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Abstract. Security of modern information and communication systems has be-

come a major concern. This tool paper presents FLINDER-SCA, an original com-

bined tool for vulnerability detection, implemented on top of FRAMA-C, a plat-

form for collaborative verification of C programs, and Search Lab’s FLINDER

testing tool. FLINDER-SCA includes three steps. First, abstract interpretation and

taint analysis are used to detect potential vulnerabilities (alarms), then program

slicing is applied to reduce the initial program, and finally a testing step tries

to confirm detected alarms by fuzzing on the reduced program. We describe the

proposed approach and the tool, illustrate its application for the recent OpenSSL/

HeartBeat Heartbleed vulnerability, and discuss the benefits and industrial appli-

cation perspectives of the proposed verification approach.
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1 Introduction

The recent Heartbleed bug [6] illustrated once again that critical security flaws can

remain undetected by a static or a dynamic analysis technique alone [8]. This paper

presents FLINDER-SCA, a novel verification tool for vulnerability detection using a

combination of static and dynamic analyses, as well as a case study illustrating the

capabilities of the proposed combined verification approach to detect recent vulnerabil-

ities at the source code level with reasonable amounts of efforts and computing time.

This work has been realized in the context of the STANCE project.

The STANCE project4 belongs to the European FP7 Research Program and pro-

poses to design and implement validation and verification (V&V) tools to ensure secu-

rity of industrial software in C, C++ or Java. STANCE builds on the FRAMA-C [7],

FLINDER [10] and VERIFAST5 toolkits and extends their capabilities to handle the

⋆ This work has been partially funded by the EU FP7 project STANCE (grant 317753).
4 See http://www.stance-project.eu/.
5 See http://people.cs.kuleuven.be/bart.jacobs/verifast.



aforementioned programming languages and perform security analyses. STANCE stud-

ies security properties of industrial applications provided by partners. These are related

to an Aeronautic use case (from Dassault Aviation, France), Trusted Computing plat-

forms for embedded systems based on the TPM6 (from Infineon AG, Germany and

TU Graz, Austria), and authentication software for complex distributed networks (from

Thales COM, France). The vulnerabilities addressed by STANCE have been classified4

by using the CWE classification [1] and keeping those vulnerabilities that 1) can be

detected in the source code, 2) are written in C, C++ or Java, and 3) are related to the

considered application categories.

The original contributions of the present work include

– a new combined verification technique for detection of security vulnerabilities,

– its implementation, FLINDER-SCA, realized in the context of the STANCE project,

– an illustration of its application to the recent Heartbleed vulnerability, and

– a discussion of benefits and application perspectives of the proposed approach.

This paper is structured as follows. Section 2 describes the Heartbleed vulnerability.

Section 3 provides on overview of the FLINDER-SCA tool and the associated method-

ology. Sections 4, 5 and 6 describe the tool components and illustrate them on the case

study. Section 7 provides a short tool demo. Section 8 discusses the difficulties of de-

tecting the Heartbleed vulnerability. Finally, Section 9 concludes with the benefits of

the approach and some future work.

2 The Heartbleed Vulnerability

The Heartbleed bug [6] was discovered in 2014 in OpenSSL7, the famous cryptographic

library widely used to encrypt communications over the Internet. This bug was identi-

fied in the HeartBeat functionality, originally intended to check whether a given server

is still alive and able to encipher TCP/IP packets with SSL techniques. How HeartBeat

operates is straightforward: a client sends a ”keep-alive” message containing a payload

(a random array of bytes intended to be repeated) as well as the payload’s size. In turn,

if alive, the server is expected to send the very same payload back to the client. This

ensures that the server is — at least — able to copy a message previously received and

to forward it back to the sender.

The security issue comes from the fact that the size of the payload is specified by

the client, and this size is not checked by the server against the effective payload length

— causing it to read past the end of the memory area allocated to hold the payload,

which is a typical buffer over-read vulnerability [1]. For instance, if the client sends a

3-byte message and indicates 0xFFFF(=65535) as the fake size, the server will send

the following non-padding data back to the client: the message header and length (1+2

bytes), the 3-byte message itself, then 65532 bytes from the server’s heap memory

immediately following the payload at the time of processing. Since the memory area

allocated to the payload changes with each request, an attacker can repeatedly send such

6 See http://www.trustedcomputinggroup.org
7 See https://www.openssl.org.



1 buffer = CRYPTO_malloc(1 + 2 + payload + padding);

2 /* normally payload=16, padding=18 */

3 bp = buffer;

4 /* Write response type, payload length and contents into buffer */

5 *bp++ = TLS1_HB_RESPONSE; /* store 1-byte response header in buffer */

6 s2n(payload, bp); /* store 2-byte payload length in buffer */

7 memcpy(bp, pl, payload); /* copy the payload contents into buffer */

8 bp += payload;

9 /* Create random padding to protect against traffic analysis */

10 RAND_pseudo_bytes(bp, padding);

11 r = ssl_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);

Fig. 1. Extract from OpenSSL/HeartBeat source code (tls1_process_heartbeat function)
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Fig. 2. a) Overview of the proposed methodology, and b) Architecture of the FLINDER tool

a request and obtain data stored in many different areas of the heap. Unfortunately, such

data may contain confidential data from other processes (e.g. Apache credentials) as

well as any other compromising information, and most importantly the secret keys used

by OpenSSL itself — which could then be used to impersonate or steal information from

the server. Many commonly-used and important Internet sites and their services (such

as Google, Youtube, Wikipedia, and Reuters) were compromised by this vulnerability.

The code snippet in Fig. 1, extracted from the OpenSSL/HeartBeat extension v1.0.1+,

illustrates the Heartbleed bug. The buffer over-read vulnerability clearly stands in the

memcpy call statement (line 7). The payload length variable payload is indeed specified

by the client, possibly an attacker, and determines how many bytes from the payload

pl will be copied into the buffer starting from buffer pointer bp. A few statements later,

after adding additional padding bytes (line 10), the contents of the buffer variable are

sent back to the client (line 11), potentially with a substantial part of the heap.



3 Overview of the FLINDER-SCA Tool

The FLINDER-SCA tool has been realized in the context of two V&V tools: the FRAMA-

C code analysis platform [7] , and the FLINDER security testing platform [10]. FRAMA-

C provides a collection of scalable and interoperable tools for static and dynamic anal-

yses of ISO C99 source code. It is based on a common kernel that hosts analyzers as

collaborating plug-ins that share a common formal specification language. FRAMA-C

includes plug-ins based on abstract interpretation, deductive verification and dynamic

analysis, as well as a series of derived plug-ins which build elaborate analyses upon

the former. In addition, the extensibility of the overall platform, and its open-source

licensing, have fostered the development of an ecosystem of independent third-party

plug-ins.

The proposed verification methodology is illustrated in Fig. 2a. First, a static anal-

ysis step relying on value and taint analyses (detailed in Section 4) is applied to detect

alarms reporting potential vulnerabilities. Second, a program slicing step (described in

Section 5) is used to reduce the initial program p and to produce a smaller one, p′,

called a slice. These two steps are realized by FRAMA-C plug-ins. Finally, the fuzz

testing step (presented in Section 6) applies FLINDER on p
′ to confirm these alarms as

actual vulnerabilities. This methodology enhances the SANTE approach [3] that com-

bined value analysis, slicing and structural testing for detection of runtime errors, and

makes it well-adapted for detection of security flaws. (For more related work, see [3]).

4 Detection of Alarms by Static Analysis

With FRAMA-C, potential runtime errors (alarms) can be detected and localized by the

VALUE plug-in [7]. It implements an abstract interpretation based value analysis that

computes (over-approximated) domains of possible values for program variables at each

program location. For the memcpy call responsible for Heartbleed (cf. Fig. 1), VALUE

generates the following assertions (slightly rewritten here for the sake of clarity):

//@ assert Alarm1: mem_access: \valid(bp[0 .. (payload-1)]);

//@ assert Alarm2: mem_access: \valid(pl[0 .. (payload-1)]);

These alarms indicate that the tool cannot ensure the validity of pointers bp and pl in the

range of the payload size payload, and therefore dereferencing them may be dangerous.

As VALUE is a sound analyzer [7], it guarantees to generate alarms for all potential

runtime errors. It may also generate spurious cases — false positives —, due to over-

approximations, especially when users do not provide it with a sufficiently accurate

initial state for the inputs. As a result, the alarms of interest with regard to Heartbleed

might be raised among numerous other alarms, with no means — at first glance — to

distinguish preeminent assertions. Of course, more precise analyses could be performed

through additional efforts, for instance on the specification of the initial state, or addi-

tional annotations in the code to reduce non-conclusive over-approximations. These two

workarounds imply a deeper understanding of the application under analysis, and may

not be affordable in terms of required efforts or functional expertise in practice.

In this work, we use another approach based on taint analysis [5] to identify code

variables and statements concerned with the propagation of taintable, i.e. potentially



corrupted inputs. Taintable inputs may contain information controlled by an attacker,

and therefore represent a high risk to introduce malicious behaviors. Taint analysis

allows the user to distinguish which source code statements are concerned with the

taintable input flow and are used by a potentially vulnerable function. Taintable data

flows are propagated, for instance, in case of pointer aliasing, or copy of memory zones.

The proposed taint analysis approach is based on static analysis results computed by

VALUE. We have implemented it in an experimental FRAMA-C plug-in.

To apply it on the Heartbleed case, the user specifies the potentially taintable inputs

(rrec.data, the major part of the HeartBeat message sent by the client), and the vulner-

able functions (e.g. libc functions memcpy, strcpy, fgets,. . . that give rise to a significant

number of vulnerabilities [4]). The tool reports that the assertions related to memcpy

call handle the taintable input flow, and the memcpy statement is identified as vulnera-

ble8. This permits to distinguish security-related alarms among all alarms generated by

VALUE.

5 Simplification of the Program by Slicing

Program slicing [12, 11] consists in computing the set of program instructions, called

program slice, that may influence the program state at some point of interest, called

slicing criterion. Slicing preserves the behaviors of the initial program at the selected

criterion after removing irrelevant instructions. It relies on dependency analysis, that

can in turn use the results of value analysis.

The SLICING plug-in [7] of FRAMA-C offers various ways to define slicing criteria,

including program statements, function calls and returns, read and write accesses to

selected variables, and logical annotations. SLICING is also able to handle a conjunction

of atomic criteria: by construction, the slice will verify all criteria simultaneously.

In this work, we apply SLICING to simplify the code with respect to the set of alarms

produced by static analysis (cf. Section 4). For the program with the Heartbleed vulner-

ability, initially containing 8 defined functions and 51 lines of code, using SLICING

allows us to simplify the code and to keep only 2 defined functions and 38 lines in the

slice used in the last step.

6 Confirmation of Alarms by Fuzz Testing

Fuzz testing consists of injecting faulty, erroneous or malformed input into a system

under test, and monitoring the state of the system. Detecting an observable error state

(such as a crash) indicates that the system cannot properly handle the input in ques-

tion, confirming the existence of a bug in the code. To be more efficient, fuzzing must

be able to generate syntactically correct, but semantically invalid input by modifying

some (sets of) fields within it. The FLINDER fuzz testing framework [10] was originally

developed to perform “smart”, syntax-aware black-box fuzzing: the tester specified the

exact format of the input being tested, provided a valid input sample, and defined which

of the fields within the format should be modified.

8 For convenience of the reader, taint analysis results are illustrated in Sec. 7.1.



Within STANCE, FLINDER plays a different role: it is used to determine whether

a certain alarm identified by static analysis is an actual vulnerability. FLINDER accom-

plishes this via white-box fuzzing: a specific function inside a program becomes the

system under test, and its parameters define individual input fields to be modified. The

main white-box operation steps, labelled (1)–(5), are shown in Fig. 2b:

(1) Based on the previously-instrumented code (with the potentially vulnerable call-

sites detected by e.g. value analysis) and information about the particular variables

to modify in a function (provided by e.g. taint analysis), FLINDER generates a list

of fuzzing parameters for each variable to be modified, specifying what kind of

values should be generated for them to look for certain kinds of vulnerabilities.

(2) The instrumented code is compiled and fed to the FLINDER test harness.

(3) Test vectors are generated according to the fuzzing parameters — e.g. strings of

varying length for a string variable to identify buffer overflow problems, and very

small and very large values for an integer variable to identify integer overflow and

array overindexing issues.

(4) Each test vector is sent to the test harness (4a), where its values are used to replace

the values in the variables targeted by the fuzzing at runtime (4b). The test har-

ness observes the termination of the function (4c), detects anomalies thanks to the

instrumentation, and logs the results (4d).

(5) Based on the presence of anomalies in the logs — such as invalid memory accesses

or crashes — FLINDER decides whether the vulnerability is confirmed or not.

In the Heartbleed example, the static analysis step reports to FLINDER six poten-

tial bugs, while the slicing step reduces the code and the number of parameters of the

function tls1_process_heartbeat. Next, the code is instrumented to be able to detect

memory violation errors. Used in the white-box mode, FLINDER generates test cases

for modifying each of the parameters in turn: 10 test cases for a different-size Heartbeat

message buffer, and 32 test cases each for different Heartbeat message length and se-

quence number values. The first test case where the Heartbeat message length is larger

than the buffer size causes an invalid memory read attempt. Captured by the test har-

ness, this operation allows FLINDER to identify the specific FRAMA-C alarm connected

to the test. FLINDER ultimately relays this information to FRAMA-C, which can then

change the status of the corresponding alarms to confirmed (showing them in red in the

FRAMA-C GUI)9.

7 Tool Demonstration

7.1 Static Analysis Step Applied to the Heartbleed Vulnerability

Fig. 3 provides a screenshot illustrating how the first step of FLINDER-SCA allows the

verification engineer to detect potential vulnerabilities within the FRAMA-C toolset.

The culprit memcpy statement is identified as vulnerable, because it manipulates a taintable

data flow. We extended the original FRAMA-C GUI by some complementary columns

to ease the localization of vulnerable statements in the source code. In the upper left

9 For convenience of the reader, fuzzing results are illustrated in Sec. 7.2.



panel, several columns identify functions comprising taintable data flows, vulnerable

statements and alarms. The upper right panel shows the source code with the taintable

data flows and vulnerable statements highlighted in orange and pink respectively. This

provides the verification team with a user-friendly overview of taint analysis results on

the code under review (especially thanks to the causality with taintable input parame-

ters).

7.2 Fuzz Testing Step Applied to the Heartbleed Vulnerability

In this example, FLINDER is applied to the simplified version of the Heartbleed vul-

nerability (see Fig. 1). The static analysis step has identified six potential bugs in

the tls1_process_heartbeat function, and the slicing step has simplified the program

to reduce the size and complexity of the code. After appropriately instrumenting the

sliced code at each alarm location where memory issues are suspected, FLINDER de-

termines which fuzzing rules to apply — in this case, simple integer fuzzing is applied

to the two integer parameters of the function tls1_process_heartbeat, and binary data

fuzzing is applied to the string parameter (see Fig. 4). Fuzzing the first (string) param-

eter s_s3_rrec_data proves to be inconclusive: injecting modified values into the pro-

gram does not result in crashes or other incorrect operation. Regardless, fuzzing buffers

such as this is important — in many cases, they can contain important data that can

affect the execution path of the application. Changing the second (integer) parameter

s_s3_rrec_length to a value that is larger than the size of the buffer results in an invalid

memory access, which is then detected by the test harness due to the hooks inserted into

the code. This allows FLINDER to confirm the presence of the vulnerability. Finally, this

information is sent back to FRAMA-C to set the status of the corresponding alarms as

confirmed (in other words, the corresponding assertions are marked in red as invalid,

see Fig. 5).

8 Discussion

According to [8], the main difficulties in detecting Heartbleed with static analysis tools

were four-fold: the way data is stored and referenced, complexity of following the ex-

ecution path, difficulty of identifying the specific parts in the storage structure that are

misused, and resistance to taint analysis heuristics due to the difficulty of determining

whether a specific part within a complex storage structure has become untainted.

Detecting the bug via dynamic analysis ran into another problem: the custom mem-

ory management used by OpenSSL would prevent dynamic testing frameworks such as

VALGRIND [9] from being able to successfully detect a memory corruption or over-read

problem. This — combined with encapsulation of the heartbeat length field within the

payload — made its detection via fuzz testing infeasible.

In the end, Heartbleed was detected with two main approaches: Neel Mehta (Google)

found it using manual code review10, and Codenomicon found it through the use of a

10 as reported by Andrew Hintz, Google vulnerability analyst, see https://news.ycombinator.com/

item?id=7558015.



hybrid fuzzer / dynamic analyzer tool. The latter approach is very interesting from a

tool standpoint: instead of relying purely on fuzzing, an additional mechanism was em-

ployed to detect when the output of a system was semantically incorrect in several ways

(bypassing authentication, data leakage, amplification, and weak encryption) [2]. This

approach requires additional manual work in the creation of additional information to

describe the output, but this only needs to be done once for each interface.

This trend of combining fuzz testing tools with other static and dynamic analysis

techniques proves to be an important way of detecting complex and non-obvious secu-

rity vulnerabilities, moving forward.

To summarize, complex vulnerabilities such as Heartbleed present significant chal-

lenges to state-of-the-art static and dynamic analysis tools. While manual code review

can always be effective, it is not always a viable solution due to the sheer volume of

source code to be inspected in some cases. Thus, new approaches — such as the one

proposed in the present work — that combine existing methods are essential in their

capacity to detect vulnerabilities automatically without requiring significant manual ef-

fort.

9 Conclusion and Future Work

The difficulties of detecting the Heartbleed vulnerability by a static or a dynamic anal-

ysis technique alone have been identified and discussed in [8]. To address such vul-

nerabilities, this work proposes an innovative combined approach whose different steps

are complementary and offer a very promising synergy. First, value analysis reports po-

tential errors as alarms, while taint analysis identifies a subset of alarms that are most

likely to lead to attacks. Notice that static analysis alone reports several alarms and

cannot precisely find the security flaw. Second, slicing reduces the source code by re-

moving statements that are irrelevant w.r.t. the identified subset of alarms. In this case

study, slicing reduced the program by 25%, while in earlier experiments on runtime

error detection with SANTE [3], the average rate of program reduction by slicing was

about 32%. These two steps help to focus on security-relevant alarms in the last step

and avoid wasting time by analyzing safe or irrelevant statements. Finally, a fuzz testing

step is applied on the reduced code in order to try to confirm the selected alarms. In the

present case study, fuzz testing with FLINDER without a preliminary static analysis step

could be applied only in a black-box manner and would not be able to find the Heart-

bleed bug either. Similarly, only using static analysis techniques could not confirm the

validity of any identified alarms. Another important benefit for industrial applications of

the method is its capacity to detect bugs with reasonable efforts, e.g. without the tester

having to provide a detailed specification of the input state or additional annotations in

the code.

We implemented this method in the Flinder-SCA tool, aiming to connect several

new plug-ins developed on top of the Frama-C platform: a taint analysis tool, and a

fuzz testing prototype currently being developed within the STANCE project. The orig-

inality of the present work with respect to SANTE [3] lies in using taint analysis for

identifying the most security-relevant alarms, and fuzz testing for efficient detection



of vulnerabilities. That enhances the SANTE method, adapts it to detection of security

flaws and makes it effective for such subtle vulnerabilities as Heartbleed.

FLINDER-SCA is currently used to analyze other proprietary or open-source pieces

of software, with negligible adaptations; however, it is important to note that much of

the intended vulnerability detection functionality of FLINDER-SCA is still under active

development within the STANCE project. Several improvements are planned to enlarge

the scope of applications. This concerns in particular the FLINDER tool to address more

types of vulnerabilities, and a better integration with taint analysis to be able to apply

fuzzing techniques to any control point in the potentially vulnerable workflow under

analysis and better identify which parts of the code are the best candidates for fuzzing.

Future improvements also include the investigation of complex input that cannot be

represented by variable types — such as a string variable containing an entire SSL3

record consisting of several distinct pieces of data. This can be achieved by adapting

Flinder’s already existing structure-aware fuzz testing capabilities and employing static

analysis methods to help users create the inner structure for such variables as necessary

— or in some cases, generating it automatically.

These future developments will permit to apply the methods and tools discussed in

this paper to several application candidates, sub-parts of the STANCE project use cases.

They could range from basic Apache resource libraries, for which the feasibility can be

considered as acquired, to more sophisticated functions (possibly from SingleSignOn

software for instance). It is also expected to expand these applications to critical infras-

tructures in future projects, coupling dynamic and static approaches, in which fuzzing

will remain one of the key techniques for verification of complex security properties in

complement to classical static analysis methods.
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Fig. 3. Frama-C GUI after applying VALUE and taint analysis.



Fig. 4. The results produced by FLINDER after applying it to the Heartbleed vulnerability.



Fig. 5. The final results in the FRAMA-C GUI after applying FLINDER-SCA to the Heartbleed

vulnerability. The last two alarms shown in red are real flaws.


