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In this article all rings are assumed to have identity elements preserved by
ring homomorphisms, and all modules, unless otherwise stated, are left modules.
For a ring Λ let lgldΛ and lwdΛ denote the left global dimension of Λ and the
left weak dimension of Λ respectively. For a Λ-module X and a right Λ-module Y
we denote the projective dimension of X, the injective dimension of X, the flat
dimension of X, and the flat dimension of Y by pdΛ X, idΛ X, fdΛ X and rfdΛ Y
respectively.

Consider a commutative square of rings and ring homomorphisms

R
i1−−−−→ R1yi2

yj1

R2
j2−−−−→ R′,

where R is the pullback (also called fibre product) of R1 and R2 over R′, that
is, given r1 ∈ R1, r2 ∈ R2 with j1(r1) = j2(r2) there is a unique element
r ∈ R such that i1(r) = r1 and i2(r) = r2. From now on we assume that i1 is a
surjection.

The fundamental tool used to estimate the homological dimensions of R is
the following theorem.

Theorem 1. (i) R-module M is injective if and only if R1-module
HomR(R1,M) and R2-module HomR(R2,M) are injective.
(ii) R-module M is projective if and only if R1-module R1⊗R M and R2-module
R2 ⊗R M are projective.
(iii) R-module M is flat if and only if R1-module R1 ⊗R M and R2-module
R2 ⊗R M are flat.

Establishing these assertions was a stimulus to study the category of R-
modules, which has been highly interesting for algebraists since the 1970s. In
1971 J. Milnor [2, Theorems 2.1, 2.2, 2.3] first proved Theorem 1 for projective
modules, assuming that j2 is surjective. In 1985 A. N. Wiseman [3] showed that
this assumption could be dropped, and obtained the following upper bound on
the left global dimension of R :

lgldR 6 max
k=1,2

{lgldRk}+ max
k=1,2

{rfdR Rk}.
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He also pointed out the fact that it is impossible to estimate lgldR with only
lgldRk given, because there exists an example in which the pullback R has
infinite global dimension whilst those of the component rings Rk are finite. All
three statements of Theorem 1 were proved in 1985 by A. Facchini and P. Vámos
[4, Theorem 2] under the assumption that j2 is surjective. We shall see further
that this assumption is superfluous.

In 1988 E. Kirkman and J. Kuzmanovich [5, Theorem 2] showed that if j2
is surjective then

lgldR 6 max
k=1,2

{lgld Rk + rfdR Rk}. (1)

In 1992 for commutative rings S. Scrivanti [6, Theorems 1, 2] sharpened this
bound and obtained an upper bound on lwdR. Moreover, she gave examples to
illustrate that, in a certain sense, her results were best possible.

In 1997 K. M. Cowley [7, Theorem 3.1] proved that if j2 is surjective then

lgldR 6 max
k=1,2

{lgldRk + pdR Rk}. (2)

Here all the dimensions are concerned with the left-hand side of rings and mod-
ules, so this bound is “one sided”, and all the preceding bounds were “two-
sided”. The comparison of (1) and (2) [7, Example 3.4] demonstrates that it
may be beneficial to concentrate on a particular side of the rings.

The aim of this paper is to give a new “one sided” upper bound for lgldR
(Theorem 5) and to generalize Scrivanti’s upper bound for lwdR to the non-
commutative case (Theorem 9). To do this, we estimate the injective and flat
dimensions of an R-module (Propositions 4, 8). The bound (2) and its analogue
for lwdR are deduced as immediate consequences of our results (Corollaries 6,
10). Besides, we relax the conditions and do not require j2 to be surjective.

We begin by showing how to dispense with this condition in Theorem 1.
Proof of Theorem 1. Set R′′ = j2(R2). Since i1 is a surjection, we obtain
j1(R1) ⊂ j2(R2) = R′′. Hence we have another commutative square of rings and
ring homomorphisms

R
i1−−−−→ R1yi2

yj1

R2
j2−−−−→ R′′

with j2 : R2 → R′′ surjective. It is clear that R is also the pullback of R1 and
R2 over R′′, so the desired result follows from [4, Theorem 2].

We need the following elementary consequence of [1, PropositionVI.2.1a].

Lemma 2. Let Λ be a ring, n be a positive integer, and let
0 −→ M −→ I −→ K −→ 0 be a short exact sequence of Λ-modules where the
module I is injective and idΛ M 6 n. Then idΛ K 6 n− 1.

Proposition 3. Let M be an R-module, n be a positive integer, k ∈ {1, 2},
and let 0 −→ M

f0−→ I0
f1−→ I1

f2−→ I2 −→ . . . be an injective resolution of M.
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Let Kt denote im(ft+1), t > 0. Suppose that idRk
(Extl

R(Rk,M)) 6 n − l for
l = 0, 1, . . . , n. Then idRk

(HomR(Rk,Kt)) 6 n− t− 1 for t = 0, 1, . . . , n− 1.

Proof. The proof is by induction on t.
For t = 0, if we apply the functor Ext∗R(Rk,−) to the short exact sequence

of R-modules 0 −→ M −→ I0
f1−→ K0 −→ 0, we obtain an exact sequence of

Rk-modules

0 −→ HomR(Rk,M) −→ HomR(Rk, I0)
f1∗−→

f1∗−→ HomR(Rk,K0) −→ Ext1R(Rk,M) −→ 0

and isomorphisms of Rk-modules

Extl
R(Rk,K0) ' Extl+1

R (Rk,M), l > 1. (3)

Setting Ak,0 = im f1∗, we get two short exact sequences of Rk-modules:

0 −→ HomR(Rk,M) −→ HomR(Rk, I0)
f1∗−→ Ak,0 −→ 0, (4)

0 −→ Ak,0 ↪→ HomR(Rk,K0) −→ Ext1R(Rk,M) −→ 0. (5)

By Theorem 1, the Rk-module HomR(Rk, I0) is injective. Since
idRk

(HomR(Rk,M)) 6 n, applying Lemma 2 to (4) gives idRk
(Ak,0) 6 n − 1.

At the same time idRk
(Ext1R(Rk,M)) 6 n − 1. Therefore, using (5), we get

idRk
(HomR(Rk,K0)) 6 n− 1.

For t > 1, we apply the functor Ext∗R(Rk,−) to the short exact sequence of

R-modules 0 −→ Kt−1 ↪→ It
ft+1−→ Kt −→ 0. We obtain an exact sequence of

Rk-modules

0 −→ HomR(Rk,Kt−1) −→ HomR(Rk, It)
(ft+1)∗−→

(ft+1)∗−→ HomR(Rk,Kt) −→ Ext1R(Rk,Kt−1) −→ 0

and isomorphisms of Rk-modules

Extl
R(Rk,Kt) ' Extl+1

R (Rk,Kt−1), l > 1. (6)

Put Ak,t = im (ft+1)∗ and consider two short exact sequences of
Rk-modules:

0 −→ HomR(Rk,Kt−1) −→ HomR(Rk, It)
(ft+1)∗−→ Ak,t −→ 0, (7)

0 −→ Ak,t ↪→ HomR(Rk,Kt) −→ Ext1R(Rk,Kt−1) −→ 0. (8)

By the inductive hypothesis, we have idRk
(HomR(Rk,Kt−1)) 6 n − t.

By Theorem 1, HomR(Rk, It) is an injective Rk-module. Applying Lemma 2
to (7), we see that idRk

(Ak,t) 6 n − t − 1. Combining (3) and (6)
gives Ext1R(Rk,Kt−1) ' . . . ' Extt

R(Rk,K0) ' Extt+1
R (Rk,M). Hence

idRk
(Ext1R(Rk,Kt−1)) = idRk

(Extt+1
R (Rk,M)) 6 n− t−1. Finally, from (8), we

obtain idRk
(HomR(Rk,Kt)) 6 n− t− 1, as required.
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Proposition 4. Let M be an R-module, n be a non-negative integer. Sup-
pose that idRk

(Extl
R(Rk,M)) 6 n − l for l = 0, 1, . . . , n and k = 1, 2. Then

idR M 6 n.

Proof. For the case n = 0, the result follows from Theorem 1. For n > 1,
consider an injective resolution of R-module M

0 −→ M
f0−→ I0

f1−→ I1
f2−→ I2 −→ . . . .

Write Kt = im(ft+1) for t > 0. By Proposition 3, the Rk-module
HomR(Rk,Kn−1) is injective (k = 1, 2). Theorem 1 now shows that Kn−1 is
an injective R-module. Therefore idR M 6 n by [1, PropositionVI.2.1a].

Proposition 4 clearly implies the following theorem.

Theorem 5. Let n be a non-negative integer, and suppose that for any
R-module M we have that

idRk
(Extl

R(Rk,M)) 6 n− l for l = 0, 1, . . . , n and k = 1, 2 .

Then lgldR 6 n.

Corollary 6.
lgldR 6 max

k=1,2
{lgldRk + pdR Rk}.

Proof. Set nk = lgldRk, mk = pdR Rk, Nk = nk + mk (k = 1, 2) and
N = max{N1, N2}. It can be assumed that mk, nk < ∞. Let M be an
R-module and k ∈ {1, 2}. Since pdR Rk = mk, we have Extl

R(Rk,M) = 0
for all l > mk + 1. At the same time, since lgld Rk = nk, we get
idRk

(Extl
R(Rk,M)) 6 nk = Nk−mk 6 Nk− l 6 N − l for all l = 0, 1, . . . , mk.

Therefore, by Proposition 4, pdR M 6 N. This means that lgld R 6 N.

Let us state the analogous results for the flat dimension of an R-module M
and the left weak dimension of R.

Proposition 7. Let M be an R-module, n be a positive integer, k ∈ {1, 2}, and

let . . . −→ F2
f2−→ F1

f1−→ F0
f0−→ M −→ 0 be a flat resolution of M. Let Kt de-

note ker ft , t > 0. Suppose that fdRk
(TorR

l (Rk,M)) 6 n− l for l = 0, 1, . . . , n.
Then fdRk

(Rk ⊗R Kt) 6 n− t− 1 for t = 0, 1, . . . , n− 1.

Proposition 8. Let M be an R-module, n be a non-negative integer. Sup-
pose that fdRk

(TorR
l (Rk,M)) 6 n − l for l = 0, 1, . . . , n and k = 1, 2. Then

fdR M 6 n.

Theorem 9. Let n be a non-negative integer, and suppose that for any fi-
nitely generated left ideal J of R we have that fdRk

(TorR
l (Rk, R/J)) 6 n− l for

l = 0, 1, . . . , n and k = 1, 2 . Then lwdR 6 n.
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Corollary 10.
lwdR 6 max

k=1,2
{lwdRk + rfdR Rk}.

Arguing as above, the reader will easily prove Propositions 7 and 8 if he
considers a flat resolution of the R-module M and applies the functor Tor instead
of Ext to the resolution. Theorem 9 follows from Proposition 8 and Auslander’s
theorem:

lwdR = sup{fdR(R/J) | J is a finitely generated left ideal of R}.

For more details we refer the reader to [8], where the similar results for the
projective dimension of an R-module and the left global dimension of R are
proved.

Acknowledgement. The author would like to thank Professor A. I. Gen-
eralov for suggesting the problem and guidance.

References

[1] H. Cartan, S. Eilenberg. Homological algebra. — Princeton University
Press, Princeton, 1956.

[2] J. Milnor. Introduction to algebraic K-Theory. — Princeton University
Press, Princeton, 1971.

[3] A. N. Wiseman. Projective modules over pullback rings. — Math. Proc.
Cambridge Phil. Soc., 97 (1985), 399–406.
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