during lookup incurs at least one memory
read. This means that programs using a big number of variables will have a much
longer lookup time for metadata than a program using a smaller set of variables.

An advantage of this datastructure is a potentially big amount of block metadata that
can be attached to a node for all required information, including base address, validity,
block size, initialized bytes, dynamic (freeable) or non-dynamic origin, writable or
read-only, etc. Therefore, this solution can support both byte-level and block-level
monitoring.

Shadow-Memory-Based Storage of Metadata. An efficient alternative to a tree-based
storage is to use a linear structure with an offset-based access to metadata. Such a store
is called a shadow memory [7, 8], since each address of the user-memory is shadowed
by an element of this structure. A shadow memory is a large array, such that an address
of the user-memory can be associated with an element of this array. The mapping
Sh(p) of a user memory address p to the address in the shadow memory where the
corresponding metadata is stored is basically a linear mapping:

Sh(p) = Sh Base + p ⋅ Scale

obtained by a simple offset Sh Base with a scale (if more, or less, than one byte of
shadow memory should be associated to each byte of the user memory). It can be
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Program Memory Layout

Sh

Sh

Stack
↧

ShadowStack

ShadowHeap

ShadowData

ShadowText

↥
Heap
Data
Text 0

Figure 5: Metadata storage based on shadow memory

noted that if Scale is a power of 2, then the multiplication can be performed by a rapid
bitshift.

The design of the new shadow-memory-based store for memory monitoring with
E-ACSL is illustrated in Fig. 5. In a standard memory layout of the program execution
under Linux, most user-created memory allocations tend to cluster in the top and bot-
tom of the addressable space. The stack sits in the top and grows downwards, while the
text and data segments are fixed in the bottom, with dynamically allocated memory on
top of them growing upwards. The areas in the middle of the memory are rarely used
except for the mapping of dynamically linked libraries, which are actually not fully
supported by the store. Since the addressable memory of a program is far bigger than
what most programs really use during execution, a linear structure that covers a portion
of the upper area and the lower area, but ignores the middle area, can shadow the mem-
ory actually used by most programs. We allocate such a block for the shadow memory
whose size was set to the largest continuous mapping returned by mmap. It is divided
into two parts: the higher one, ShadowStack, to store metadata of the stack, and the
lower one, containing ShadowText, ShadowData and ShadowHeap, for the metadata
of the corresponding three areas. Gray areas in Fig. 5 show memory zones that are
unaddressable and/or not represented by the shadow memory store. An access to the
metadata for an address p is preceded by an address check, that detects if p does not
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belong to the address intervals modeled by the shadow memory.
Separate bits of the shadow of a byte are used to represent its validity and initializa-

tion status. The bytes of each newly allocated block are first marked, one after another,
as valid and uninitialized. When some bytes are assigned a value, each of these bytes
is marked as initialized. Finally, when the block is deallocated, each of its bytes is
marked as invalid in the shadow memory. In this way, validity and initialization of
memory locations can be efficiently updated and evaluated during the execution of the
instrumented code.

If the metadata of a block cannot be found to set validity or initialization, then it
means that the block is not in the area covered by the shadow memory. In this case the
memory monitoring library stops the execution of the program with a warning.

Thus, a limitation of shadow memory techniques is the requirement to allocate
a long continuous memory block to store the metadata. Indeed, to be efficient, the
shadow memory is not constructed on-demand like the Patricia trie, it must be allocated
from the beginning until the end of the program. For example, if one byte of metadata is
stored for each byte of memory used by the analyzed program, then half of the memory
must be allocated to the memory monitoring library. This can be infeasible for some
programs with strong memory constraints (e.g. using dispersed fixed addresses). Since
most programs do not have such constraints and do not use most of the available virtual
memory, it is often possible to allocate a sufficiently long continuous memory block
for shadow memory.

In the context of runtime assertion checking for an expressive specification lan-
guage like E-ACSL, another important limitation of the shadow memory is that it is only
suitable for byte-level monitoring since metadata is associated to each unique byte. As-
sociating all block metadata to each byte would need even more shadow memory and
appeared to be too costly in terms of memory for our purpose.

Complexity Evaluation Insights. To better understand the strong and the weak points
of both techniques before describing their combination, let us give rough upper bounds
on complexity of additional memory monitoring code in both cases. For simplicity,
we do not consider cache related issues (that could also impact final performance), and
suppose we monitor and evaluate only validity information without pre-analysis on a
64-bit architecture. Let A be the number of (dynamic, static and automatic) allocations
of memory blocks, L be the maximal size of these blocks,D be the number of dealloca-
tions, and V the number of evaluations of a \valid predicate for locations (again, of
maximal length of L bytes). All numbers are counted over the whole program execu-
tion. Each of these operations requires a lookup to find the place of the corresponding
(added, deleted or searched) node in the trie. Let H be the maximal height of the Pa-
tricia trie, so H ≤ 1 + 64. Moreover, if the trie is balanced (that is not at all ensured for
the Patricia trie) and contains at mostN blocks stored in its leaves, thenH ≤ 1+ logN ,
otherwise, in an unbalanced tree, we have H ≤ 1 +N . Let ma and md be the number
of steps required by node allocation and deallocation for a node insertion or removal,
while ISh denotes the number of steps for shadow memory initialization. The number
of additional operations for monitoring allocations, deallocations and validity checks
using a Patricia trie can be (very roughly) bounded by

≤ A ⋅ (H +ma) +D ⋅ (H +md) + V ⋅H, (1)
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not depending on L, while the shadow memory store would lead to

≤ ISh +A ⋅L +D ⋅L + V ⋅L (2)

additional steps, each of the block bytes being treated separately. These estimates
illustrate that the Patricia trie can be expected to be less efficient when H becomes
high and L remains low (i.e. many small memory blocks are monitored), and more
efficient when the trie remains small while high block sizes (or, for fast programs,
shadow initialization ISh) penalize the shadow memory approach.

The Combined Monitoring Solution. The objective of the combined memory monitor-
ing solution is to reconcile the benefits of both tree-based and shadow-memory-based
storage within the same library. As we have explained above, the Patricia trie is often
slower but supports most expressive memory-related annotations. On the other hand,
the shadow-memory technique is usually much faster, but is not suitable for block-
level monitoring. Let us present the main principles of the proposed combined memory
monitoring solution.

Metadata for a newly allocated block should be recorded using the following prin-
ciples:

P1 Metadata of all memory locations that require block-level monitoring should be
stored in the Patricia trie store.

P2 For memory locations that require byte-level monitoring, their metadata are typ-
ically stored in the shadow memory store.

The required level of monitoring for program memory locations is statically computed
by the pre-analysis step presented in Sec. 5.

In addition, there are some specific cases and optimizations where the Patricia trie
store is used rather than shadow memory after a runtime check, according to the size
and range of addresses of a particular block.

P3 If a block does not completely belong to the interval of addresses supported by
the shadow memory, its metadata should be stored in the Patricia trie store.

While this situation has never occurred in our benchmarks, Principle P3 addresses the
restriction on the supported address interval of the shadow memory store.

If a block has a relatively big size, its allocation, deallocation or query would re-
quire to access a long interval of metadata bytes in the shadow memory, that may be
longer than treating the block in the Patricia trie (cf. estimates (1) and (2) above).
Therefore we use the following additional optimization:

P4 For blocks longer than a (parameterizable) constant lengthC, the metadata should
be stored in the Patricia trie store.

The evaluation of a memory-related annotation is basically realized in the following
way.

P5 The evaluation of block-level predicates should always query the Patricia trie.

12



Code Monitoring Monit. Prin-
Action Level ciple

1 struct BigStruct a[2]; record (&a[0],64) in PT byte P4
2 struct BigStruct b; record (&b,32) in PT Block P1
3 //@ assert \block_length(&b)==1; query &b in PT Block P5
4 char c; record (&c,1) in Sh byte P2
5 //@ assert \valid_read(&c); query &c in Sh byte P6
6 struct BigStruct *p=&a[1]; record (&p,8) in Sh byte P2
7. //@ assert \valid(p); query p in Sh, PT byte P6

Figure 6: Example illustrating the combined memory store with C = 32 bytes, assuming a 64-bit architecture
and sizeof(struct BigStruct)=32. The Monitoring Action indicates the block base address and size
being recorded, or the address being looked up, in one (or, when necessary, both) of the stores.

P6 For predicates that require byte-level monitoring, the evaluation first tries to find
the required information in the shadow memory store. If the block is unknown
in the shadow memory store, it queries the Patricia trie store.

It means that the evaluation of a byte-level memory-related annotation starts by inter-
rogating the shadow memory store (with almost instant access) and queries the slower
Patricia trie store afterwards only when necessary (when the first byte of the block is
not known as valid in the shadow memory).

The deallocation of a memory block is basically realized in the following way.

P7 The deallocation of an existing block first tries to remove the block metadata
from the shadow memory store. If the block is unknown in the shadow memory
store, it queries and tries to remove it from the Patricia trie store.

Here again, the library starts by interrogating the shadow memory store and queries the
slower Patricia trie store only if necessary.

Example. Fig. 6 illustrates these principles on a simple example, where we assume a
64-bit architecture, the size of an element of type struct BigStruct equal to 32
bytes, and the constant C set to 32 bytes. The figure shows how the combined memory
store is updated and queried by the instrumented code during the monitoring of the
code in the leftmost column of the table. For each line of code, the second column
describes the monitoring action, that is either recording a couple (base address, size)
for a new block, or querying the store for an address. (For simplicity, the complete
instrumented code is omitted, and the actions to monitor initialization of variables are
not shown either.) It also indicates the store being used: the shadow memory store
(Sh), the Patricia trie store (PT) or, when necessary, both. The third column gives the
monitoring level of memory-related annotations or introduced variables (we suppose
that the monitoring level for program variables has been computed by the pre-analysis
step described in Sec. 5). The last column contains the principle used to select which
store should used by the monitoring operation.

The code in the example allocates four variables: a, b, c and p. The pre-analysis
phase will deduce that block-level monitoring is needed for (the block with) base ad-
dress &b because of its presence in the block-level predicate on line 3, but that byte-
level monitoring suffices for base addresses a, &c and &p.
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On the first line, an array a of 32 × 2 = 64 bytes is allocated. Even if a requires
only byte-level monitoring, since its size is greater than C = 32, it is recorded in the
Patricia trie store according to P4. The second line allocates the variable b of 32 bytes
for which block-level monitoring is required, so &b is recorded in the Patricia trie store
as well, following P1. On line 3, a \block_length predicate is evaluated. Since
this is a block-level predicate, by P5 the Patricia trie store is queried.

Line 4 allocates a single char cwhose size (1 byte) is not greater thanC. In contrast
to b, no block-level metadata is needed for this variable according to the pre-analysis,
thus the meta-data for base address &c is stored in the shadow memory, by P2. On
line 5, a byte-level predicate queries the shadow memory store (where is finds the
corresponding metadata and does not need to query the Patricia trie store afterwards,
cf. P6).

A pointer p is created on line 6, pointing to the second element of array a. The
meta-data for &p will be stored in the shadow memory by P2 (since the pointer size
is 8 bytes, Principle P4 does not apply). Finally, on line 7, to evaluate the byte-level
predicate \valid, the shadow memory will be queried first according to P6. Since
the metadata for a is stored in the Patricia trie, already the first byte pointed by p is
unknown to the shadow memory, so a second query is rapidly performed in the Patricia
trie. The metadata of a is found and the validity of p can be established.

This simple example illustrates how the proposed combination of recording/query
strategies supports expressive memory-related constructs of E-ACSL, and tries to avoid
a byte-after-byte verification of validity for all bytes of big datastructures, as well as
more time-consuming queries in the Patricia trie for small variables.

5. Pre-analysis

The previous section has introduced the hybrid memory store based on two different
datastructures, a shadow memory store for byte-level and the Patricia trie store for
block-level monitoring. This combined monitoring solution is based on 7 principles, P1
to P7. They assume that, for each memory block, we know whether it requires block-
level monitoring or whether byte-level monitoring is sufficient to evaluate memory-
related annotations dealing with this block.

In this section, we introduce a preliminary static analysis step that can be used to
compute the monitoring level for each memory block before instrumenting the program
with E-ACSL2C. It performs an over-approximating backward dataflow analysis that
allows E-ACSL2C to automatically decide whether a given memory block should be
recorded in the Patricia trie or in the shadow memory store. The pre-analysis also
computes whether it is necessary to monitor the block at all.

More precisely, the pre-analysis determines, for every block, whether it is necessary
(i) to monitor its validity, (ii) to monitor its initialization, and (iii) to use block-level
monitoring for this block. Using the pre-analysis eventually leads to an optimized
instrumentation (both in terms of memory- and time-consumption, cf. Section 6). For
instance, if some block is never concerned by an annotation, there is no need to monitor
this block at all.
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1 int main(void) {
2 int x, y, z, *p, *q;
3 q = (int*)malloc(10 * sizeof(int));
4 y = 1;
5 z = 2;
6 /*@ assert \initialized(&y); */
7 x = 0;
8 p = &x;
9 /*@ assert \valid(p); */

10 while (x < 10) {
11 *(q+x) = x;
12 x++;
13 }
14 /*@ assert \block_length(q) == 10 * \block_length(p); */
15 return 0;
16 }

Figure 7: Toy example illustrating the benefits of reducing the instrumentation.

Example. Consider for instance the toy example of Fig. 7. It performs a few pointer
manipulations and memory checks through E-ACSL annotations.

Fig. 8 shows the result after a complete (non-optimized) instrumentation of this
program with E-ACSL2C. It uses the primitives provided by the monitoring library.
First, for each local variable, a memory block of corresponding size must be recorded
in the store by calling the dedicated function __store_block (cf. lines 4–8 of
Fig. 8). The instrumentation also replaces the call to malloc by a custom one (line
10 of Fig. 8) that records the newly allocated memory block in the store in addition
to its allocation5. Then, for each assignment, the assignee is declared to be initialized
through a call to __full_init (for all bytes of the block) or __initialize (for
a given number of bytes, cf. line 27 of Fig. 8).

Thanks to these registrations in the store, the instrumented program is capable to
evaluate the E-ACSL annotations. Before checking whether pointer p is valid (cf. lines
22–25 of Fig. 8), the instrumented program first ensures that p is initialized (since
reading an uninitialized pointer p has an undefined behavior even if we just check
its validity). Similarly, before evaluating the block sizes of q and p (cf. lines 32–
36 of Fig. 8), the validity of q and p is checked, which, in turn, requires to check
again that these pointers have been initialized. Otherwise, the evaluation of annotations
in this example is straightforward. It relies on the monitoring library primitives that
query the store to retrieve the desired information. Finally, the instrumented program
removes the allocated variables from the store at the end of their scope by calling
__delete_block (cf. lines 38–42 of Fig. 8).

Such a complete instrumentation leads to an exhaustive memory monitoring and
can often be greatly improved by removing irrelevant monitoring operations. Indeed,
in our example, no annotation is related to z, thus its monitoring is useless (cf. lines
6, 13 of Fig. 8). At a first glance, the situation seems to be the same for x. That is not
true: since p is involved in some annotations and becomes an alias for &x at line 8 of
Fig. 7, it is actually necessary to register base address &x in the store. However, since

5The block is recorded in the store only if its allocation does not fail.
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1 int main(void) {
2 int x, y, z, *p, *q;
3 // allocation of locals
4 __store_block(& q,8);
5 __store_block(& p,8);
6 __store_block(& z,4); // USELESS
7 __store_block(& y,4);
8 __store_block(& x,4);
9 __full_init(& q); // initialization of q

10 q = (int *)__e_acsl_malloc(10 * sizeof(int));
11 __full_init(& y); // initialization of y
12 y = 1;
13 __full_init(& z); // initialization of z, USELESS
14 z = 2;
15 /*@ assert \initialized(&y); */
16 // check the above assertion
17 e_acsl_assert(__initialized(& y,sizeof(int)));
18 __full_init(& x); // initialization of x, USELESS
19 x = 0;
20 __full_init(& p); // initialization of p
21 p = & x;
22 /*@ assert \valid(p); */
23 // check the above assertion
24 e_acsl_assert(__initialized(& p,sizeof(int *));
25 e_acsl_assert(__valid(p,sizeof(int));
26 while (x < 10) {
27 __initialize(q+x,sizeof(int)); // initialization of *(q+x), USELESS
28 *(q+x) = x;
29 __full_init(& x); // initialization of x, USELESS
30 x ++;
31 }
32 /*@ assert \block_length(q) == 10 * \block_length(p); */
33 // check the above assertion
34 e_acsl_assert(__initialized(& q,sizeof(int *) && __initialized(& p,sizeof(int *));
35 e_acsl_assert(__valid(q) && __valid(p));
36 e_acsl_assert(__block_length(q) == 10 * __block_length(p));
37 // clean the allocated memory
38 __delete_block(& q);
39 __delete_block(& p);
40 __delete_block(& z); // USELESS
41 __delete_block(& y);
42 __delete_block(& x);
43 return 0;
44 }

Figure 8: Complete instrumentation with E-ACSL2C of the program of Fig. 7 for a 64-bit architecture.

the instrumented program does not check whether x is initialized, it is not necessary to
monitor this specific information (through the call to __full_init(&x), cf. lines
18, 29 of Fig. 8). Similarly, the instrumented program does not need to monitor the
initialization of *(q+x) (cf. line 27 of Fig. 8). Thus all lines marked USELESS in
Fig. 8 can be safely removed from the instrumented program.

Furthermore, coming back to the monitoring level of memory blocks, it is possible
to statically deduce from this program that the blocks with base addresses &x and q
must be registered in the Patricia trie store, while it is sufficient to register base ad-
dresses &y, &p and &q in the shadow memory store. Indeed, the instrumented program
only queries the store for initialization of y, p and q (byte-level information) whereas
it requires both byte-level and block-level information for base address &x (via its alias
p), and block-level information only for base address q.
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Formal Language. Introducing our static analysis formally for such a rich and complex
language as C would not be not tractable in the present paper. Therefore, we limit this
study to a smaller imperative language, defined in Fig. 9, that remains nevertheless
representative to explain the key features of the pre-analysis.

This language contains pure (that is, side-effect-free) expressions with pointer ac-
cesses, addresses and offset shifts (denoted by ++ to avoid any confusion with addition
of integers), as well as usual arithmetic operations (not detailed in Fig. 9). Left values
(or lvalues) are either variables or dereferenced pointers. We use the term address value
for any memory value of a pointer type (where memory values are defined in Fig. 9).
The statements are assignments, dynamic allocations of a memory block (whose size
is equal to the size of the given type κ multiplied by the given number of elements n),
deallocations, conditionals, loops, sequences and blocks. Any statement can embed
predicate-based assertions. They contain comparison operators, conjunctions, disjunc-
tions, negations and the memory-related predicates introduced previously. The logical
terms include pure expressions, the memory-related functions introduced above as well
as arithmetic operations that may combine both6.

In the rest of the section, we assume that variable names are unique (which can
always be achieved by renaming). The typing system and operational semantics of
this language are standard and can be omitted. We just indicate that the semantics is
blocking [19, 20, 21]: if an error occurs when running the program, the execution stops
immediately. We also suppose that each (logical) term is well defined, so its runtime
evaluation does not raise any runtime error. For instance, no term leads to a division by
zero or dereferencing an invalid pointer. This hypothesis might look too strong, but it
is fully consistent with the E-ACSL semantics [10]. It is indeed enforced by E-ACSL2C,
which automatically generates all necessary guards preventing such runtime errors dur-
ing the evaluation of annotations [4] (cf. lines 32–36 of Fig. 8).

The formal definition of the pre-analysis relies on the notion of address value base
of an address value a, denoted base(a), that is obtained from a by ignoring any offset
shift.

Definition 1 (Address value base) base is a function mapping an address value to an
address value, inductively defined as follows:

base(x) = x

base(⋆a) = ⋆base(a)

base(a ++ n) = base(a)

base(&x) = &x

base(&(⋆a)) = base(a).

Notice that this definition of address value base base(a) is different from the block
base address defined e.g. by the E-ACSL construct \base_addr(a). Indeed, the

6Adding integer constants, addition and multiplication in expressions and terms would be necessary to
express all instructions and annotations of the example of Fig. 7. The presented analysis can be easily
extended to these features.
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left values l ∶∶= x variable
∣ ⋆a pointer access

memory values a ∶∶= l left value
∣ a ++ n pointer offset
∣ &l address

expressions e ∶∶= a memory value
∣ ⋯ pure expressions

statements s ∶∶= ; skip
∣ l = e; assignment
∣ l = alloc(κ,n); allocation
∣ free(l); deallocation
∣ if (e) then s; else s; conditional
∣ while (e) s; loop
∣ s s sequence
∣ {s} block
∣ /*@ assert p; */ s assertion

predicates p ∶∶= t ≡ t ∣ t ≤ t comparators
∣ p ∧ p ∣ p ∨ p ∣ ¬p logic connectors
∣ /valid(a) writing/reading ⋆a is safe
∣ /valid read(a) reading ⋆a is safe
∣ /initialized(a) ⋆a has been initialized

terms t ∶∶= e pure expressions
∣ /base addr(a) base address of a’s memory block
∣ /block length(a) size of a’s memory block
∣ /offset(a) offset of a in its memory block
∣ ⋯ pure expressions combined with

memory-related constructs

types κ ∶∶= ι integral type
∣ κ⋆ pointer type

Figure 9: Formal syntax of the considered language.
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definition of base(a) is based on the syntactical expression of a, while the base ad-
dress is defined as the address of the first byte of the memory block effectively con-
taining the current physical address a. For instance, if the pointer p=a+4 points to
the fifth element of an array a of 10 integers, then both \base_addr(p+2)=a and
\base_addr(a+6)=a, but base(p+2)=p and base(a+6)=a.

The presented analysis also relies on the control flow graph of a program P . Our
definition is directly adapted from Nielson et al. [22].

Definition 2 (Control flow graph [22]) A control flow graph (CFG) of a program P
is a sextuple (V,T ,E , π,I,F) such that:

• V is the set of vertices of the graph: for each statement s of P , two of these
vertices are associated to s and represent its previous and next states. Each
vertex ω ∈ V corresponds to a unique program point in P (and we will sometimes
refer to a CFG vertex ω as a program point ω).

• T ⊆ V × V is the set of edges.

• E ∶ T → L is a function mapping an edge to a label, where the set of labels L
defined by:

L = {skip, l = e, l = alloc(κ,n), free(l), ?e, ?p, error}.

The first label corresponds to the execution of the statement ;, while the second,
third and fourth ones respectively correspond to the assignment l = e, the allo-
cation l = alloc(κ,n) and the deallocation free(l). Label ?e indicates that
the program is branching and the edge is executed with the guard e being valid.
Label ?p indicates that the edge corresponds to the execution of a valid predicate
p, and the last label corresponds to a runtime error.

• I ∈ V (resp. F ∈ V) is the initial (resp. final) state of P , and π ∈ V is the error
state.

The construction of a control flow graph is straightforward (and omitted here) using
the correspondence between labels and statements given in the definition. Details are
provided in Nielson et al. [22]. We just draw the reader’s attention to the statement
/*@ assert p; */ s : if ω is the state before the assertion, the subgraph for this
statement is constructed as follows:

ω
?p

ÐÐÐÐ→ ⟨subgraph for s⟩
×
×
×
Ö
?¬p

π

Dataflow Analysis. Our analysis is an over-approximating backward dataflow analysis
parameterized by an alias analysis. We assume the existence of such an analysis.
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Assumption 1 (Alias function) For any given program P and a given program point
ω in P , there is a function7 Aω that maps an address value a to an over-approximation
of the set Sωa of address values which are in alias with a at program point ω, including
a itself (i.e. a ∈ Sωa ⊆ Aω(a)).

Since the pre-analysis is only aimed at optimizing the instrumentation, the analysis
speed is more important than its precision. Consequently, the alias analysis can be
provided by Steensgaard’s analysis [23], or the FRAMA-C Value analysis [3] if it has
already been executed.

For a pointer p, in order to avoid any confusion between the left value p and its
pointed value ⋆p (which is also a left value), we are going to monitor the address &l of
a left value l. Also, for the sake of performance, we are going to monitor a (dynamic)
array as a whole through its base address rather than considering each of its single cells
independently. Therefore, the analysis only needs to deal with address value bases, in
which the offset shifts are removed, in other words, with address values a such that
a = base(a).

The goal of the analysis is to determine for each address value base a that occurs
in the program, with which observation purpose(s) a should be monitored. We con-
sider three observation purposes denoted v, i, b, where v requires to monitor validity,
i requires to monitor initialization and b requires block-level monitoring. The purpose
v means that the block should be recorded in the store (and, thus, its validity can be
queried). The purposes i and b are more specific, and therefore, each of them implies
the presence of the purpose v as well. At every moment, the state σ of the analysis is
a set of couples (a, k) where the presence of a couple (a, k) indicates that an address
value base a should be monitored with the observation purpose k ∈ {v, i, b}.

Following Nielson et al. [22], we use an analysis framework that automatically
computes the analysis state σ ∈ S at each program point by joining post-branch states
and computing a fixpoint of loops. Our backward dataflow analysis is defined by a
quadruple (S,⊆, ε, s0) as follows.

• (S,⊆) is a lattice of sets of couples (a, k), ordered by set inclusion, in which a
is an address value base and k ∈ {v, i, b} is an observation purpose.

• s0 ∈ S is the initial state of the analysis, that is, the state at the final vertex of
the control flow graph (as we define a backward dataflow analysis). Since no
memory address needs to be monitored at this point, s0 = ∅.

• εωλ ∶ S → S is a set of monotonic transition functions over states, indexed by a
graph edge label λ ∈ L and a particular program point ω ∈ V , defined in Fig. 10.
Informally speaking, given an edge with origin vertex ω and label λ ∈ L, the
function εωλ determines how the state evolves when the analysis traverses (in the
backward direction) this edge. This definition depends on an extra operatorAωa,K

7The notation introduced here and below is not parameterized by P to keep it simple even if, strictly
speaking, it should be.
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εω; (σ) = σ

εωl=e(σ) = {
σ ∪Aωe,K if l is a pointer, where K = {k ∣ (base(l), k) ∈ σ}

σ otherwise

εωl=alloc(κ,n)(σ) = σ

εωfree(l)(σ) = σ

εω?e(σ) = σ

εω?/valid(a)(σ) = {
σ ∪Aωa,v ∪ ε

ω
?/initialized(&l)(σ) if l = base(a) is an lvalue

σ ∪Aωa,v otherwise

εω?/valid read(a)(σ) = {
σ ∪Aωa,v ∪ ε

ω
?/initialized(&l)(σ) if l = base(a) is an lvalue

σ ∪Aωa,v otherwise

εω?/initialized(a)(σ) = σ ∪A
ω
a,i ∪ ε

ω
?/valid(a)(σ)

εω?(p1∧p2)(σ) = ε
ω
?p1(σ) ∪ ε

ω
?p2(σ)

εω?(p1∨p2)(σ) = ε
ω
?p1(σ) ∪ ε

ω
?p2(σ)

εω?¬p(σ) = ε
ω
?p(σ)

εω?(t1 ⊙ t2)(σ) = ζ
ω
t1(σ) ∪ ζ

ω
t2(σ) where ⊙ ∈ {≡,≤}

ζωe (σ) = σ

ζω/base addr(a)(σ) = σ ∪A
ω
a,b ∪ ε

ω
?/valid(a)(σ)

ζω/block length(a)(σ) = σ ∪A
ω
a,b ∪ ε

ω
?/valid(a)(σ)

ζω/offset(a)(σ) = σ ∪A
ω
a,b ∪ ε

ω
?/valid(a)(σ)

Figure 10: Over-approximating backward dataflow analysis.

defined for an address value a at the program point ω and K ⊆ {v, i, b} by:

A
ω
a,K = {(base(x), k) ∣ x ∈ Aω(base(a)), k ∈K }

In other words, Aωa,K represents the set of all address values that may share the
same base as a at program point ω, taken with some observation purpose of K.
It is used to add new elements into an analysis state without forgetting possible
aliases. For short, for any k ∈ {v, i, b}, Aωa,k will denote Aωa,{k}. The definition
of ε also uses a set of functions ζ similar to ε but labeled by a term instead of an
edge label.

In most cases, the transition functions ε simply propagate the analysis state in a
natural way (cf. Fig. 10). Let us consider in more detail the particular cases of assign-
ments and memory-related constructs. For \valid(a) and \valid_read(a), the
purpose v is always added for a. Moreover, as we saw before (cf. lines 22–25 of Fig. 8),
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checking the validity of a may require to check initialization of the corresponding ad-
dress value base base(a). The monitoring of the initialization check is enabled by the
corresponding recursive call. This is only necessary when base(a) is a left value (oth-
erwise it is already the result of an address operator &, and reading this address cannot
lead to an undefined behavior).

For edge label \initialized(a), the observation purpose i is added, and the
same actions as for validity of a are performed by the corresponding recursive call. In
particular, this call ensures that purpose v is added as well (to ensure that the block is
recorded in the store). Similarly, for terms with memory-related functions that need
block-level monitoring (cf. Fig. 2), the transition functions ζ add the observation pur-
pose b and perform again the same actions as for validity of a by the corresponding
recursive call. Notice that the recursive calls necessarily terminate for any address
value a. Indeed, while the recursive call of εω?/valid(a) can be invoked for the same ad-
dress value a, the recursive call εω?/initialized(&base(a)) is invoked by εω?/valid(a) only
when base(a) is an lvalue, and in this case it adds an address operator and, therefore,
cannot produce an lvalue infinitely many times.

Another specific case is an assignment l = e of a pointer type. Indeed, a new
alias can be created in this case, therefore all monitoring requirements for base(l)
discovered in the following statements should be also applied to the aliased address e.

Soundness of the dataflow analysis. The presented pre-analysis provides (over-appro-
ximated) information indicating for each program memory block whether it is neces-
sary to monitor it and in which way it should be done: just for validity (that leads to
recording the corresponding memory block(s) in the store), or also for initialization
(that requires to add initialization-related library primitives), and whether block-level
monitoring is required (that determines if the block should be always recorded in the
Patricia trie store).

The pre-analysis results are used by E-ACSL2C in the following way. Let s be
a statement of P at program point ω ∈ V and let σ be the resulting state computed
by the pre-analysis for ω. If statement s can have an impact on validity (respec-
tively, initialization) of a memory value a, E-ACSL2C should record this impact only
if (base(a), v) ∈ σ (respectively, (base(a), i) ∈ σ). Furthermore, E-ACSL2C should
record this impact in the Patricia trie only if (base(a), b) ∈ σ.

Soundness of the dataflow analysis can be stated in terms of paths in the control
flow graph as follows.

Conjecture 1 (Soundness of the dataflow analysis) Let G = (V,T ,E , π,I,F) be the
control flow graph of P , and let

ω0
l0
Ð→ ω1

l1
Ð→ . . . ωg

lg
Ð→ ωg+1

lg+1
ÐÐ→ . . . ωh

lh
Ð→ ωh+1

lh+1
ÐÐ→ . . .

be a path in G with ω0 = I and 0 ≤ g < h. Suppose that lh is of the form ?p, that

predicate p includes memory-related constructs and that transition ωg
lg
Ð→ ωg+1 has

an impact on their evaluation at lh (i.e. the effect of lg on their evaluation at lh is
not completely overloaded by other lk with g < k < h). Let σ be the resulting state
computed by the pre-analysis for program point ωg . Then
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• if p contains /valid(a) or /valid read(a), then (base(a), v) ∈ σ;

• if p contains /initialized(a), then (base(a), v) ∈ σ and (base(a), i) ∈ σ;

• if p contains one of block-level memory-related constructs, then (base(a), v) ∈ σ
and (base(a), b) ∈ σ.

In other words, the pre-analysis ensures that all necessary monitoring information
is properly preserved whenever this information may have an impact on the evaluation
of a memory-related construct along some execution path8. The notion of having an
impact on evaluation of a memory-related construct is intuitively clear and is not for-
malized here. A complete formalization of E-ACSL2C optimized by the pre-analysis
and the proof of its soundness are left as future work.

The presented analysis can be further improved in several ways. One improvement
would be to stop monitoring the initialization of a single variable x before an assign-
ment of x (since the variable is necessarily initialized by the assignment). It is also
possible to improve Principle P6 of Sec. 4: for predicates requiring byte-level monitor-
ing, there is no need to check first the shadow memory store if the observation purposes
of its argument include b.

6. Evaluation

Objectives. We have implemented the shadow-memory-based and the hybrid moni-
toring solution inside the memory monitoring library for E-ACSL2C. We have also
implemented a pre-analysis similar to that presented in Sec. 5. We have evaluated the
performances of the resulting instrumented code of the different versions on several
benchmarks. Since we are not aware of any other tool supporting such a rich specifi-
cation language for C code as E-ACSL, we compare E-ACSL2C with Valgrind tool [7],
a well-known tool for memory safety (even if their objectives are quite different). Our
aim is to study the following research questions:

RQ1 evaluate the hybrid memory store w.r.t. the earlier tree-based monitoring;

RQ2 evaluate the hybrid memory store w.r.t. the shadow-memory-based monitoring;

RQ3 evaluate the hybrid memory store w.r.t. Valgrind tool [7];

RQ4 evaluate the benefits of the pre-analysis.

8The considered paths are inspired by def-use paths, but remain different for several reasons: sev-
eral assignments of separate cells of a C array a may simultaneously have an impact on the same
/initialized(a) predicate for the whole array a within the same path; validity of a pointer can be
added and removed (e.g. through pointer (de-)allocation) several times along the same path; etc.
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Experimental Protocol. The benchmarks are annotated C programs whose specifica-
tions contain byte-level memory-related predicates as well as other functional proper-
ties not related to memory. In order to be able to compare the combined solution with
both the shadow memory store and the Patricia trie store used separately, the spec-
ification does not include block-level memory-related annotations since they are not
supported by the shadow-memory-based store alone.

We perform in total several hundreds of experiments for more than 30 parameter-
ized programs obtained from about 10 examples with different levels of specifications
and different values of parameters. These initial experiments are conducted on small-
size examples because they had to be manually specified in E-ACSL. To simulate longer
execution, we choose higher values of parameters (such as matrix or array sizes) and
execute programs several times for different input values. Execution time has been
measured on an Intel Core i7-3520M 2.90GHz, 16GB of RAM.

These experiments have been conducted for the instrumented code without pre-
analysis (where all memory locations are monitored) and with the reduced monitoring
after the pre-analysis (described in Sec. 5). Fig. 11 and 13 present in detail some
selected results. Fig. 11 shows execution time for the original non-instrumented code
(column “Orig.”), and for the instrumented program produced by E-ACSL2C without
pre-analysis using the Patricia trie store alone (“PT”), the shadow memory store alone
(“Sh”), and the hybrid solution (“H”). Similarly, Fig. 13 shows execution time for the
instrumented program produced by E-ACSL2C with pre-analysis, as well as the time of
analysis with Valgrind tool [7]. The columns “H vs PT” and “H vs Sh” indicate the
speedup (−N%) or slowdown (+N%) recorded for the hybrid solution, respectively,
w.r.t. the tree-based and the shadow-memory-based monitoring used separately. The
speedups/slowdowns of Figures 11 and 13 are graphically represented in Figures 12
and 14 respectively, where the axes correspond to the columns “H vs PT” and “H vs
Sh” and each point illustrates the speedups/slowdowns recorded for an example.

The peak residential set size (i.e. peak used memory size) for the same bench-
marks is presented in Fig. 15 and Fig. 17. The shadow memory allocates a large set
of virtual memory, of which only a small portion is actually used (proportional to the
amount of memory used by the uninstrumented program). Similarly to execution time,
the columns “H vs PT” and “H vs Sh” indicate reduction (−N%) or increase (+N%)
in memory usage recorded for the hybrid solution w.r.t., respectively, the tree-based
and shadow-memory-based monitoring used separately. Figures 16 and 18 graphically
illustrate the “H vs PT” and “H vs Sh” columns (respectively, for Figures 15 and 17)
by the coordinates of the points in the figures.

Experimental Results. First, the results show that the shadow-memory-based monitor-
ing is indeed almost always faster than the Patricia trie, and can be dramatically faster
(more than 90% speedup) on examples with frequent memory lookups and a big size of
the Patricia trie. Interestingly, two exceptions are the bubbleSort example after the
pre-analysis and the binSearch example, where the store contains very few memory
locations, and most queries concern a very big array. In this case the lookup in a small
tree becomes very fast, and even faster than accessing all the bytes in the shadow of a
very big block. The decision to always store bigger blocks (longer than C bytes, cf.
Principle P4) in the Patricia trie helps to preserve the better efficiency of the Patricia trie
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E-ACSL2C without pre-analysis
Example Orig. PT Sh H H vs PT H vs Sh
bubbleSort 0.56 57.49 8.60 8.76 −84.76% +1.86%
binSearch 0.00 2.91 6.74 2.87 −1.37% −57.42%
mergeSort 0.04 106.94 0.47 0.45 −99.58% −4.26%
quickSort 0.00 41.51 0.10 0.12 −99.71% +20.00%
RedBlTree 0.03 0.73 0.20 0.29 −60.27% +45.00%
merge 0.01 1.48 0.10 0.10 −93.24% 0.00%
matrixMult 0.13 4.32 1.23 1.22 −71.76% −0.81%
matrixInv 0.01 4.29 1.77 1.79 −58.28% +1.13%
insertSort 2.67 46.64 35.43 35.22 −24.49% −0.59%

Figure 11: Execution time (in sec.) of the original program and the instrumented code after E-ACSL2C
without pre-analysis: the hybrid memory monitoring (H) w.r.t. the Patricia trie store (PT) and the shadow
memory store (Sh).
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Figure 12: Execution time of the instrumented code after E-ACSL2C without pre-analysis: the hybrid mem-
ory monitoring (H) compared to the Patricia trie store (PT) and the shadow memory store (Sh). The coordi-
nates of each point are the increase/decrease rates of the last two columns of Fig. 11 for an example.

in the hybrid store. The hybrid solution basically approaches the best of both separate
kinds of monitoring, with a little additional cost (for initialization of a second store and
determining which store must be used, cf. Sec. 4), that remains either below 2% or,
on the fastest examples, below 0.1 sec. While the hybrid model does not always lead
to a big speedup w.r.t. the shadow-memory-based store and can even become slightly
slower, it significantly increases the expressiveness of the shadow-memory-based store
by supporting block-level predicates and thus allows the user to mix byte- and block-
level predicates in the same program.

In our examples, among several studied values, the values C = 16 or 32 seem to
provide equally good results. They redirect to shadow memory most variables of prim-
itive C types and leave in the Patricia trie bigger blocks (arrays, structures). However,
we believe that the value of C can sometimes be even better adapted to the particular
memory profile of the program under verification in order to make the hybrid store
even more efficient. The study of optimal value for particular memory usage profiles is
left as future work.

Regarding RQ4, the pre-analysis accelerates memory monitoring by removing ir-
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Val- E-ACSL2C with pre-analysis
Example grind PT Sh H H vs PT H vs Sh
bubbleSort 9.47 4.13 4.82 4.50 +8.96% −6.64%
binSearch 0.48 2.85 6.68 2.90 +1.75% −56.59%
mergeSort 2.68 86.28 0.43 0.42 −99.51% −2.33%
quickSort 0.54 1.15 0.06 0.07 −93.91% +16.67%
RedBlTree 2.29 0.59 0.19 0.28 −52.54% +47.37%
merge 1.08 1.25 0.08 0.08 −93.60% 0.00%
matrixMult 1.85 3.46 0.67 0.68 −80.35% +1.49%
matrixInv 0.70 3.45 1.59 1.66 −51.88% +4.40%
insertSort 35.61 2.78 2.80 2.78 0.00% −0.71%

Figure 13: Execution time (in sec.) of Valgrind [7] and the instrumented code after E-ACSL2C with pre-
analysis: the hybrid memory monitoring (H) w.r.t. the Patricia trie store (PT) and the shadow memory store
(Sh).

-100

-50

 0

 50

 100

-100 -50  0  50  100

H
 v

s 
S

H
 (

%
)

H vs PT (%)

Figure 14: Execution time of the instrumented code after E-ACSL2C with pre-analysis: the hybrid memory
monitoring (H) compared to the Patricia trie store (PT) and the shadow memory store (Sh). The coordinates
of each point are the increase/decrease rates of the last two columns of Fig. 13 for an example.

relevant variables, and most often preserves the same ratios between the hybrid and
separate monitoring, except the bubbleSort example where monitoring with the
Patricia trie store becomes much faster after the pre-analysis. The global speedups pro-
vided by the pre-analysis are 60.22% for the Patricia trie store, 68.3% for the shadow-
memory-based store and 73.69% for the hybrid store.

Regarding RQ3, we notice that Valgrind can be much faster (up to 6x) on some
examples and much slower (up to 12.8x) on some others, that can be due to a different
nature of properties evaluated by both tools (Valgrind looks for memory errors while
E-ACSL2C checks specified annotations). For a more fair comparison with Valgrind
where E-ACSL2C (with the hybrid store) and Valgrind address exactly the same prop-
erties, we have also performed another set of experiments on a different version of
the same C benchmarks where the E-ACSL annotations specifically (and exclusively)
focus on potential memory errors. The results of these experiments were similar: Val-
grind can be much faster (up to 8x) on some examples and much slower (up to 25x)
on some others, and lead to the same conclusion that execution time after E-ACSL2C is
not comparable to Valgrind.
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Memory usage of E-ACSL2C without pre-analysis
Example Orig. PT Sh H H vs PT H vs Sh
bubbleSort 1336 kB 1240 kB 7432 kB 9496 kB +665.81% +27.77%
binSearch 1308 kB 1308 kB 7732 kB 7708 kB +489.30% −0.31%
mergeSort 3712 kB 288756 kB 14008 kB 13988 kB −95.16% −0.14%
quickSort 1168 kB 140408 kB 7352 kB 7484 kB −94.67% +1.80%
RedBlTree 5656 kB 22276 kB 20084 kB 52904 kB +137.49% +163.41%
merge 16264 kB 204304 kB 38716 kB 38780 kB −81.02% +0.17%
matrixMult 2124 kB 2640 kB 12676 kB 11116 kB +321.06% −12.13%
matrixInv 2152 kB 2996 kB 12332 kB 8732 kB +191.46% −29.19%
insertionSort 1272 kB 1356 kB 7740 kB 7880 kB +481.12% +1.81%

Figure 15: Peak residential set size (in kilobytes) of the original program and the instrumented code after
E-ACSL2C without pre-analysis: the hybrid memory monitoring (H) w.r.t. the Patricia trie store (PT) and the
shadow memory store (Sh).
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Figure 16: Peak residential set size of the instrumented code after E-ACSL2C without pre-analysis: the hybrid
memory monitoring (H) compared to the Patricia trie store (PT) and the shadow memory store (Sh). The
coordinates of each point are the increase/decrease rates of the last two columns of Fig. 15 for an example.

The slowdown of the code instrumented by E-ACSL2C w.r.t. the original code can
be indeed higher than that of recent advanced tools that focus on memory safety errors.
This is due to the larger scope of runtime assertion checking for E-ACSL: along with
memory-related properties, it checks all other specified functional properties that lead
to a lot of additional code inserted by the instrumentation to check the required proper-
ties (e.g. correct matrix multiplication or inversion, correct array sorting that globally
preserves the same array elements, etc.). This additional code may include lots of loop
iterations to verify universally quantified properties and often requires much more time
than the original program code itself. This seems to be the price to pay for runtime
assertion checking for an expressive specification language like E-ACSL.

Regarding memory usage (detailed in Fig. 15 and 17), despite a great theoretical
amount of allocated virtual memory, the hybrid solution without pre-analysis shows
on average only 3.24× increase of used memory peak (going in the worst-case up to
7.6581×, i.e. +665.81%) w.r.t. the Patricia trie, and on average only a 1.17× increase
(going up to 2.63×) w.r.t. to the shadow-memory-based implementation. The hybrid
solution with pre-analysis shows on average only 1.79× increase of used memory peak
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Val- Memory usage of E-ACSL2C with pre-analysis
Example grind PT Sh H H vs PT H vs Sh
bubbleSort 46056 kB 1312 kB 5332 kB 5384 kB +310.37% +0.98%
binSearch 46420 kB 1372 kB 3280 kB 3344 kB +143.73% +1.95%
mergeSort 211128 kB 275028 kB 9812 kB 9836 kB −96.42% +0.24%
quickSort 46088 kB 91860 kB 5332 kB 5328 kB −94.20% −0.08%
RedBlTree 55916 kB 22248 kB 15916 kB 48816 kB +119.42% +206.71%
merge 175208 kB 204308 kB 36748 kB 36652 kB −82.06% −0.26%
matrixMult 46384 kB 2628 kB 6312 kB 6660 kB +153.42% +5.51%
matrixInv 46056 kB 3020 kB 8324 kB 10872 kB +260.00% +30.61%
insertionSort 46056 kB 1280 kB 1280 kB 1324 kB +3.44% +3.44%

Figure 17: Peak residential set size (in kilobytes) of Valgrind [7] and the instrumented code after E-ACSL2C
with pre-analysis: the hybrid memory monitoring (H) w.r.t. the Patricia trie store (PT) and the shadow
memory store (Sh).

-50

 0

 50

 100

 150

 200

 250

-100 -50  0  50  100  150  200  250  300  350

H
 v

s 
S

H
 (

%
)

H vs PT (%)

Figure 18: Peak residential set size of the instrumented code after E-ACSL2C with pre-analysis: the hybrid
memory monitoring (H) compared to the Patricia trie store (PT) and the shadow memory store (Sh). The
coordinates of each point are the increase/decrease rates of the last two columns of Fig. 17 for an example.

(going in the worst-case up to 4.1×) w.r.t. the Patricia trie, and on average only a 1.27×
increase (going up to 3.06×) w.r.t. to the shadow-memory-based implementation. In-
terestingly, despite using two stores, the hybrid approach can sometimes even decrease
the amount of used memory.

Valgrind uses on average 5.9× more memory than the hybrid approach without pre-
analysis and 11.6× more memory than the hybrid approach with pre-analysis. Thus the
hybrid solution turns out to provide better performance with a quite reasonable memory
usage increase.

Summary of Experiments. The experiments confirm the expected benefits of the hybrid
memory monitoring (cf. bounds (1) and (2) in Sec. 4), and of the pre-analysis. In
particular:

RQ1 the hybrid memory monitoring is significantly faster than the tree-based memory
monitoring, and does not imply any loss of expressiveness: it remains compatible
with byte-level and block-level memory-related annotations;
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RQ2 on byte-level memory annotations, the hybrid memory store remains compara-
ble or slightly faster than the shadow-memory-based monitoring, and allows, in
addition, the support of block-level E-ACSL predicates;

RQ3 the execution time of the code produced by E-ACSL2C is not comparable to Val-
grind while the amount of used memory with Valgrind is considerably higher;

RQ4 the pre-analysis significantly improves the performance of the instrumented code.

Overall, our experiments suggest that the proposed hybrid solution reconciles the ef-
ficiency of the shadow memory with the expressiveness (and in some cases, a better
efficiency) of a tree-based store, with an insignificant time overhead and an acceptable
increase of memory usage. The proposed static analysis reduces irrelevant monitoring
and further accelerates the execution of the instrumented code.

Competitions on Runtime Verification. An orthogonal evaluation of E-ACSL2C has
been performed during international competitions on runtime verification organized
annually since 2014 as part of the International Conference on Runtime Verification.
E-ACSL2C participated in the Track on C Program Monitoring both at the 2014 and
2015 editions of the competition [24, 25]. In 2014, out of four tools initially registered
for participation in the track and three tools having submitted their solutions for evalu-
ation, E-ACSL2C arrived at the second place9. In 2015, out of six tools initially regis-
tered for the track and two tools having eventually submitted their solutions, E-ACSL2C
arrived at the first place10. The evaluation criteria included soundness, memory con-
sumption and runtime performance. Notably, the soundness scores of E-ACSL2C were
particularly high: it was only 5% behind the winner in 2014, and more than twice
higher than that of the second tool in 2015.

7. Related Work

The present work is part of an extension of FRAMA-C, an existing toolset for the
analysis of C code, for supporting runtime assertion checking. It is therefore related
to a lot of works on runtime assertion checking [2] and, more generally, runtime ver-
ification [26]. More specifically, one of our main objectives is to support and execute
annotations in E-ACSL, an expressive executable specification language shared by static
and dynamic analysis tools. Hence, our work continues previous contributions to de-
velopment of expressive specification languages such as Eiffel [16], JML [13] for Java
and Spark201411, a subset of Ada dedicated to formal testing and verification. Other
examples of executable specification languages are SPEC# [27] and the closely related
Code Contracts for .NET [28].

Since the main purpose of this paper is the support of memory-related E-ACSL an-
notations, this work is also related to previous efforts for ensuring memory safety of

9Final results at http://rv2014.imag.fr/monitoring-competition/results.html
10Final results at https://www.cost-arvi.eu/?page_id=664
11http://www.spark-2014.org
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C programs at runtime. They include safe dialects of C, specific fail-safe C compil-
ers and memory safety verification tools for C code. In particular, the idea to store
object metadata on valid memory blocks in a separate database was previously ex-
ploited in [29, 30, 31, 32, 33] and appeared well-adapted for most spatial errors (that
is, accesses outside the bounds [34]). Advantages of these solutions include relative
efficiency (propagation of pointer metadata at each pointer assignment is not required)
and compatibility (the memory layout of objects is preserved). However, this technique
results in significant time overhead due to lookup operations in the database, and is not
directly adapted to detect sub-object overflows inside nested objects (e.g. an array
of structures) and certain temporal errors (that is, accesses to an object that has been
deallocated [34]). An alternative approach is based on pointer metadata stored inside
multi-word fat pointers extending the pointer representation with bounds information
[35, 36, 37]. While this approach to monitoring has the benefit of simplifying certain
operations, for instance copying a pointer, it may complicate others such as pointer
arithmetic. In addition, it can modify the memory layout of the program and compli-
cate interfacing with external libraries. When an external function is called with a fat
pointer as argument, it has to be converted to a regular “thin” pointer. For these reasons
fat pointers were not deemed interesting for us. Techniques combining ideas of both
approaches have been proposed as well [38, 34].

The technique of shadow pages [7, 8] makes it possible to immediately find stored
validity information for a pointer without providing an easy way to find the base address
of the block, block size and pointer offset required by memory-related E-ACSL clauses.

Our global objective is quite different from these efforts. Unlike these advanced
works focused on detection of memory safety errors, we aim at supporting runtime
checking for memory-related annotations of an expressive specification language, E-ACSL.
The usage of a Patricia trie for storing metadata in this context was proposed and eval-
uated in [5]. Despite several optimizations, this implementation still has a significant
execution time overhead.

The present work continues the previous efforts and shows how the earlier Patri-
cia trie store [5] and the efficient solutions based on shadow memory [7, 8] can be
combined and adapted to our objective to support runtime assertion checking for a
rich specification language as E-ACSL. We also give a rigorous presentation of a static
analysis step in order to optimize the monitoring and determine the appropriate store
to be used. To the best of our knowledge, such a combination of a Patricia trie with
shadow memory for storing block metadata has never been studied. We show that this
combination can significantly improve the performance of runtime assertion checking.

It should be noticed that the ambitious objective to perform runtime assertion check-
ing for C code specified in E-ACSL and directly compatible with integrated FRAMA-C
tools for proof of programs (as in [39]) can justify a higher overhead. Indeed, during
deductive verification, manual analysis of proof failures without any automatic runtime
checking could be even more costly.

8. Conclusion and Future Work

We have proposed an original hybrid memory monitoring solution that takes the
best of two alternative monitoring techniques: a tree-based metadata storage in a Patri-
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cia trie and an offset-based access to metadata in shadow memory. While a tree-based
store is suitable to monitor both byte-level and block-level memory predicates, the
shadow memory store is in general faster. Combining both solutions significantly im-
proves the efficiency of the instrumented code, often providing a spectacular speedup
w.r.t. the Patricia trie alone, and remains compatible with all memory-related E-ACSL
predicates. A preliminary static analysis step allows to determine which memory loca-
tions should be monitored, and which store they should be registered.

Currently, the hybrid memory monitoring library is developed for 64-bit architec-
tures only and is not yet fully integrated with a pre-analysis. The currently distributed
version of pre-analysis already implements several representative features (including
optimizations for validity and initialization monitoring, as well as an inter-procedural
analysis not presented in this paper), while a better integration with the complete pre-
analysis step is still under development. Another ongoing work is aimed at a better
detection of some subtle temporal errors in E-ACSL, where we essentially use the pos-
sibility of shadow memory to use a scale and to store more than one byte of metadata
for a byte of user memory.

Future work includes the extension of the proposed memory monitoring library
to support a 32-bit architecture, a more efficient pre-analysis to identify memory lo-
cations for block-level and byte-level monitoring, proof of its soundness and further
experiments to evaluate the solutions on bigger examples. Another future work direc-
tion is investigating beyond which size threshold C a big block should be redirected
into the Patricia trie (cf. Principle P4). Finally, choosing the store to be used for a
block according to the access frequency of the block metadata is another optimization
heuristic to be studied.
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