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Abstract. Cloud-computing systems share hardware resources (CPU
time and memory) between mutually untrusted applications. As such,
they must provide isolation barriers between these applications, but must
also secure resource sharing such that applications cannot stop, slow
down, or provoke incorrect resource accounting of other applications.
These isolation barriers are implemented by a trusted operating system
kernel, which must be built according to security principles.
Confidence in the system can be further increased with the help of tools
for formal verification and proof of programs. Using these tools is eased
because thorough application of security principles leads to a small sys-
tem, but still poses many challenges for formal verification, like concur-
rency and the need to model the behavior of the hardware.
This paper shows how modern tools for proof of programs can be applied
to verification of secure kernels and hypervisors for the Cloud. We illus-
trate this approach on a critical module of a prototype Cloud hypervisor,
called Anaxagoros, using the Frama-C software verification platform.

1 Introduction

Secure systems are traditionally built according to design principles that de-
compose the system into isolated components with minimal rights, and with
communication between components tightly controlled.

This isolation is very important for cloud computing, that executes applica-
tions from mutually untrusted users: a failure or attack from an application of
a user must not interfere with applications of other users (or other applications
of the same user).

But cloud systems have another requirement, which is to mutualize the re-
sources of the system on which they are built, so as to maximize efficiency. Re-
sources of the system must be shared securely between the tasks, for instance,
in order to make denials of service impossible (i.e. to prevent an application to
slow down or stop another one, for instance by requesting all resources), or to
correctly account for the memory and CPU time spent executing the applica-
tions, and thus, to correctly bill the clients. Secure resource sharing requires to



complement the traditional behavioral security principles [1] with new resource
security principles.

The Anaxagoros [2,3] system has been designed to maximize both traditional
and resource security. It is composed of:

– A microkernel, that implements the isolation between tasks, controls access
to the services; it is trusted by all tasks in the system;

– Some services, each sharing one resource (memory, network...) securely be-
tween the tasks, and being trusted only by the tasks that need the resource;

– Libraries, helping to use the resources in the system (e.g. the C library), and
being trusted only by the task that uses them.

The amount of system code that must work properly to correctly execute
a program is called its trusted computing base (TCB). The implementation of
Anaxagoros tries to put the code first into libraries then into shared services, and
then into the kernel, leading to minimizing the TCB of each task of the system.
Critical tasks can minimize the amount of shared services used and avoid using
the provided libraries, thereby having a minimal TCB.

To minimize TCB, the kernel and services present a low-level interface (like
exokernels [4]): they consist in a thin layer that only refuses or authorizes opera-
tions requested by user applications. This low-level interface also allows efficient
virtualization of operating systems [5], such as Linux, to provide security and
isolation between existing systems.

In particular, the Anaxagoros kernel is globally trusted, even by critical tasks,
which makes it the most critical component of the system. The fact that it is
minimized (approximately 3500 lines of code) decreases the likeliness of bugs and
helps in code reviews. But its minimality and criticality make it a good target
to further increase confidence in the system, by providing a formal proof that
the kernel offers the required security functions.

Verification of such system software represents an interesting and challenging
target for software verification because of its critical and complex functions, such
as concurrency, the use of assembly code, and the need to model interactions with
the hardware.

This paper is organized as follows. Sec. 2 presents a short tutorial on proof
of programs with the jessie tool. Sec. 3 introduces basic system security rules,
describes Anaxagoros microkernel and in particular its virtual memory system.
Sec. 4 shows how this system it can be formally verified. Sec. 5 and 6 provide
related work and conclusion.

2 A short tutorial on proof of programs

In this section we show how a program can be formally verified using automatic
tools for proof of programs.

We use Frama-C [6,7], an open-source platform dedicated to analysis of
C programs, developed at CEA LIST. Frama-C has a plugin-oriented archi-
tecture that allows the user to run analyzers already available in the platform



1 /*@ ensures \result >= a && \result >= b &&
2 ( \result == a || \result == b );
3 assigns \nothing;
4 */
5 int max(int a, int b){
6 if( a > b )
7 return a;
8 else
9 return b;

10 }

Fig. 1. File max.c with a function returning the maximum of its inputs a and b

as well as to develop new plugins. Frama-C offers various analyzers, many of
them are open-source. They implement a wide range of modern software analysis
techniques, such as abstract interpretation, impact analysis, dependency analy-
sis, program slicing, pointer analysis, weakest precondition, etc. The structural
test generation tool PathCrawler [8,9] is also available as a Frama-C plugin.
Frama-C contains two plugins for proof of programs, jessie and wp.

Proof of programs, also known as theorem proving, is a powerful technique of
program verification that provides a formal mathematical proof that the program
meets its specification. While the theoretical foundations [10,11] of this approach
were developed in the 1970s, its automation became possible only during the last
decade thanks to the spectacular progress made by the developers of modern
program verification tools.

Among them, automatic theorem provers, like Simplify [12], ALT-ERGO
[13,14] and Z3 [15], are capable to perform simple proofs automatically. On the
other hand, interactive provers, such as COQ [16,17,18], ISABELLE [19,20], and
HOL [21,22], allow the engineer to indicate proof steps that are then checked by
the tool. Interactive provers may be suitable for more complex properties but
require human interventions.

In this approach, to prove a program p, one proceeds in the following way.

– First, each function f in the program source code must be annotated, or
specified, by inserting into the code special clauses, or annotations, indicat-
ing the hypotheses h and conclusions c. They describe the state of program
variables at different execution points and program actions. Typically, the
hypotheses describe the state before the function is called, while the conclu-
sions may specify how this state is modified by the function, and the return
values. In this manner, each function receives a specification, or a contract.
Basically, the verification task is then reduced to the proof of the implication
h ⇒ c.

– Next, these annotations are used to compute proof obligations, i.e. proposi-
tions that must be proved to ensure that if the hypotheses h are verified,
then the conclusions c hold. The proof obligations can be very complex since
they should take into account all program instructions including variable
assignments, conditionals, loops, other function calls, etc.

– Finally, a theorem prover is called to prove the proof obligations.



1 /*@ requires l >= 0;
2 requires \valid(a + (0..(l -1)));
3 requires \forall integer i, j; (0 <= i <= j < l ==> a[i] <= a[j]);
4

5 assigns \nothing;
6

7 behavior present:
8 assumes \exists integer i; (0 <= i < l && a[i] == x);
9 ensures 0 <= \result < l;

10 ensures a[\result] == x;
11

12 behavior absent:
13 assumes \forall integer i; (0 <= i < l ==> a[i] != x);
14 ensures \result == -1;
15 */
16 int searchInArray(int* a, int l, int x){
17 int k;
18

19 /*@ loop invariant 0 <= k <= l &&
20 \forall integer i; 0 <= i < k ==> a[i] < x;
21 loop assigns \nothing;
22 loop variant l-k;
23 */
24 for(k = 0; k < l; k++){
25 if(a[k] == x)
26 return k;
27 else if(x < a[k])
28 return -1;
29 }
30 return -1;
31 }

Fig. 2. Function searchInArray looks for element x in sorted array a of length l and
returns the index of this element in a if it is found, or -1 otherwise

Frama-C analyzers share a common specification language called acsl (AN-
SI/ISO C Specification Language) [23]. Let us show how a C program can be
specified in acsl and proved in the jessie plugin of Frama-C.

Example 1. Fig. 1 shows a simple example of function max returning the maxi-
mum of its two inputs, specified in acsl. The ensures clause provides a postcon-
dition. Here it states that the return value \result must be not less than both
inputs, and equal to at least one of them. The assigns clause specifies the (non
local) variables that the function is allowed to modify. All other variables acces-
sible outside the current function call cannot be affected by the function. Thus
this clause also expresses a postcondition. In Fig. 1, this clause (line 3) states
that the function should not modify any non local variable. Running the proof of
this program in jessie with the command frama-c -jessie max.c proves the
program. In other words, it finds a formal mathematical proof that the program
meets its specification.

Example 2. Fig. 2 shows the function searchInArray specified in acsl using be-
haviors. Behaviors provide a very convenient notation when it is necessary to
specify the function separately in several cases. Common precondition and post-
condition can be provided and must be true for all cases, and a default behavior
can be used to specify the default case (see [23] for more detail). A behavior



applies to the situation when its assumes clause is true, and in this case the post-
condition (ensures and assigns clauses) must be verified. Notice that a behavior’s
postcondition should be true in addition to the common postcondition.

In Fig. 2, the common precondition for all behaviors includes lines 1–3. Line
1 states that the array size l is not negative. Line 2 specifies that the memory
locations a[0] , . . . , a[l-1] are valid, that is, the program can access them. Line 3
specifies that the array a is sorted. The common assigns clause at line 5 states
that the function should not modify any non local variable.

Two behaviors describe separately the case when the element x is present in
a (lines 7–10) and the case it is absent (lines 12–14). Behavior present describes
the presence case defined by line 8. In this case the postconditions of lines 9–10
must be true. Similarly, the second behavior absent describes the absence case
defined by line 13. In this case the postcondition of line 14 must be satisfied.

In order to help jessie to prove programs in presence of loops, specific clauses
for loops may be used, such as loop invariant, loop variant and loops assigns. Here,
lines 19–20 indicate a loop invariant that must be true before the loop and
after any loop iteration. Line 21 indicates variables that can be modified after
a number of iterations. Line 22 provides a loop variant V , that is, a positive,
integer expression strictly decreasing after any loop iteration. It allows the tool to
prove loop termination (since the positive integer V cannot decrease infinitely).

3 The Anaxagoros microkernel and hypervisor

3.1 Introduction to systems security

The basic design principles to build a secure operating system have been put
forth by Saltzer and Schroeder in the famous paper “The Protection of Infor-
mation in Computer Systems” [1]. The idea is to build the system as a set of
small components called domains, isolated from one another, and with tightly-
controlled communication between the components. This design brings several
benefits:

– inspecting the security in one domain is easier (because it is smaller),
– it is easy to inspect the impact of the loss of one domain on the security of

the system,
– the loss of one domain does not weaken the security of other domains.

A good analogy would be the design of a medieval castle: if you only have
one level of fence around your large castle, then a single breach looses the entire
castle to the opponent. A well-designed castle has several level of fences, with
isolated small regions in the castle, and tightly-controlled pathways between the
regions, to ease resisting to an attacker.

The eight design principles for designing secure systems are:

Separation of privilege: The idea is to build the system as a set of separate
domains with different privileges, or rights. The domain that may have the



right to read from the network, while a second will have the right to write
to a secret file; both domains must be involved to compromise the file with
a remote attack.

Least common mechanisms: We call the trusted computing base (TCB) of a
domain the set of code on which the domain depends to operate properly.
The goal of the least common mechanism principle is to minimize the TCB
of each task in the system. Indeed, a shared domain is an opportunity to
breach isolation between several domains; furthermore, an error in shared
code may affect several, or even all domains.

There are two main ways to interpret this principle:

– Microkernel systems split base services, such as network or hard drive
access, into isolated domains; so that failure or compromission of a base
service affect only the domains that need it. This decrease the TCB for
each task.

– Exokernel systems and hypervisors decrease the amount of code in base
services to put it into the upper layer code. This globally decrease the
size of shared system code.

These two ways are not incompatible; for instance, Anaxagoros follows both
ways.

Complete mediation: Every access to every resource or object is a privileged
operation, and this privilege must be checked, i.e. there should be access
control for all objects. For instance, writing to a file, reading a network
packet, receiving keyboard inputs, displaying data on the screen, are all
privileged operations, and the system must check that the domain that tries
to perform these operations has sufficient privileges. A hidden benefit of this
principle is to indentify all privileged operations, and the domain that may
perform them.

Principle of least privilege states that domains should be given only the
privilege of the actions they need to accomplish. The program that displays
PDFs on the screen need not access the network, and so is not given this
right; thus its eventual compromission does not lead to divulge secret files
on the Internet. This principle limits the impact of a compromission of a
domain.

Fail-safe defaults: It basically states that “whatever is not explicitly allowed,
is forbidden”. Forgetting to give enough privilege to a program will only
prevent it to work, a problem that will be quickly found; forgetting to remove
a privilege leads to a potential security breach that can remain unnoticed.

Economy of mechanism: It states that the design of the system should be
as simple as possible. This simplifies reviews. Especially the mechanism for
access control should be simple, as the security of the whole system relies on
it. As a result, there are two main systems of access control:

– Access control lists, where to each resource is associated a list of the
domains that can access this resource;

– Capabilities, where to each domain is associated the list of accessible
resources.



Open design opposes “security through obscurity”. The security of the system
should not rely on the fact that some features are known only by the team
that designed it.

Psychological acceptability states that if the security rules in a system are
too complex to use or understand, they are likely to be not applied.

3.2 Anaxagoros

Anaxagoros [2,3] is a secure microkernel that is also capable of virtualizing pre-
existing operating systems, for example Linux virtual machines. It is capable of
executing hard real-time tasks or operating systems, for instance the PharOS
real-time system [24], securely with non real-time tasks, on a single chip.

This goal has required to put a strong emphasis on security in the design
of the system, and not only on traditional “behavioral” security (isolation and
access control to protect confidentiality and integrity, as presented in the previous
section) but also on availability (being able to slow down or steal resources from
another task is considered a breach in security).

As it is a microkernel, Anaxagoros is the only piece of code that requires to
run in the privileged mode of the CPU in an Anaxagoros-based system. Every
piece of code that can be moved out of the kernel is placed in a separated user-
level service, with limited rights.

This approach contributes to TCB minimization in two ways:

– first, the kernel, which is the only globally trusted piece of code, is minimized,
– second, as services are isolated, their faults do not affect applications that

do not require them. For instance, a bug in a network stack would not affect
a task that does not use the network.

For safety and concurrency reasons [2], the interface of the kernel and the
main user services is low-level, close to the hardware (this is contrary to other
microkernel approaches which attempt to provide a generic interface that ab-
stracts the hardware). This approach also allows to classify Anaxagoros as an
exokernel [4] or as an hypervisor.

This approach also contributes to TCB minimization: as the interface pro-
vides no abstraction, the code of the kernel and services becomes much simpler,
as it only has to check that the required hardware operations are permitted.

The kernel generally strictly enforces Saltzer and Schroeder behavioral secu-
rity principles [1]. In addition to minimizing TCB, the kernel provides protection
domains using the machine’s virtual memory mechanisms and controls access to
shared services using capabilities.

The kernel and services are designed to prevent availability attacks, which
are a problem often ignored in conventional system design. In particular the
denial of resources attack can be made when a task can issue requests that
make the kernel or a service allocate a resource (e.g. memory): by issuing a
sufficient number of requests, the system can run out of memory. New resource
security mechanisms and principles have been built in Anaxagoros to avoid this
kind of attack (for instance the kernel does not allocate any memory, while still
allowing dynamic creation of new tasks and virtual machines).



3.3 The virtual memory system of Anaxagoros

A critical component to ensure security in Anaxagoros is its virtual memory
system [3]. The x86 processor (and many other high-end hardware architecture)
provide a mechanism for virtual memory translation, that translates the address
manipulated by a program to real address. One of the goals of this mechanism
is to help organizing the program address space, for instance to allow a program
to access big contiguous memory regions.

The other goal is to control the memory that a program can access; we will
be focusing on that part. The physical memory is split into same-sized region,
called pages (pages are of size 4kb on standard x86 configurations).

Anaxagoros does not decide what is written to pages; rather, it allows tasks to
perform any operations on pages, provided that this does not affect the security
of the kernel itself, and of the other tasks in the system.

To do that, it ensures only two simple properties. The first is that a program
can only change the page that it “owns”. We will not explain here how ownership
is represented or checked, and rather concentrate on the second property stating
that pages are used according to their types.

Indeed, the hardware mechanism works as follows: a page p is accessible if a
special register b points to a page pd, that points to a page pt, that points to p

(pointing to x means containing a pointer to x in a special format, that we call
a mapping to p). If a page pd is pointed by b, we say that pd is used as a page
directory; if pt is pointed by a page directory, we say that it is used as a page
table. If p is accessible, we say that it is used as a data page. The program can
write directly to any accessible pages. To write to the other pages, it sends a
request to the virtual memory algorithm in the kernel, that checks the request
and performs the writing operation if it is allowed.

The key point here is that the hardware does not prevent a page table or
page directory to be also used as a data frame. Thus if nothing is done, a task
can change the mappings in any page table or page directory it owns. By doing
the right modifications, it can access (and write to) any page, including those
that it does not own.

3.4 The memory system algorithm: an overview

The goal of the algorithm we are presenting (and verifying) is to prevent these
unauthorized modifications. It works by recording:

– The type of the page (the basic types are zero, data, pagetable and
pagedirectory).

– The number of times the page is being used as a data page, page table, or
page directory.

The types are used to ensure the following rules:

Rule 1 Only pages of type pagedirectory can be used as page directories;
Rule 2 Only pages of type pagetable can be used as page tables;
Rule 3 Only pages of type data can be used as data pages.



The kernel ensures these rules by checking requests for changes of page table
and page directory entries, so that page directories can only point to pages of
type pagetable, and pagetables can only point to pages of type data. Other
requests are denied.

In other words, the algorithm ensures that pages can be used only according
to their role. With these rules, we know that page directories cannot be used
as data pages, and thus cannot be changed directly by the program, preventing
unauthorized modifications.

Now, we allow dynamic reuse of memory, meaning that a page once used
as a data page can later be used as page directory. To allow that, the type of
the page has to change. But the kernel cannot allow arbitrary change of type,
otherwise several types of attacks are possible, and that would lead to the first
three rules becoming false.

For instance, a program can access any page p (including those it does not
own) by changing a data page p′ to contain a mapping to p, change the type of
p′ to pagetable, then use p′ as a page table. To prevent this attack, the page
p′ must be cleaned by the kernel before changing the type. This is the role of
the type zero: when the kernel receive a request to change the type of a page
to zero, it first cleans up the contents of that page.

Rule 4 Pages can change their types only from, and to the type zero
Rule 5 Pages of type zero are filled with zeros, and thus do not point to other
pages.

These rules are not sufficient, and other kinds of attacks to access p are
possible, by having a page p′ used simultaneously as a data page and as a page
table:

– Either p′ is used as a data page (of type data), then cleaned and changed
to type zero, to type pagetable, and used as pagetable;

– Or it is used as a page table (of type pagetable), then cleaned and changed
to type zero, to type data, and used as data page.

After both situations, even if p′ has been cleaned, nothing prevents the at-
tacker to directly add mappings to p in p′. To prevent these attacks we use a
“number of mappings” counter for each page:

Rule 6 The “number of mappings” counter of a page of type data is equal to
the number of mappings to this page in pages of type pagetable
Rule 7 The “number of mappings” counter of a page of type pagetable is
equal to the number of mappings to this page in pages of type pagedirectory
Rule 8 The “number of mappings” counter of a page of type pagedirectory
is equal to the number of mappings to this page in the b register (at most one
for monoprocessor systems).
Rule 9 A page of type zero is not used as data page, page table, or page
directory, i.e. its number of mappings is 0.



The kernel enforces these rules by denying requests to clean pages to type
zero when their “number of mappings” counter is not zero, and by adjusting
the “number of mappings” counter every time a pointer to a page is added or
removed.

When these checks are present, all the above rules hold whatever the requests
from the tasks. Formal proof that these rules are fulfilled by the algorithm is
illustrated in Section 4.

3.5 The actual algorithm

The algorithm presented above is simplified: the actual algorithm present addi-
tional cases. In particular:

1. There are two kinds of mappings: read-only and writable. Only writable
mappings need to be accounted for in this algorithm, but we also have a
“number of readable mappings” counter that has other uses. For instance
ensuring that there are no more mappings to a page when it changes its
owner ensures absence of communication between the previous and the new
owner.

2. Pages of type pagedirectory and pagetable can be used as data pages,
but only in read-only mappings. Also, pages of type pagedirectory can
be used as page directories and as page tables (i.e. they can be pointed
by other pages of type pagedirectory, or by themselves). The “number of
mappings” meaning for pages of type pagedirectory is changed: it is equal
of the number of times it is pointed by a b register plus the number of times
it is pointed by pages of type pagedirectory.

3. Cleaning a page is a long operation that can be interrupted. If a page cleanup
is interrupted, the page’s type is set to a special “partially cleaned” type,
and the number of entries cleaned up so far is recorded. Types of page data
must have a “number of mappings” counter equal to zero at the beginning
of the cleanup, otherwise the page contents could be changed during the
cleanup. But pages of type pagedirectory and pagetable can be cleaned up
while they are still being used, because the kernel can refuse any concurrent
modification. If the “number of mappings” of a page table or a page directory
is non zero at the end of a cleanup, the page stays with a “partially cleaned”
type, so that there are no active mappings to pages of type zero.

4 Anaxagoros verification

The purpose of our ongoing work is the formal verification of the Anaxagoros hy-
pervisor. Our approach is based on the specification of the code in ACSL [23] and
proving it using the Frama-C plugins jessie and wp for proof of programs. We
are currently working on the proof of the virtual memory management module,
one of the most critical modules.



In this section we show how critical system C code can be specified and
formally verified using proof of programs. We illustrate it on a partial simpli-
fied version of Anaxogoros virtual memory module given in the Appendix. This
extract focuses on cleaning data pages with interruptions and resuming at the
right place. It takes into account the “number of mappings” counter for data

pages (cf Sec. 3.3, 3.4).

The types DToZero, PTToZero and PDToZero (line 4) are assigned respec-
tively to pages of types Data, Pagetable and Pagedirectory in cleanup, i.e.
for which cleaning has started but has not yet terminated (it can be in progress
or interrupted, cf Sec. 3.5.3). In this simplified version, the size and maximal
number of pages are limited (lines 1–2), and their contents and attributes are
represented by arrays (lines 5–10). Cleaning[p] specifies if the page p is being
cleaned now, and Cleaned[p] indicates how many elements from the beginning
of the page have been already cleaned if the cleaning has been interrupted.

Lines 13–37 define some predicates that will be used in the specification. For
instance, R9 (lines 26–27) states that there are no mappings to a page of type
Zero (cf Rule 9), while R5 (lines 28–29) states that a page of type Zero is filled
with zeros (cf Rule 5). The predicate ToZeroPagesStartWithZeros (lines 30–
36) specifies that the first Cleaned[p] elements of a page p in cleanup are filled
with zeros, with no valid mappings. Line 37 defines the global invariant.

Page cleaning can be started by CleanData (lines 97–107), or resumed by
CleanPartiallyCleanedData (lines 129–137). After necessary checks, they call
putOnePageToZero (lines 57–76) that cleans the page from a given position. At
each iteration, it checks for interruptions (line 67) modeled in this simplified
version by a global variable (line 11).

This example shows that formal program specification takes more than 80%
in the resulting specified C code, and writing specification represents very sig-
nificant effort. Function contracts are the most important part of it, but proving
the program with jessie may require writing additional clauses, for instance, for
loop iterations (cf lines 59–64), or intermediate assertions that help the prover
(about 15 lines not presented here).

100% of the 489 proof obligations generated for the code of the Appendix
are proved by jessie (using jessie version 2.29, Frama-C Carbon version, and
the provers Alt-Ergo version 0.93 and/or Simplify version 1.5.4).

5 Related work and discussion

A recent work [25] presented formal verification for the OS microkernel seL4,
allowing devices running seL4 to achieve the EAL7 evaluation level of the Com-
mon Criteria [26]. Another formal verification of a microkernel was presented
in [27]. In both cases, the verification used interactive, machine-assisted and
machine-checked proof with the theorem prover Isabelle/HOL. Although inter-
active theorem proving requires human intervention to construct and guide the
proof, it has the benefit to serve a general range of properties and is not limited



to specific properties treatable by more automated methods of verification as
static analysis or model checking.

The formal verification of a simple hypervisor [28] used VCC [29], an auto-
matic first-order logic based verifier for C. The underlying system architecture
was precisely modeled and represented in VCC, where the mixed-language sys-
tem software was then proved correct. Unlike [25] and [27], this technique was
based on automated methods.

[30] reports on verification of TLB (translation lookaside buffer) virtualiza-
tion, a core component of modern hypervisors. Because devices run in parallel
with software, they necessitate concurrent program reasoning even for single-
threaded software. The authors give a general methodology for verifying virtual
device implementations, and demonstrate the verification of TLB virtualization
code in VCC.

Formal verification nowadays remains rather costly. According to [31], the
cost of the verification of the seL4 microkernel was around 25 person-years, and
required highly qualified experts. seL4 contains only about 10,000 lines of C
code, and verification cost is about $700 per line of code.

6 Conclusion and future work

Recent advances in formal verification and security engineering have shown that
it is now possible to perform a formal machine-checked proof of a complete
microkernel. In this paper, we presented a short tutorial on proof of programs
with Frama-C, described the Anaxagoros hypervisor with its security principles,
and illustrated on the Anaxagoros virtual memory system how critical system
code can be specified and formally verified using modern verification tools.

There are still many interesting challenges to be addressed. An important fu-
ture work perspective is the verification of a concurrent hypervisor. For instance,
the verification in [25,28] was carried out for a sequential version. This research
direction is extremely important for an OS or a hypervisor since concurrency
naturally appears both for parallel execution on a multi-core architecture and
for non-deterministic interleaving via threads on a unique processor. We expect
that such verification may require the development of new algorithms and spec-
ifications, adapted for the proof of a concurrent version, in particular for the
execution on multi-core processors.

Future work also includes an extension of the verification to complex mixed
software and hardware designs in order to avoid that a hardware failure alters
the expected behavior of a verified hypervisor.

Whatever particular verification approach is used, formal verification of a
microkernel or a hypervisor represents a great effort and remains valid only for a
particular version being verified. Therefore, any evolution of the software requires
new verification. To allow industrial usage of formally verified system software
in a real-life environment, the verification of a new version should require only a
limited effort, without performing a new specification and proof of the whole sys-
tem. Another important future work direction is developing formal verification



methodologies for modular proof such that any evolution has a limited impact
on the verification.
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Appendix. A simplified version of data page cleaning

1 #define MaxNumPages 100
2 #define PageSize 10
3 int NumPages; // number of pages
4 enum pageType {Zero ,Data ,Pagetable ,Pagedirectory ,DToZero ,PTToZero ,PDToZero };
5 unsigned int Contents[MaxNumPages * PageSize ];
6 unsigned char Valid[MaxNumPages * PageSize ];
7 enum pageType Type[MaxNumPages ];
8 unsigned int Mappings[MaxNumPages ];
9 unsigned char Cleaning[MaxNumPages ];

10 unsigned int Cleaned[MaxNumPages ];
11 int pending_preemption; // interruption iff non zero value
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12 /*@
13 predicate zero_Contents{L}( integer pIndex) =
14 \forall integer k; 0<=k<PageSize ==> Contents[pIndex*PageSize+k]==0;
15 predicate structures_validity = 0<=NumPages <= MaxNumPages &&
16 \valid( Contents + (0.. (NumPages*PageSize -1) ) ) &&
17 \valid( Valid + (0.. (NumPages*PageSize -1) ) ) &&
18 \valid(Type + (0.. NumPages -1)) && \valid(Mappings + (0.. NumPages -1)) &&
19 \valid(Cleaning + (0.. NumPages -1)) && \valid(Cleaned + (0.. NumPages -1)) &&
20 ( \forall integer j; 0<=j<NumPages ==> (Type[j]== Zero || Type[j]== Data ||
21 Type[j]== Pagetable || Type[j]== Pagedirectory || Type[j]== DToZero ||
22 Type[j]== PTToZero || Type[j]== PDToZero) ) &&
23 ( \forall integer j; 0<=j<NumPages ==> 0<=Cleaned[j]<=PageSize ) &&
24 ( \forall integer j,l; 0<=j<NumPages && 0<=l<PageSize ==>
25 0<=Valid[j*PageSize+l]<=1 );
26 predicate R9 =
27 \forall integer j; ( 0<=j<NumPages && Type[j]== Zero ) ==> Mappings[j]==0 ;
28 predicate R5 =
29 \forall integer j; ( 0<=j<NumPages && Type[j]== Zero ) ==> zero_Contents(j) ;
30 predicate ToZeroPagesStartWithZeros =
31 ( \forall integer j; ( 0<=j<NumPages && (Type[j]== DToZero ||
32 Type[j]== PTToZero || Type[j]== PDToZero) ) ==>
33 (\forall integer i; 0<=i<Cleaned[j] ==> Contents[j*PageSize+i]==0) ) &&
34 ( \forall integer j; ( 0<=j<NumPages && (Type[j]== DToZero ||
35 Type[j]== PTToZero || Type[j]== PDToZero) ) ==>
36 (\forall integer i; 0<=i<Cleaned[j] ==> Valid[j*PageSize+i]==0) );
37 predicate Inv = structures_validity && R9 && ToZeroPagesStartWithZeros && R5;
38 */
39

40 /*@
41 requires Inv && 0<=pIndex <NumPages && 0<=startIndex <= PageSize &&
42 ( \forall integer k; 0<=k<startIndex ==> Contents[pIndex*PageSize+k]==0 ) &&
43 Cleaning[pIndex ]==1 && Mappings[pIndex ]==0 && Type[pIndex] == DToZero;
44 behavior finished:
45 assumes pending_preemption == 0;
46 ensures Inv && Type[pIndex ]== Zero && Mappings[pIndex ]==0 &&
47 Cleaning[pIndex ]==0 && Cleaned[pIndex ]==0;
48 assigns Contents [( pIndex*PageSize+startIndex) .. (pIndex*PageSize +
49 PageSize -1)], Type[pIndex], Cleaning[pIndex], Cleaned[pIndex];
50 behavior interrupted:
51 assumes pending_preemption != 0;
52 ensures Inv && Type[pIndex ]== DToZero && Mappings[pIndex ]==0 &&
53 Cleaning[pIndex ]==0 && startIndex < Cleaned[pIndex] <= PageSize;
54 assigns Contents [( pIndex*PageSize+startIndex) .. (pIndex*PageSize +
55 PageSize -1)], Type[pIndex], Cleaning[pIndex], Cleaned[pIndex];
56 */
57 void putOnePageToZero(int pIndex , int startIndex ){
58 int l;
59 /*@ loop invariant startIndex <= l <= PageSize && Inv &&
60 ( \forall integer k; 0<=k<l ==> Contents[pIndex*PageSize+k]==0 );
61 loop assigns Contents [( pIndex*PageSize+startIndex) .. (pIndex*PageSize +
62 PageSize -1)];
63 loop variant PageSize - l;
64 */
65 for(l=startIndex; l<PageSize; l++){
66 Contents[pIndex*PageSize + l] = 0;
67 if(pending_preemption ){
68 Cleaned[pIndex]=l+1;
69 Cleaning[pIndex ]=0;
70 return;
71 }
72 }
73 Type[pIndex] = Zero;
74 Cleaning[pIndex ]=0;
75 Cleaned[pIndex ]=0;
76 }



77

78 /*@
79 requires Inv && 0<=pIndex <NumPages;
80 behavior finished:
81 assumes pending_preemption == 0 && Type[pIndex ]== Data && Mappings[pIndex ]==0;
82 ensures Inv && \result ==0 && Type[pIndex ]== Zero &&
83 Cleaning[pIndex ]==0 && Cleaned[pIndex ]==0;
84 assigns Contents [( pIndex*PageSize) .. (pIndex*PageSize + PageSize -1)],
85 Type[pIndex], Cleaning[pIndex], Cleaned[pIndex];
86 behavior interrupted:
87 assumes pending_preemption != 0 && Type[pIndex ]== Data && Mappings[pIndex ]==0;
88 ensures Inv && \result ==0 && Type[pIndex ]== DToZero &&
89 Cleaning[pIndex ]==0 && 0 < Cleaned[pIndex] <= PageSize;
90 assigns Contents [( pIndex*PageSize) .. (pIndex*PageSize + PageSize -1)],
91 Type[pIndex], Cleaning[pIndex], Cleaned[pIndex];
92 behavior failure:
93 assumes Type[pIndex ]!= Data || Mappings[pIndex ]!=0;
94 ensures Inv && \result ==1;
95 assigns \nothing;
96 */
97 int cleanData (int pIndex){
98 if(Type[pIndex] != Data)
99 return 1;

100 if(Mappings[pIndex] != 0)
101 return 1;
102 Cleaning[pIndex ]=1;
103 Cleaned[pIndex ]=0;
104 Type[pIndex] = DToZero;
105 putOnePageToZero(pIndex ,0);
106 return 0;
107 }
108

109 /*@
110 requires Inv && 0<=pIndex <NumPages;
111 behavior finished:
112 assumes pending_preemption == 0 && Type[pIndex ]== DToZero && Mappings[pIndex ]==0;
113 ensures Inv && \result ==0 && Type[pIndex ]== Zero &&
114 Cleaning[pIndex ]==0 && Cleaned[pIndex ]==0;
115 assigns Contents [( pIndex*PageSize+Cleaned[pIndex]) .. (pIndex*PageSize +
116 PageSize -1)],Type[pIndex],Cleaning[pIndex],Cleaned[pIndex];
117 behavior interrupted:
118 assumes pending_preemption != 0 && Type[pIndex ]== DToZero && Mappings[pIndex ]==0 &&
119 Cleaning[pIndex ]==0;
120 ensures Inv && \result ==0 && Type[pIndex ]== DToZero &&
121 Cleaning[pIndex ]==0 && \old(Cleaned[pIndex]) < Cleaned[pIndex] <= PageSize;
122 assigns Contents [( pIndex*PageSize+Cleaned[pIndex]) .. (pIndex*PageSize +
123 PageSize -1)],Type[pIndex],Cleaning[pIndex],Cleaned[pIndex];
124 behavior failure:
125 assumes Type[pIndex ]!= DToZero || Mappings[pIndex ]!=0;
126 ensures Inv && \result ==1;
127 assigns \nothing;
128 */
129 int cleanPartiallyCleanedData (int pIndex){
130 if(Type[pIndex] != DToZero)
131 return 1;
132 if(Mappings[pIndex] != 0)
133 return 1;
134 Cleaning[pIndex] = 1;
135 putOnePageToZero(pIndex ,Cleaned[pIndex ]);
136 return 0;
137 }
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