Estimates for the homological dimensions of pullback rings

N. V. Kosmatov

In this article all rings are assumed to have identity elements preserved by ring homomorphisms, and all modules, unless otherwise stated, are left modules. For a ring Λ let lgld Λ and lwd Λ denote the left global dimension of Λ and the left weak dimension of Λ respectively. For a Λ -module X and a right Λ -module Y we denote the projective dimension of X, the injective dimension of X, the flat dimension of X, and the flat dimension of Y by $pd_{\Lambda} X$, $id_{\Lambda} X$, $fd_{\Lambda} X$ and $rfd_{\Lambda} Y$ respectively.

Consider a commutative square of rings and ring homomorphisms

$$\begin{array}{ccc} R & \stackrel{i_1}{\longrightarrow} & R_1 \\ & \downarrow_{i_2} & & \downarrow_{j_1} \\ R_2 & \stackrel{j_2}{\longrightarrow} & R', \end{array}$$

where R is the pullback (also called fibre product) of R_1 and R_2 over R', that is, given $r_1 \in R_1$, $r_2 \in R_2$ with $j_1(r_1) = j_2(r_2)$ there is a unique element $r \in R$ such that $i_1(r) = r_1$ and $i_2(r) = r_2$. From now on we assume that i_1 is a surjection.

The fundamental tool used to estimate the homological dimensions of R is the following theorem.

Theorem 1. (i) *R*-module *M* is injective if and only if R_1 -module $\operatorname{Hom}_R(R_1, M)$ and R_2 -module $\operatorname{Hom}_R(R_2, M)$ are injective.

(ii) *R*-module *M* is projective if and only if R_1 -module $R_1 \otimes_R M$ and R_2 -module $R_2 \otimes_R M$ are projective.

(iii) *R*-module *M* is flat if and only if R_1 -module $R_1 \otimes_R M$ and R_2 -module $R_2 \otimes_R M$ are flat.

Establishing these assertions was a stimulus to study the category of R-modules, which has been highly interesting for algebraists since the 1970s. In 1971 J. Milnor [2, Theorems 2.1, 2.2, 2.3] first proved Theorem 1 for projective modules, assuming that j_2 is surjective. In 1985 A. N. Wiseman [3] showed that this assumption could be dropped, and obtained the following upper bound on the left global dimension of R:

$$\operatorname{lgld} R \leq \max_{k=1,2} \{ \operatorname{lgld} R_k \} + \max_{k=1,2} \{ \operatorname{rfd}_R R_k \}.$$

He also pointed out the fact that it is impossible to estimate $\lg l R$ with only $\lg l R_k$ given, because there exists an example in which the pullback R has infinite global dimension whilst those of the component rings R_k are finite. All three statements of Theorem 1 were proved in 1985 by A. Facchini and P. Vámos [4, Theorem 2] under the assumption that j_2 is surjective. We shall see further that this assumption is superfluous.

In 1988 E. Kirkman and J. Kuzmanovich [5, Theorem 2] showed that if j_2 is surjective then

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{ \operatorname{lgld} R_k + \operatorname{rfd}_R R_k \}.$$
(1)

In 1992 for commutative rings S. Scrivanti [6, Theorems 1, 2] sharpened this bound and obtained an upper bound on lwd R. Moreover, she gave examples to illustrate that, in a certain sense, her results were best possible.

In 1997 K. M. Cowley [7, Theorem 3.1] proved that if j_2 is surjective then

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{ \operatorname{lgld} R_k + \operatorname{pd}_R R_k \}.$$
(2)

Here all the dimensions are concerned with the left-hand side of rings and modules, so this bound is "one sided", and all the preceding bounds were "twosided". The comparison of (1) and (2) [7, Example 3.4] demonstrates that it may be beneficial to concentrate on a particular side of the rings.

The aim of this paper is to give a new "one sided" upper bound for $\lg \lg R$ (Theorem 5) and to generalize Scrivanti's upper bound for $\lg d R$ to the noncommutative case (Theorem 9). To do this, we estimate the injective and flat dimensions of an *R*-module (Propositions 4, 8). The bound (2) and its analogue for $\lg d R$ are deduced as immediate consequences of our results (Corollaries 6, 10). Besides, we relax the conditions and do not require j_2 to be surjective.

We begin by showing how to dispense with this condition in Theorem 1. **Proof of Theorem 1.** Set $R'' = j_2(R_2)$. Since i_1 is a surjection, we obtain $j_1(R_1) \subset j_2(R_2) = R''$. Hence we have another commutative square of rings and ring homomorphisms

$$\begin{array}{ccc} R & \stackrel{i_1}{\longrightarrow} & R_1 \\ & \downarrow^{i_2} & & \downarrow^{j_2} \\ R_2 & \stackrel{j_2}{\longrightarrow} & R'' \end{array}$$

with $j_2 : R_2 \to R''$ surjective. It is clear that R is also the pullback of R_1 and R_2 over R'', so the desired result follows from [4, Theorem 2].

We need the following elementary consequence of [1, Proposition VI.2.1a].

Lemma 2. Let Λ be a ring, n be a positive integer, and let $0 \longrightarrow M \longrightarrow I \longrightarrow K \longrightarrow 0$ be a short exact sequence of Λ -modules where the module I is injective and $\operatorname{id}_{\Lambda} M \leq n$. Then $\operatorname{id}_{\Lambda} K \leq n - 1$.

Proposition 3. Let M be an R-module, n be a positive integer, $k \in \{1, 2\}$, and let $0 \longrightarrow M \xrightarrow{f_0} I_0 \xrightarrow{f_1} I_1 \xrightarrow{f_2} I_2 \longrightarrow \ldots$ be an injective resolution of M.

Let K_t denote $\operatorname{im}(f_{t+1})$, $t \ge 0$. Suppose that $\operatorname{id}_{R_k}(\operatorname{Ext}^l_R(R_k, M)) \le n - l$ for $l = 0, 1, \ldots, n$. Then $\operatorname{id}_{R_k}(\operatorname{Hom}_R(R_k, K_t)) \le n - t - 1$ for $t = 0, 1, \ldots, n - 1$.

Proof. The proof is by induction on t.

For t = 0, if we apply the functor $\operatorname{Ext}_{R}^{*}(R_{k}, -)$ to the short exact sequence of *R*-modules $0 \longrightarrow M \longrightarrow I_{0} \xrightarrow{f_{1}} K_{0} \longrightarrow 0$, we obtain an exact sequence of R_{k} -modules

and isomorphisms of R_k -modules

$$\operatorname{Ext}_{R}^{l}(R_{k}, K_{0}) \simeq \operatorname{Ext}_{R}^{l+1}(R_{k}, M), \ l \ge 1.$$
(3)

Setting $A_{k,0} = \text{im } f_{1*}$, we get two short exact sequences of R_k -modules:

$$0 \longrightarrow \operatorname{Hom}_{R}(R_{k}, M) \longrightarrow \operatorname{Hom}_{R}(R_{k}, I_{0}) \xrightarrow{J_{1*}} A_{k,0} \longrightarrow 0,$$
(4)

$$0 \longrightarrow A_{k,0} \hookrightarrow \operatorname{Hom}_{R}(R_{k}, K_{0}) \longrightarrow \operatorname{Ext}_{R}^{1}(R_{k}, M) \longrightarrow 0.$$
(5)

By Theorem 1, the R_k -module $\operatorname{Hom}_R(R_k, I_0)$ is injective. Since $\operatorname{id}_{R_k}(\operatorname{Hom}_R(R_k, M)) \leq n$, applying Lemma 2 to (4) gives $\operatorname{id}_{R_k}(A_{k,0}) \leq n-1$. At the same time $\operatorname{id}_{R_k}(\operatorname{Ext}^1_R(R_k, M)) \leq n-1$. Therefore, using (5), we get $\operatorname{id}_{R_k}(\operatorname{Hom}_R(R_k, K_0)) \leq n-1$.

For $t \ge 1$, we apply the functor $\operatorname{Ext}_R^*(R_k, -)$ to the short exact sequence of *R*-modules $0 \longrightarrow K_{t-1} \hookrightarrow I_t \xrightarrow{f_{t+1}} K_t \longrightarrow 0$. We obtain an exact sequence of R_k -modules

and isomorphisms of R_k -modules

$$\operatorname{Ext}_{R}^{l}(R_{k}, K_{t}) \simeq \operatorname{Ext}_{R}^{l+1}(R_{k}, K_{t-1}), \ l \ge 1.$$
(6)

Put $A_{k,t} = \text{im} (f_{t+1})_*$ and consider two short exact sequences of R_k -modules:

$$0 \longrightarrow \operatorname{Hom}_{R}(R_{k}, K_{t-1}) \longrightarrow \operatorname{Hom}_{R}(R_{k}, I_{t}) \xrightarrow{(f_{t+1})_{*}} A_{k,t} \longrightarrow 0,$$
(7)

$$0 \longrightarrow A_{k,t} \hookrightarrow \operatorname{Hom}_{R}(R_{k}, K_{t}) \longrightarrow \operatorname{Ext}_{R}^{1}(R_{k}, K_{t-1}) \longrightarrow 0.$$
(8)

By the inductive hypothesis, we have $id_{R_k}(Hom_R(R_k, K_{t-1})) \leq n-t$. By Theorem 1, $Hom_R(R_k, I_t)$ is an injective R_k -module. Applying Lemma 2 to (7), we see that $id_{R_k}(A_{k,t}) \leq n-t-1$. Combining (3) and (6) gives $\operatorname{Ext}_R^1(R_k, K_{t-1}) \simeq \ldots \simeq \operatorname{Ext}_R^t(R_k, K_0) \simeq \operatorname{Ext}_R^{t+1}(R_k, M)$. Hence $id_{R_k}(\operatorname{Ext}_R^1(R_k, K_{t-1})) = id_{R_k}(\operatorname{Ext}_R^{t+1}(R_k, M)) \leq n-t-1$. Finally, from (8), we obtain $id_{R_k}(Hom_R(R_k, K_t)) \leq n-t-1$, as required. **Proposition 4.** Let M be an R-module, n be a non-negative integer. Suppose that $id_{R_k}(Ext_R^l(R_k, M)) \leq n - l$ for l = 0, 1, ..., n and k = 1, 2. Then $id_R M \leq n$.

Proof. For the case n = 0, the result follows from Theorem 1. For $n \ge 1$, consider an injective resolution of *R*-module *M*

 $0 \longrightarrow M \xrightarrow{f_0} I_0 \xrightarrow{f_1} I_1 \xrightarrow{f_2} I_2 \longrightarrow \dots$

Write $K_t = \operatorname{im}(f_{t+1})$ for $t \ge 0$. By Proposition 3, the R_k -module $\operatorname{Hom}_R(R_k, K_{n-1})$ is injective (k = 1, 2). Theorem 1 now shows that K_{n-1} is an injective R-module. Therefore $\operatorname{id}_R M \le n$ by [1, Proposition VI.2.1a].

Proposition 4 clearly implies the following theorem.

Theorem 5. Let n be a non-negative integer, and suppose that for any R-module M we have that

$$\operatorname{id}_{R_k}(\operatorname{Ext}_R^l(R_k, M)) \leqslant n - l \text{ for } l = 0, 1, \dots, n \text{ and } k = 1, 2.$$

Then $\operatorname{lgld} R \leq n$.

Corollary 6.

$$\operatorname{lgld} R \leqslant \max_{k=1,2} \{ \operatorname{lgld} R_k + \operatorname{pd}_R R_k \}.$$

Proof. Set $n_k = \operatorname{lgld} R_k$, $m_k = \operatorname{pd}_R R_k$, $N_k = n_k + m_k$ (k = 1, 2) and $N = \max\{N_1, N_2\}$. It can be assumed that $m_k, n_k < \infty$. Let M be an R-module and $k \in \{1, 2\}$. Since $\operatorname{pd}_R R_k = m_k$, we have $\operatorname{Ext}_R^l(R_k, M) = 0$ for all $l \ge m_k + 1$. At the same time, since $\operatorname{lgld} R_k = n_k$, we get $\operatorname{id}_{R_k}(\operatorname{Ext}_R^l(R_k, M)) \le n_k = N_k - m_k \le N_k - l \le N - l$ for all $l = 0, 1, \ldots, m_k$. Therefore, by Proposition 4, $\operatorname{pd}_R M \le N$. This means that $\operatorname{lgld} R \le N$.

Let us state the analogous results for the flat dimension of an R-module M and the left weak dimension of R.

Proposition 7. Let M be an R-module, n be a positive integer, $k \in \{1, 2\}$, and let $\ldots \longrightarrow F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} M \longrightarrow 0$ be a flat resolution of M. Let K_t denote ker f_t , $t \ge 0$. Suppose that $\operatorname{fd}_{R_k}(\operatorname{Tor}_l^R(R_k, M)) \le n - l$ for $l = 0, 1, \ldots, n$. Then $\operatorname{fd}_{R_k}(R_k \otimes_R K_t) \le n - t - 1$ for $t = 0, 1, \ldots, n - 1$.

Proposition 8. Let M be an R-module, n be a non-negative integer. Suppose that $\operatorname{fd}_{R_k}(\operatorname{Tor}_l^R(R_k, M)) \leq n - l$ for $l = 0, 1, \ldots, n$ and k = 1, 2. Then $\operatorname{fd}_R M \leq n$.

Theorem 9. Let n be a non-negative integer, and suppose that for any finitely generated left ideal J of R we have that $\operatorname{fd}_{R_k}(\operatorname{Tor}_l^R(R_k, R/J)) \leq n-l$ for $l = 0, 1, \ldots, n$ and k = 1, 2. Then $\operatorname{lwd} R \leq n$.

Corollary 10.

$$\operatorname{lwd} R \leqslant \max_{k=1,2} \{\operatorname{lwd} R_k + \operatorname{rfd}_R R_k\}.$$

Arguing as above, the reader will easily prove Propositions 7 and 8 if he considers a flat resolution of the R-module M and applies the functor Tor instead of Ext to the resolution. Theorem 9 follows from Proposition 8 and Auslander's theorem:

lwd $R = \sup\{ \operatorname{fd}_R(R/J) \mid J \text{ is a finitely generated left ideal of } R \}.$

For more details we refer the reader to [8], where the similar results for the projective dimension of an R-module and the left global dimension of R are proved.

Acknowledgement. The author would like to thank Professor A. I. Generalov for suggesting the problem and guidance.

References

- H. CARTAN, S. EILENBERG. Homological algebra. Princeton University Press, Princeton, 1956.
- [2] J. MILNOR. Introduction to algebraic K-Theory. Princeton University Press, Princeton, 1971.
- [3] A. N. WISEMAN. Projective modules over pullback rings. Math. Proc. Cambridge Phil. Soc., 97 (1985), 399–406.
- [4] A. FACCHINI, P. VÁMOS. Injective modules over pullbacks. J. London Math. Soc., 31 (1985), 425–438.
- [5] E. KIRKMAN, J. KUZMANOVICH. On the global dimension of fibre products. — Pacific J. Math., 134 (1988), 121–132.
- [6] S. SCRIVANTI. Homological dimension of pullbacks. Math. Scand., 71 (1992), 5–15.
- [7] K. M. COWLEY. One-sided bounds and the vanishing of Ext. J. Algebra, 190 (1997), 361–371.
- [8] N. V. KOSMATOV. Upper bound on the global dimension of pullback rings.
 [in Russian] Fundamental and Applied Mathematics, 5 (1999), 1251– 1253.