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25030 Besançon, France
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ABSTRACT
We present a uniform verification method of safety proper-
ties for classes of parameterized protocols. Properties like
mutual exclusion or cache coherence are automatically ver-
ified for any number of similar processes communicating by
broadcast and rendez-vous. The protocols are specified in
a language of generalized substitutions on array data struc-
tures. Sets of states are expressed by first-order formulae
with equality. Predecessors are computed by an iterative
semi-algorithm. Reaching an initial state or the fixpoint is
shown to be decidable and an original decision procedure is
provided. As a running example, the MESI protocol illus-
trates this approach. Experimental results show its applica-
bility to various properties and protocol classes.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification.

General Terms: Verification.

Keywords: symbolic model checking, assertion, reachabil-
ity, safety, generalized substitutions.

1. INTRODUCTION
A protocol is a piece of code executed in parallel on many

processes communicating with each other to perform a global
functionality like mutual exclusion, leader election or cache
coherence. Such a protocol is parameterized [1] when it is
the same for any number of cooperating processes. The chal-
lenge is to verify its global effect uniformly, i.e. once for all
its sizes.
Decidability results for the parametric verification of safe-

ty properties only concern restricted classes of parameter-
ized protocols [4, 3]. The more pragmatic approach of rich-
language symbolic model checking [8, 7, 5, 9] reduces this
decidability question to the termination of a fixpoint com-
putation on an adequate abstraction grouping states in sets,
with procedures deciding the inclusion of sets of states and
the emptiness of their intersection. Along this line we study
the case where the parameter ranges over a finite set with-
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out any special structure. Consequently, the global system
can be modelled by arrays indexed by this set. Our main
contributions are a proof that this abstract point of view is
adequate to symbolic model checking, a description of many
classes of protocols falling in this case, and an original im-
plementation based on a powerful theorem prover.

2. PARAMETERIZED PROTOCOLS
An operational model for a protocol is a labeled transition

system (S,L, T ), where S is a common finite set of process
states, L is a set of action labels and T ⊆ S × L × S is a
set of labeled transitions. Moreover, this transition system
is parameterized by the identifier i of the process pi exe-
cuting the protocol, in the sense that transitions can also
be guarded by conditions on process identifiers (e.g. i and j
with j �= i) and on the current state of some other processes.
We distinguish three kinds of action. A local action changes

the state of a single process. It is denoted by a label l ∈ L.
A rendez-vous is a synchronization between two processes.
One process sends a message according to an output tran-
sition (s, l!, s′) ∈ T and another one receives it by moving
along an input transition (r, l?, r′) ∈ T . A broadcast ac-
tion changes all the process states. A single process sends
a broadcast message to all the processes along a transition
(s, l!!, s′) ∈ T , whereas each other process in some state t
moves to some state t′ such that (t, l??, t′) ∈ T . For sake
of clarity, this study is restricted to deterministic broadcast
reception: for each state t ∈ S and each broadcast label l??,
there exists exactly one state t′ such that (t, l??, t′) ∈ T .
This operational model includes the classes of broadcast

protocols [4] and of client-server protocols [3]. From the
algorithmic point of view, it can model mutual exclusion
and cache coherence protocols, among others.
As a running example, we use the MESI cache coherence

protocol [5] which ensures that each process has access to the
same memory location. Its transition system is represented
in Figure 1. Initially, all the processes have an invalid cache
(I state). Properties of interest are detailed in Section 3.

3. MODELLING LANGUAGE
This section defines a language of generalized substitu-

tions suitable to model the global behavior of any number
of communicating processes executing a protocol under con-
sideration. This language is built upon a many-sorted first-
order language of predicates. We define data types, expres-
sions, first-order formulae and the syntax of indeterministic
substitutions in this order.
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Figure 1: MESI transition system.

expr ::= arr | ele | ind

arr ::= a | z |wr(arr , ind, ele) | const(ele)

| block(arr , {(e1, ele), . . . (en, ele)})
ele ::= e | rd(arr , ind)

ind ::= i | j
subst ::= skip | assign | pred =⇒ subst | (@j . subst)

assign ::= x := expr | x := expr || assign
pred ::= litt | pred ∧ pred | pred ∨ pred

| (quant j . pred)

litt ::= equa | ¬equa

equa ::= ele = ele | ind = ind

quant ::= ∀ | ∃

where a ∈ Varr , z ∈ Carr , e ∈ Cele, i ∈ Vind and j ∈ Cind.

Figure 2: Language grammar.

A global configuration is defined by the states of all the
processes. It is stored in an array of sort arr taking values in
a set of protocol states abstracted away by the ele sort and
indexed by a (finite non empty) set of processes abstracted
away by the ind sort. Thus the processes become anony-
mous and can be distinguished only by a name considered
as a constant within a fixed set denoted by Cind.
Expressions are generated by the expr syntactic element

of Figure 2. This grammar is parameterized by three finite
disjoint sets Carr , Cele and Cind of constants of sort arr , ele
et ind respectively, and by two disjoint sets Varr and Vind

of variables of sort arr and ind respectively. Constants are
written in the sans-serif font and variables in italic. Suppose
that card(Cele) = n and Cele = {e1, e2, . . . , en}.
Intuitively, given a term a of sort arr , a term i of sort

ind and a term e of sort ele, the term rd(a, i) stands for the
element of the array a at the index i. The term wr(a, i, e)
stands for the array obtained from a by setting the value
at the index i to e. The term const(e) denotes the constant
array, whose value at every index is the same element e ∈
ele. The array block(a, {(e1, e

′
1), . . . , (en, e

′
n)}) is obtained

from a by replacing each value el by e′l (1 ≤ l ≤ n). All
these definitions are formalized by the set A of axioms of
Figure 3, where all the variables are universally quantified
and sorted, namely i and j of sort ind , e and e′i (1 ≤ i ≤ n)
of sort ele and a of sort arr . To avoid the quantification on
l (1 ≤ l ≤ n), (4) must be repeated n times, once for each
value of l.

i �= j ⇒ rd(wr(a, i, e), j) = rd(a, j) (1)

rd(wr(a, i, e), i) = e (2)

rd(const(e), i) = e (3)

rd(a, i) = el ⇒
rd(block(a, {(e1, e

′
1), . . . (en, e

′
n)}), i) = e′l (4)

Figure 3: Axiom set A for the extended array theory.

swrite =def (@j . rd(a, j) = e =⇒ s := wr(a, j,m))
sinv =def (@j . rd(a, j) = s =⇒ s := wr(const(i), j, e))
sread =def (@j . rd(a, j) = i =⇒

s := wr(block(a, {(s, s), (e, s), (m, s), (i, i)}), j, s))

Figure 4: MESI substitutions.

The operational part of our language is defined by gener-
alized substitutions along the subst syntactic element of Fig-
ure 2. In Figure 2 and all that follows, x ∈ Varr∪Vind∪Vele is
a variable of any sort, whereas j ∈ Vind is a variable of sort
ind only. Each kind of substitution specifies a command.
Basic substitutions are skip which leaves all the variables un-
changed, and simple assignment (:=) which changes a single
variable value. All the assignments are assumed well-sorted.
Simultaneous assignment of two variables and more can be
done with the associative and commutative multiple assign-
ment operator ||. Substitutions can be guarded (=⇒) by a
predicate (pred). The predicate language is the fragment of
the first-order logic with equality and sorts arr, ind and ele
where only the variables of sort ind can be quantified. The
propositional connectives ⇒ and ⇔ can be introduced as
shortcuts. The indeterminism required to model the inter-
leaved behavior of processes is modelled by the unbounded
choice binder @, limited, like quantifiers, to variables of sort
ind. This restriction is of importance for the existence of a
decision procedure (see Section 5). Consequently, the syn-
tax of quantifiers (∀, ∃) and of the choice binder @ does not
mention the sort of the bounded variables.
As we shall see, this language is sufficient to model the

protocols under consideration. For example, Figure 4 shows
a model of the MESI protocol. The substitutions of Fig-
ure 4 use a single variable a ∈ Varr representing the global
configuration whose domain is the set of processes hidden
behind the ind sort. The fact that a process pj is in a state
t ∈ Cele = {m, e, s, i} is represented by rd(a, j) = t.
An assertion is a predicate representing a set of states. In

the following, we consider the assertion language of all the
predicates defined by the syntactic element pred in Figure 2.
A safety property says that, in given circumstances, the

system should not evolve towards critical or error states.
When the context is reduced to a set of initial states I , such
a property says that some set of states E should not be
reached by the system starting from some state in I . Then,
this reachability question is modelled by a pair (I,E) of sets
of states, or, equivalently, by a pair of assertions (Source,
Target).
The set of initial states for the MESI example is defined

by the assertion Source =def (∀j .rd(a, j) = i) which means
that all caches are initially in the I state. Two mutual exclu-



〈P =⇒ S〉C = P ∧ 〈S〉C
〈skip〉C = C

〈x := E〉C = C(E/x)

〈y1 := E1 || · · · || yn := En〉C = C(z2/y2) . . . (zn/yn)

(E1/y1)(E2/z2) . . . (En/zn)

〈(@j . S)〉C = (∃j . 〈S〉C)

where P ∈ pred , S ∈ subst , x is a variable, C(E/x)
denotes the syntactic replacement in C of all the
free occurrences of x by E, y1, . . . yn are pairwise
distinct, and z2, . . . zn are pairwise distinct fresh
variables.

Figure 5: 〈 〉 calculus.
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Figure 6: Backward reachability (semi-)algorithm.

sion properties can be considered. (i) Two processes cannot
simultaneously write into the memory, i.e. the assertion

Targetwrite =def (∃j1 . (∃j2 .
j1 �= j2 ∧ rd(a, j1) = m ∧ rd(a, j2) = m))

(5)

is not reachable. (ii) A process cannot share the memory for
reading it while another process is modifying it. Formally,

Target read =def (∃j1 . (∃j2 .
j1 �= j2 ∧ rd(a, j1) = s ∧ rd(a, j2) = m))

(6)

is not reachable.

4. BACKWARD REACHABILITY
As shown in [9], a backward reachability approach asso-

ciated with an assertion transformer is an easy method to
avoid unmanageable quantifiers. In this section, we firstly
present a symbolic backward computation step as the syn-
tactic action of a generalized substitution on an assertion.
Next, we iterate this calculus in a fixpoint computation.
For an assertion C and a generalized substitution S, 〈S〉C

denotes the assertion characterizing the states that have a
successor by S satisfying C. Figure 5 explicitly defines the
action of the assertion transformer 〈S〉C as a syntactic cal-
culus. Removing quantifiers in assertions is a key of success
for their automatical discharging into a prover. An impor-
tant remark for what follows is that the calculus of 〈S〉C can
introduce only quantifiers over indexes, for any assertion C
and any substitution S from the language of Section 3.

The (semi-)algorithm computing predecessors is given in
Figure 6. The input (resp. output) data is underlined (resp.
overlined). The semantics of the internal variables is as fol-
lows: i is the initial assertion, S is the set of substitutions,
the assertion k characterizes the backward visited states, v
defines the predecessors of the v assertion of the previous
iteration that are not already in k and B is the set of com-
puted predecessors of v.
At each iteration the semi-algorithm sequentially verifies

the satisfiability of i ∧ v, computes the set B of predecessor
assertions of v for each substitution si (1 ≤ i ≤ p), checks
whether

∧
b∈B(b ⇒ k) is valid and updates the assertions v

and k.
Even if there exists a decision procedure for the i∧v satisfi-

ability and for the
∧

b∈B(b⇒ k) validity, this semi-algorithm
can diverge by non termination of the fixpoint calculus. Ab-
straction or acceleration techniques can sometimes prevent
it but are not the object of this study. The decidability of
evolution conditions is then discussed.

5. DECIDING FIXPOINT CONDITIONS
This section establishes the decidability of the conditions

arising in the semi-algorithm of Section 4. We assume the
usual notions of formulae, satisfiability, validity and theories.
A formula ϕ is called satisfiable modulo a theory T , or T -
satisfiable, if T ∧ϕ is satisfiable. The conditions to verify can
be expressed as the satisfiability of some formulae modulo
the many-sorted theory of arrays TA defined by the set A of
axioms of Figure 3. The following result can be used for a
large class of such formulae encountered in practice.

Theorem 1 Consider the many-sorted first-order predicate
language defined in Section 3 and a closed predicate ϕ in
which no existential quantifier is in the scope of a universal
one. Then the satisfiability of ϕ modulo TA is decidable.

Proof. Construct the Skolem form of ϕ. The skolemiza-
tion of ϕ can only introduce some constants since no existen-
tial quantifier in ϕ is in the scope a universal one. Let ψ be
the Skolem form of ϕ written in prenex form. Hence ψ is a
closed Skolem formula of the form ∀x1 . . .∀xk .Φ(x1, . . . , xk)
for some variables x1, . . . , xk (k � 0) of sort ele and a quan-
tifier free formula Φ(x1, . . . , xk). The result follows from
Corollary 1 of [6] by induction on k. ✷

We can now show the decidability of the conditions in the
semi-algorithm of Section 4 for the considered properties.

Corollary 1 Suppose that Source, Target and all guards in
the substitutions s1, . . . , sp are closed predicates in which no
existential quantifier is in the scope of a universal one. Then
the satisfiability of the reachability condition i∧v is decidable
at every iteration for the semi-algorithm of Figure 6.

Proof. We see from Figure 5 that during the computa-
tion of 〈sl〉 v, new quantifiers can come from v, from @ in sl

or from the guards of sl. Besides, the only external quanti-
fiers added during the computation of k are existential ones.
We see by induction on the execution length that the reach-
ability condition i ∧ v has no existential quantifier under a
universal one, so the result follows from Theorem 1. ✷

Corollary 2 Suppose that Target and all guards in the sub-
stitutions s1, . . . , sp are closed predicates without universal
quantifiers. Then the validity of the inclusion conditions
b ⇒ k is decidable at every iteration for the semi-algorithm
of Figure 6.



Model Property Size Steps Time
Pidset [2] Mutual exclusion 4 1 0.7 s.
Dijkstra [1] Mutual exclusion 4 3 21.3 s.
MESI Cache coherence 3 3 17.9 s.
S. German [3] Cache coherence 10 4 29.4 s.

Table 1: Experimental results.

Proof. The validity of b ⇒ k is equivalent to the un-
satisfiability of b ∧ ¬k. As in the previous proof, we can
show by induction that at each iteration, the predicates b
(b ∈ B) and k contain no universal quantifiers. The pred-
icate ¬k contains no existential quantifier. Therefore the
predicate b ∧ ¬k satisfies the conditions of Theorem 1 and
its satisfiability is decidable. ✷

In the MESI example of Figure 1 the Source , Targetwrite

and Target read properties and the guards of the substitu-
tions satisfy the conditions of Corollaries 1,2. Therefore the
verification of all conditions in the backward reachability
semi-algorithm is decidable for the considered safety prop-
erties (5) and (6).

6. EXPERIMENTS
The semi-algorithm of Figure 6 is implemented in Java.

A pre-process replaces terms containing const or block sym-
bols with predicates built on rd and wr symbols. Then each
evolution condition is sent to the haRVey prover1 to be dis-
charged modulo the equational theory axiomated by axioms
(1) and (2) of Figure 3. Table 1 summarizes the experi-
mental results2 of this study. The second column describes
the safety property being checked and the third one gives
the number of substitutions in the model. The number of
iterations needed to establish the property is given in the
fourth column. These and some other examples are detailed
at http://lifc.univ-fcomte.fr/~couchot/specs/.

7. CONCLUSION
This work addresses the question of the fast detection of

classes of parameterized protocols whose safety properties
can be verified by symbolic model checking. Before devot-
ing time to look for an ad hoc abstraction or a tailor-made
combination of decision procedures, it is suggested to simply
translate the global system configurations into arrays and to
model data types by first-order axioms. Sets of states can
then be represented by assertions in a fragment of a many-
sorted first-order logic with equality whose adequacy to sym-
bolic model checking can be stated by general arguments of
first-order logic.
This is a basic but original way to check safety properties

for many classes of communicating protocols, without dedi-
cated methods. Moreover, it is now proved that reaching an
initial state or a fixpoint is decidable within a general theory
of array data structures. This decision procedure is based on
quantifier expansion and sorts and does not make a claim
for efficiency. However, our experiments give good results
by using a variant based on the superposition capabilities
of the haRVey prover. The decidability of this optimization
remains to be proved.

1www.loria.fr/equipes/cassis/softwares/haRVey/
2run on a Centrino 1.5 Ghz with 512 Mb RAM.

We intend to apply this approach to other classes of algo-
rithms and data structures, combining experimental imple-
mentations and theoretic investigations. Experimentations
quickly answer the feasability question whereas finding an
ad hoc decision procedure is much harder work. When our
experimental laboratory shows that this deductive approach
is too light to catch a termination argument, or when more
efficiency is required, we suggest to look for abstractions,
approximations and a clever combination of decision proce-
dures. In the other cases, it is satisfactory to get a symbolic
model checking running above an existing theorem prover
and to explain its success within the classical theory of first-
order logic with sorts and equality.
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