
A Constraint Solver for Sequences and its Applications

Nikolai Kosmatov
INRIA Lorraine

615 rue du Jardin Botanique
54600 Villers-les-Nancy France

kosmatov@lifc.univ-fcomte.fr

ABSTRACT
Constraint programming techniques are successfully used
in various areas of software engineering for industry, com-
merce, transport, finance etc. Constraint solvers for differ-
ent data types are applied in validation and verification of
programs containing data elements of these types. A gen-
eral constraint solver for sequences is necessary to take into
account this data type in the existing validation and ver-
ification tools. In this work, we present an original con-
straint solver for sequences implemented in CHR and based
on T. Frühwirth’s solver for lists with the propagation of two
constraints: generalized concatenation and size. The appli-
cations of the solver (with the validation and verification
tool BZTT) to different software engineering problems are
illustrated by the example of a waiting room model.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Logic and constraint pro-
gramming; D.2.4 [Software/Program Verification]: Val-
idation

General Terms
Algorithms, verification

Keywords
Constraint solver, sequences, validation, verification

1. INTRODUCTION
Research work of the last ten years has shown the effec-

tiveness and fruitfulness of constraint logic programming in
different areas of software engineering. The development of
constraint solvers for some data types has already permitted
the symbolic evaluation of formal models containing data el-
ements of these types. For example, the tool BZTT [5] uses
the solver CLPS-B [4] and allows the animation and test
generation for formal models containing integers, sets, func-
tions and relations. BZTT was used to validate and verify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

software in different industrial projects for industry, trans-
port, commerce and finance [4] (see also references in [4]),
e.g. for PSA Peugeot Citroën, Schlumberger, Thales. The
model evaluated by BZTT is written in a logic notation with
sets like B [1] or Z [15]. Sequences are one of the data types
used in these notations and representing finite lists of ele-
ments such as stacks, queues, communication channels, se-
quences of transitions or any other data with consecutive
access to elements.

Nowadays there exists no validation and verification tool
with an integrated constraint solver for sequences. The main
motivation of this work is to develop such a solver, which
is necessary to take into account sequences during the val-
idation and verification of software. This solver must treat
all different operations on sequences. It will be integrated
into the existing constraint solvers for other data types such
as CLPS-B [4] and used in validation and verification tools
such as BZTT [5].

The problem of constraint solving for sequences is very
close to that of words or lists. The fundamental result of
Makanin [14] shows that the satisfiability of word equations
(where the concatenation is the unique operation) is decid-
able. Kościelski and Pacholski [11] showed that for a given
constant c > 2 the problem of the existence of a solution
of length ≤ cd for an equation of length d is NP -complete.
Therefore there does not exist any fast algorithm for word
equations in the general case. The decidability of the exis-
tential theories of words is close to the borderline of decid-
ability. Durnev [7] showed that the positive ∀∃3-theory of
concatenation is unsolvable. The decidability of word equa-
tions with an additional equal-length predicate is still an
open problem. We refer the reader to [2, 10] for more detail
on the word equations.

The general constraint solving problem for sequences is
even more complicated than that for words, because se-
quences generalize words and are usually considered with
more operations. Therefore it is impossible to provide a gen-
eral and efficient constraint solver for sequences terminating
for all constraint problems. Nevertheless, even a partial con-
straint solving technique of reasonable complexity would be
extremely useful for applications.

We know very few results in the general context. Prolog
III [6] implements concatenation and size for lists. A repre-
sentation of sequences by PQR trees is proposed in [3], but
this approach is limited to bijective sequences (i.e. permu-
tations of a given finite set E).

Our work aims to study the problem of constraint solv-
ing for sequences from the practical point of view. Since we

cannot develop an efficient solver for any constraint problem
with sequences, it is important to provide at least a partial
constraint solving technique for the problems which appear
in practice. This paper presents a constraint solving tech-
nique which implements 11 basic operations on sequences.
It was developed in Constraint Handling Rules (CHR) [8]
in SICStus Prolog. The CHR allow a very clear and easily
modifiable implementation. The complete solver can be con-
sulted and executed from the author’s webpage [12], and the
essential rules are given in the paper. An application of the
solver to model animation and validation shows that even
this partial constraint solving technique can be successfully
applied in practice.

The paper is organized as follows. In Section 2 we de-
fine sequences and operations on sequences appearing in the
constraints. Section 3 describes the constraint solver for
sequences. The applications of the solver to software valida-
tion and verification are illustrated by the specification of a
waiting-room system in Section 4. We conclude and present
the future work in Section 5.

2. SEQUENCES AND CONSTRAINTS

Definition. Let E be a set. A sequence over E is a finite
list of elements of E. The size (length) of a sequence S is
the number of elements of S. The empty sequence (of size
0) is denoted by [].

Example. Let E = {1, 2, 3}, S1 = [], S2 = [3], S3 =
[1, 2, 3], S4 = [2, 3, 1], S5 = [1, 1, 2, 1]. Then the Si are se-
quences over E.

Let us recall the usual operations on sequences which are
used, for example, in the formal notations B [1] and Z [15].
We give in brackets an example with the notation commonly
used in B.

1. the first element (first [1, 2, 2, 2, 3] = 1);
2. the last element (last [1, 2, 2, 2, 3] = 3);
3. the front (front [1, 2, 2, 2, 3] = [1, 2, 2, 2]);
4. the tail (tail [1, 2, 2, 2, 3] = [2, 2, 2, 3]);
5. prefix (1→ [2, 2, 2, 3] = [1, 2, 2, 2, 3]);
6. append ([1, 2, 2, 2]← 3 = [1, 2, 2, 2, 3]);
7. the size (size [1, 2, 2, 2, 3] = 5);
8. take the first n elements ([1, 2, 2, 2, 3] ↑ 2 = [1, 2]);
9. remove the first n elements ([1, 2, 2, 2, 3] ↓ 2 = [2, 2, 3]);
10. the concatenation ([1, 2, 2] ∩ [2, 3] = [1, 2, 2, 2, 3]);
11. the reverse (rev ([1, 2, 3]) = [3, 2, 1]).
For the convenience of the reader, we prefer to use this

logic notation (e.g. size (S) = N) rather than that of Pro-
log (e.g. S size N). Similarly, S size N, N #>= 5 may be
abbreviated by size (S) ≥ 5.

In this paper, we focus our attention on the resolution
of constraints for sequences with the operations 1–11, using
an external numerical constraint solver such as CLP(FD) to
solve the numerical constraints on the sequence size. The ex-
isting constraint solvers can be used for constraints of other
data types.

Examples. Let E be a set and 1, 2 ∈ E.
1. { S′ ← 1 = S, first (S) = 1, tail (S′) = [2] } has the

solution S = [1, 2, 1], S′ = [1, 2].
2. { front (S) = [1, 1, 1], size (S) = 5 } is unsatisfiable,

since the first constraint implies size (S) = 3 + 1 = 4.
3. The constraint front (S) = [1] has the solutions S ∈
{ [1, x] | x ∈ E }. We have here infinitely many solutions
iff E is infinite. A set of constraints on sequences can have

infinitely many solutions not only for an infinite set E, but
also if E is finite. Set E = {1, 2}. The constraint [1] ∩ S =
S∩[1] has infinitely many solutions: [], [1], [1, 1], [1, 1, 1], . . .

3. CONSTRAINT SOLVER

In this section we present a technique of constraint solving
for sequences. It was implemented in the CHR language [8,
9] in SICStus Prolog, and can be consulted and executed
from [12]. The implementation in CHR has the advantage
to be very clear and easy to experiment with. We describe
the main part of the solver (after simple rewriting of some
constraints in terms of others) directly by the corresponding
CHR rules.

The algorithm is based on the generalized concatenation.
The generalized concatenation S = conc (S1, S2, . . . , Sk) is
equivalent to (k− 1) simple concatenations of the sequences
S1, S2, . . . , Sk, that is, to S = S1 ∩ S2 ∩ · · · ∩ Sk. The first
step of the algorithm is rewriting of the constraints 1–6,
8–10 in terms of conc and size according to the following
rules, where T and Y denote new variables standing for a
sequence and an element respectively. This rewriting is ex-
ecuted at most once for each new constraint and leaves in
the constraint store the constraints conc , size and rev only.

first (S) = X ⇔ S = conc ([X], T).
last (S) = X ⇔ S = conc (T, [X]).

front (S) = S1 ⇔ S = conc (S1, [Y]).
tail (S) = S1 ⇔ S = conc ([Y], S1).
X → S1 = S ⇔ S = conc ([X], S1).
S1 ← X = S ⇔ S = conc (S1, [X]).
S ↑ N = S1 ⇔ S = conc (S1, T), size (S1) = N.
S ↓ N = S2 ⇔ S = conc (T, S2), size (T) = N.
S1 ∩ S2 = S ⇔ S = conc (S1, S2).

The second step of the algorithm is based on Thom Früh-
wirth’s solver for lists [9] and treats these three constraints.
The CHR rules for this step are given in Figure 1. Recall
that a simplification rule C1,...,Ci <=> D1,...,Dj in CHR
replaces the constraints C1,...,Ci in the constraint store by
the list of constraints or Prolog goals D1,...,Dj. A guarded
rule C1,...,Ci <=> Guard | D1,...,Dj is applied if in addi-
tion the Prolog goal Guard is true. The rule C1,...,Ci ==>
D1,...,Dj will add (or execute) the constraints (or Prolog
goals) D1,...,Dj if the constraint store contains the con-
straints C1,...,Ci , which are not deleted. We do not detail
passive constraint declarations #Id ... pragma passive(Id),
which is just an optimization and is not crucial. We refer
the reader to [8] for more detail on the CHR language.

The rule r01 aims to propagate the constraint rev using
an additional Prolog predicate reverse. The rules r02–r05
propagate the generalized concatenation Rs conc L until the
first element of Rs is a non valuated variable. If it is the
case, we can jump over this variable only by deleting empty
sequences [] or the sequence L itself in Rs as shown in
rules r06–r07. If it is still not sufficient for a constraint
conc [R1, R2, ..., Ri] = L, the rule r08 and lenPropagate
establish the relation size (R1) + · · · + size (Ri) = size (L)
between the sizes of the sequences, which can help in propa-
gation. The propagation for the constraint L size N (where
N can be an arithmetic expression) is provided by the rules
r08–r11. To avoid repetitions, the rule r12 replaces the con-
straint X size N2 in presence of X size N1 by N1 #= N2. The

:- use_module(library(clpfd)).
:- use_module(library(chr)).
handler sequences.

constraints conc/2, size/2, rev/2, labeling/0.
operator(700,xfx,conc).

% ’List conc Seq’ means conc(List)=Seq
operator(700,xfx,size).

% ’Seq size N’ means size(Seq)=N

r01@ rev(R,S) <=> reverse(R,S).
r02@ [] conc L <=> L=[].
r03@ [R] conc L <=> R=L.
r04@ [R|Rs] conc [] <=> R=[], Rs conc [].
r05@ [[X|R]|Rs] conc L

<=> L=[X|L1], [R|Rs] conc L1.
r06@ Rs conc L <=> delete([],Rs,Rs1) | Rs1 conc L.
r07@ Rs conc L <=> delete(L,Rs,Rs1) | Rs1 conc [].
r08@ R conc L ==> lenPropagate(R,L).
r09@ [] size N <=> N#=0.
r10@ [_|L] size N <=> N#=M+1, L size M.
r11@ L size N

<=> ground(N) | N1 is N, length(L,N1).
r12@ (X size N1)#Id \ X size N2

<=> N1=N2 pragma passive(Id).
r13@ labeling, ([R|Rs] conc L)#Id <=> true |

(var(L) -> length(L,_) ; true),
(R=[], Rs conc L ;
L=[X|L1], R=[X|R1], [R1|Rs] conc L1),
labeling pragma passive(Id).

reverse([],[]).
reverse(R,L):- R size N, L size N, X size 1,

[X,R1] conc R, [L1,X] conc L, reverse(R1,L1).

delete(X, [X|L], L).
delete(Y, [X|Xs], [X|Xt]) :- delete(Y, Xs, Xt).

lenPropagate([], []).
lenPropagate([R|Rs],L) :- R size NR, L size NL,

L1 size NL1,NL #= NR + NL1,lenPropagate(Rs,L1).

Figure 1: The essential part of the solver in CHR

rule r13 defines the labeling constraint, which may be writ-
ten at most once at the very end of the constraint list. It
tries to find all possible solutions of the constraint problem
and does not necessarily terminate.

4. APPLICATIONS TO SOFTWARE ENGI-
NEERING

4.1 Waiting Room Example

This section illustrates the applications of the constraint
solver as part of a validation and verification tool such as
BZTT to different problems in software validation and verifi-
cation. Consider the example of a waiting room system spec-
ification given in Figure 2 (containing some errors which will

MACHINE
WAITINGROOM

SETS
STATES = {free, occupied};
NAMES = {n1, n2, n3, . . . , n15}

VARIABLES
sellerA, sellerB, cashierC,
clientA, clientB, clientC, qSeller, qCashier

INVARIANT
sellerA ∈ STATES ∧ sellerB ∈ STATES ∧
cashierC ∈ STATES ∧ clientA ∈ NAMES ∧
clientB ∈ NAMES ∧ clientC ∈ NAMES ∧
qSeller ∈ seq (NAMES) ∧ qCashier ∈ seq (NAMES)∧
size(qSeller) ≤ 10 ∧ size(qCashier) ≤ 5

INITIALISATION
sellerA := free ‖ sellerB := free ‖
cashierC := free ‖ clientA :∈ NAMES ‖
clientB :∈ NAMES ‖ clientC :∈ NAMES ‖
qSeller := [] ‖ qCashier := []

OPERATIONS
new(name) =

PRE name ∈ NAMES ∧ size(qSeller) ≤ 10
THEN qSeller := qSeller ← name
END

callA =
PRE size(qSeller) > 0 ∧ sellerA = free
THEN sellerA := occupied ‖ clientA := first (qSeller) ‖

qSeller := tail (qSeller)
END

callB =
PRE size(qSeller) > 12 ∧ sellerB = free
THEN sellerB := occupied ‖ clientB := first (qSeller) ‖

qSeller := tail (qSeller)
END

endA=
PRE sellerA = occupied
THEN sellerA := free ‖ qCashier := qCashier ← clientA
END

endB =
PRE sellerB = occupied
THEN sellerB := free ‖ qCashier := qCashier ← clientB
END

callC =
PRE size(qCashier) > 0 ∧ cashierC = free
THEN cashierC := occupied ‖ clientC := first (qCashier) ‖

qCashier := tail (qCashier)
END

endC =
PRE cashierC = occupied
THEN cashierC := free
END

END

Figure 2: Waiting room specification in B

be detected and corrected below). This simple specification
is written in B notation [1] and models the automatic client
queue managing in a shop, travel agency etc. Suppose that
each client goes first to one of several agents of the first type
(say, sellers), than to one of several agents of the second type
(say, cashiers). In this example, we consider two sellers A
and B and one cashier C. In addition, seller B is the manager
of the shop who takes clients only if the queue is rather long.
The clients are represented by names which, for simplicity,
are taken in the finite set NAMES. A system state is rep-
resented by the status free or occupied of each agent (vari-
ables sellerA, sellerB, cashierC), the name of the last client
called by each agent (variables clientA, clientB, clientC),
the queue of clients to sellers and the queue of clients to
the cashier (variables qSeller and qCashier whose type is

Pnew : Inv ∧ name ∈ NAMES ∧ size(qSeller) ≤ 10∧
qSeller′ = qSeller ← name

PcallA : Inv ∧ size(qSeller) > 0 ∧ sellerA = free∧
sellerA′ = occupied ∧ clientA′ = first (qSeller)∧
qSeller′ = tail (qSeller)

PcallB : Inv ∧ size(qSeller) > 12 ∧ sellerB = free∧
sellerB′ = occupied ∧ clientB′ = first (qSeller)∧
qSeller′ = tail (qSeller)

PendA : Inv ∧ sellerA = occupied ∧ sellerA′ = free∧
qCashier′ = qCashier ← clientA

PendB : Inv ∧ sellerB = occupied ∧ sellerB′ = free∧
qCashier′ = qCashier ← clientB

PcallC : Inv ∧ size(qCashier) > 0 ∧ cashierC = free∧
cashierC′ = occupied ∧ clientC′ = first (qCashier)∧
qCashier′ = tail (qCashier)

PendC : Inv ∧ cashierC = occupied ∧ cashierC′ = free

Figure 3: Before-After predicates

sequences over the set NAMES). Initially, all agents are
free, the queues are empty sequences [] and the names of
the latest called clients are arbitrary elements of NAMES.
The invariant property must be verified in all system states.
In this example, the invariant, denoted below by Inv, de-
fines the possible values of variables and the maximal queue
length.

The evolution of the system is described by operations,
which are defined by generalized substitutions and may have
preconditions, input and output values. A new client name
first registers himself in the system (or is registered by the
receptionist not modelled here) who adds him at the end
of qSeller, provided that name ∈ NAMES and the queue
is not too long (operation new). The seller A can take the
first client in the queue qSeller, provided that sellerA is
free and qSeller is not empty (operation callA). The seller
B can take the first client in the queue qSeller, provided
that sellerB is free and qSeller is rather long (operation
callB). An occupied seller can finish serving his client by
putting him at the end of qCashier and changing the status
to free (operations endA, endB). The cashier C can take
the first client from qCashier, provided that cashierC is
free and qCashier is not empty (operation callC). While
being occupied, the cashier C can finish serving his client by
changing the status to free (operation endC).

4.2 Applications

The following examples briefly illustrate the applications
of the solver with the BZTT tool in different areas of soft-
ware validation and verification.

1. Representing of the system states and operations by
constraints. Figure 3 shows the Before-After predicates
corresponding to the operations and describing all possi-
ble transitions of the system in terms of constraints. The
Before part for each operation contains the invariant Inv
and the precondition of the operation. The After part is
the postcondition defining the state after the operation and
containing only constraints of the form X ′ = . . . , where
X ′ denotes the new value of the variable X after the op-
eration. For unchanged variables, we omit the trivial con-
straints X ′ = X for short. This representation of the system

states and operations in terms of constraints allows to group
the states and to avoid their enumeration. Note that this
enumeration is impossible even in this simplified example
with small numbers (card (NAMES) = 15) because of the
great number of sequences over NAMES.

2. Model animation based on the symbolic evaluation.
Due to the constraint representation of the states and opera-
tions (Before-After predicates of Figure 3), the animation
is not limited to the completely valuated states, but can be
also applied to partially valuated ones.

3. Formal model validation based on the symbolic evalu-
ation: detecting of a too strong invariant, a too weak pre-
condition or an inexecutable behavior. The simple satisfia-
bility verification of the Before part of each Before-After
predicate allows to detect that the operation callB is inex-
ecutable. Indeed, the solver detects that the Before predi-
cate of callB

. . . ∧ size(qSeller) ≤ 10 ∧ . . . ∧ size(qSeller) > 12 ∧ . . .

is unsatisfiable. To correct this specification error, we can
replace size(qSeller) > 12 by size(qSeller) > 5 in the pre-
condition of the operation callB.

Another error in the specification is a too weak precon-
dition size(qSeller) ≤ 10 in Pnew or a too strong invari-
ant condition size(qSeller) ≤ 10 in Inv. Indeed, from a
state with size(qSeller) = 10, the operation new can lead
to a state with size(qSeller′) = 11, which does not sat-
isfy the invariant. To detect such errors, it is sufficient to
verify if the invariant property is always verified after each
operation. In other words, we should check whether the
Before-After predicate of each operation is incompatible
with ¬Inv′, where Inv′ is the invariant condition stated for
the variables after the operation. For the operation new, the
condition Pnew∧¬Inv′ rewritten in DNF form, contains the
disjunct

. . . ∧ size(qSeller) ≤ 10∧
qSeller′ = qSeller ← name ∧ size(qSeller′) > 10

so the solver detects that it is satisfiable for size(qSeller) =
10. To correct this error, we can, for example, replace
size(qSeller) ≤ 10 by size(qSeller) < 10 in the precon-
dition of the operation new.

4. Generating of tests satisfying a chosen criterion. Var-
ious test coverage criteria are used to guide the (automatic)
test generation or to evaluate a given set of tests. These cri-
teria usually can be expressed in terms of constraints, so a
constraint solver can be efficiently used for test generation.
To detect domain errors, it is necessary to use boundary
coverage criteria, which are useful for other error types as
well. A new family of boundary coverage criteria for dis-
crete domains and corresponding generation methods were
proposed in [13]. They allow to find tests on the bound-
ary of the domain of possible values of variables. Some of
the criteria aim to reach the minimal and maximal values of
each variable in the generated tests. These criteria can be
easily adapted for sequences by minimizing and maximizing
the length of each sequence. For example, the set with the
following four tests for the operation endA:

qSeller = [], qCashier = [];
qSeller = [n1, n2, . . . , n9, n10], qCashier = [];
qSeller = [], qCashier = [n1, n2, n3, n4, n5];

qSeller = [n1, n2, . . . , n9, n10],
qCashier = [n11, n12, n13, n14, n15]

will satisfy the MD (multi-dimensional) criterion [13] for
sequence lengths (we omit here sellerA = occupied and the
values of other variables).

5. Validation of the formal model by tests. The execution
of the generated tests followed by the invariant verification
can be used to validate the model. For example, the execu-
tion of the operation endA on the following test (which may
be generated according to the MD criterion):

qSeller = [], qCashier = [n1, n2, n3, n4, n5],
sellerA = occupied, clientA = n6

leads to the state with qCashier′ = [n1, n2, n3, n4, n5, n6],
where the invariant condition size(qCashier) ≤ 5 is not
satisfied. This too strong invariant could be also detected
as shown in 3 above. To correct this error we can delete the
unjustified condition size(qCashier) ≤ 5 from the invariant.

6. Testing of an implementation of the formal model. Due
to the constraint representation of the states and operations
of the system, in black-box testing the constraint solver al-
lows to obtain an oracle predicting the correct state after
executing of the tests on the implementation. In white-box
testing, the constraint solver gives in addition the possibil-
ity to detect the contradictions between the model and the
implementation by comparing the constraint sets extracted
from the model (see Figure 3) and from the implementation.

Integration of the constraint solver for sequences into a
validation and verification tool such as BZTT [5] will make
these operations automatic or semi-automatic and will pro-
vide a convenient graphical interface. We refer the reader
to [4] for more detail on the application of constraint solving
to different problems of software engineering in the BZTT
method.

5. CONCLUSION AND FUTURE WORK

We presented the problem of constraint solving for se-
quences and proposed a constraint solving technique for the
usual operations used in such notations as B and Z.

Our experiments (which are not detailed here for lack of
space) show that our method is rather efficient on big con-
straint sets and gives satisfactory results. The resolution
takes several seconds to several minutes on constraint sets
with several dozens to several hundreds of constraints. In
addition, the resolution time of our solver does not depend
very much (compared to other solving techniques we tested)
on the ordering of the constraints, which is important to
guarantee better efficiency even in the worst case.

It is due to the uniformity of the approach: although we
express some simple constraints in terms of a more com-
plicated and more general constraint conc , it minimizes the
number of different constraints and the number of constraint
handling rules and finally provides a much faster solver for
big constraint sets. The example in Section 4 shows various
applications of the solver to software engineering in a vali-
dation and verification tool such as BZTT. In this example,
the solver was called by hand since it has not yet been com-
pletely integrated into BZTT. All the other steps (formal
model parsing, generating of Before-After predicates, deal-
ing with constraint sets etc.) are implemented and can be
done automatically.

The future work will include the following:
1. to integrate the solver into BZTT like it was already

done for the existing solver CLPS-B [4];

2. to apply the solver as part of the BZTT to validation
and verification of real-sized software with sequences.

Acknowledgment. The author would like to thank Fab-
rice Ambert, François Fages, Thom Frühwirth, Arnaud Got-
lieb and Bruno Legeard for profitable discussions and their
interest to this project.

6. REFERENCES
[1] J.-R. Abrial. The B-Book: Assigning Programs to

Meanings. Cambridge University Press, 1996. ISBN
0521496195.

[2] M. Lothaire. Algebraic Combinatorics on Words.
Cambridge University Press, 2002. ISBN 0521812208.

[3] L. Berkaoui, B. Legeard. Représentation de séquences
définies sur des ensembles non instanciés par arbre
PQR partiel. In Actes de JFPLC’98, Nantes, France,
251–266, May 1998. Hermès.

[4] F. Bouquet, B. Legeard, F. Peureux. CLPS-B –
Constraint solver to animate a B specification.
International Journal on Software Tools for
Technology Transfer, 6 (2004), No. 2, 143–157.

[5] The BZ-Testing-Tools web site,
http://lifc.univ-fcomte.fr/∼bztt, Université de
Franche-Comté, Besançon.

[6] A. Colmerauer. An introduction to Prolog III.
Communications of the ACM, 33(1990), No. 7, 69–90.

[7] V. G. Durnev. Studying algorithmic problems for free
semi-groups and groups. In: S. Adian, A. Nerode
(Eds). Logical Foundations of Computer Science
(LFCS 97). Lect. Notes Comp. Sci., 1234(1997),
88–101. Springer-Verlag. ISBN 3540630457.

[8] T. Frühwirth. Theory and Practice of Constraint
Handling Rules. In: P. Stuckey, K. Marriot (Eds.).
Special Issue on Constraint Logic Programming.
Journal of Logic Programming, 37(1998), No. 1–3,
95–138.

[9] T. Frühwirth. The CHR web site. http://www.
informatik.uni-ulm.de/pm/fileadmin/pm/home/
fruehwirth/chr.html, Universität Ulm.

[10] J. Karhumäki, F. Mignosi, W. Plandowski. The
expressibility of languages and relations by word
equations. Journal of the ACM, 47(2000), No. 3,
483–505.

[11] A. Koscielski, L Pacholski. Complexity of Makanin’s
Algorithm. Journal of the ACM, 43(1996), No. 4,
670–684.

[12] N. Kosmatov. Constraint solving for sequences web
site. http://lifc.univ-fcomte.fr/ ∼kosmatov/sequences,
Université de Franche-Comté, Besançon.

[13] N. Kosmatov, B. Legeard, F. Peureux, M. Utting.
Boundary Coverage Criteria for Test Generation from
Formal Models. In Proc. of the 15th Int. Symp. on
Software Reliability Engineering (ISSRE’04),
Saint-Malo, France, 139–150, November 2004. IEEE
Computer Society Press.

[14] G. S. Makanin. The problem of solvability of equations
in a free semigroup. Mat. Sbornik (N.S.), 103 (1977),
No. 2, 147–236 (in Russian). English translation in:
Math. URSS Sbornik, 32(1977), 129–198.

[15] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, 2nd edition, 1992. ISBN 0139785299.

