
Verifying Redundant-Check Based Countermeasures:
A Case Study

Thibault Martin
Université Paris-Saclay, CEA, List

Palaiseau, France
thibault.martin@cea.fr

Nikolai Kosmatov
Thales Research and Technology

Palaiseau, France
nikolaikosmatov@gmail.com

Virgile Prevosto
Université Paris-Saclay, CEA, List

Palaiseau, France
virgile.prevosto@cea.fr

ABSTRACT

To thwart fault injection based attacks on critical embedded sys-
tems, designers of sensitive software use redundancy based coun-
termeasure schemes. In some of these schemes, critical checks (i.e.
conditionals) in the code are duplicated to ensure that an attacker
cannot bypass such a check by flipping its result in order to get to a
protected point (corresponding e.g. to a successful authentication or
code integrity verification). This short paper presents a source-code-
level verification technique of the correct implementation of such
countermeasures. It is based on code instrumentation and deductive
verification. The proposed technique was implemented in a tool
prototype and evaluated on a real-life case study: the bootloader
module of a secure USB storage device calledWooKey, supposed
to be resistant to fault injection attacks. We were able to prove the
correctness of almost all redundant-check countermeasures in the
module except two, and found an error in one of the unproven ones.

CCS CONCEPTS

• Security and privacy� Logic and verification; • Software

and its engineering� Formal software verification;

KEYWORDS

Fault injection attacks, software countermeasures, deductive verifi-
cation, Frama-C verification platform.

ACM Reference Format:

Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto. 2022. Verifying
Redundant-Check Based Countermeasures:, A Case Study. In The 37th
ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April 25–29,
2022, Virtual Event, . ACM, New York, NY, USA, Article 4, 4 pages. https:
//doi.org/10.1145/3477314.3507341

1 INTRODUCTION

Context. Physical attacks of critical embedded systems (via light
pulses, laser shots, clock, voltage or electromagnetic glitches, etc.)
consist in causing a fault that alters correct execution of soft-
ware [4, 6]. A frequent goal of such attacks is to bypass some
critical checks in the code (such as user authentication, software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8713-2/22/04.
https://doi.org/10.1145/3477314.3507341

integrity or software authentication checks) in order to get to a pro-
tected point that gives access to sensitive information or physical
resources.

To counter such attacks, designers of embedded software use
in particular redundancy based countermeasure schemes [4, 5]. In
some of these schemes, critical checks (i.e. conditional statements,
or tests) in the code are duplicated. In this way, if attackers manage
to bypass one check by injecting a fault and flipping the result of
the check, the redundant check still prevents from reaching the
protected point. This countermeasure assumes that it is unlikely to
inject two faults by physical attacks during the same execution in
a coordinated way. It can be generalized to any number 𝑘 ≥ 1 of
coordinated faults: if an attacker is assumed to be able to introduce
𝑘 coordinated faults, each critical check should be repeated 𝑘 + 1
times. For simplicity, in the examples of the paper we use 𝑘 = 1.

Note that, from a strict C standard point of view, these coun-
termeasures are dead code. Hence, as stated for instance in the
description of the Common Software Weakness CWE-7331 and in
the last release of the C coding rules [2] by the National Cyberse-
curity Agency of France (ANSSI), developers should ensure that
optimisations enabled in the compilation toolchain do not elimi-
nate such manually added software countermeasures. This point is
beyond the scope of this paper.

Examples. A simple C code with a redundant-check countermea-
sure is illustrated by Fig. 1. Assuming password is a user-submitted
password and secret is the correct password, the duplicated con-
ditional ensures that a bad password will be detected even if one
of the conditions is inverted by an attack. Figure 2 shows a more
interesting example, with redundant code integrity checks. Such a
check is performed by function check_code_integrity. As a protection to
bit flipping, this function returns a value of the secbool type, whose
values sectrue and secfalse have a maximal bit-distance. The second
condition is written in a different way, and is erroneous here: the
developer should have used a bitwise negation ~chck2 instead of a
logical negation !chck2. If chck2 is secfalse, its logical negation is in
fact 0 so that the test on line 8 is always false. Hence, if an attacker
manages to flip the result of only the test on line 6, they will execute
the protected line 9 even if code integrity check fails. This example
illustrates an incorrect countermeasure, due to a misuse of secbool

values. Other cases of wrong countermeasures are described below.
Motivation. Due to their redundant behavior, a correct imple-

mentation of countermeasures is difficult to verify, yet crucial to
ensure resistance to the considered faults. Various approaches are
used to assess the efficiency of countermeasures on a given system.
Fault injection based techniques—reproducing potential physical
attacks on the target device—allow validation engineers to detect
1https://cwe.mitre.org/data/definitions/733.html

https://doi.org/10.1145/3477314.3507341
https://doi.org/10.1145/3477314.3507341
https://doi.org/10.1145/3477314.3507341

SAC ’22, April 25–29, 2022, Virtual Event, Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto

1 if(password != secret) return 1; // Error , bad password
2 if(password != secret) return 1; // Error , bad password
3 // Protected: Successfully authenticated

Figure 1: Password check with a countermeasure.

1 typedef enum {secfalse = 0x55aa55aa ,
2 sectrue = 0xaa55aa55} secbool; // secure true/false values
3 secbool check_code_integrity (); // checks code integrity
4 int main(){
5 secbool chk1=check_code_integrity ();
6 if(chk1 != sectrue) return 1; // Error , compromised code
7 secbool chk2=check_code_integrity ();
8 if(!chk2 == sectrue) return 1; // incorrect countermeasure
9 // Protected: Successful code integrity check
10 }

Figure 2: Integrity check with a countermeasure.

(confirmed) vulnerabilities or get confidence that the system is
sufficiently resistant to attacks. Such techniques have the advan-
tage to consider the real-life target system, but remain costly and
time-consuming, and cannot guarantee that the system will resist
to similar attacks in a slightly different setting (e.g. different sig-
nal force, frequency, duration or number of attempts). Another
approach consists in searching potential attacks at software level,
by simulating a chosen set of possible faults in the code and try-
ing to identify potential attacks using test generation [12] or its
combination with static analysis [10], or to prove their absence
using formal verification [7, 8]. Even if their results are subject to
assumptions (about the considered fault model, fault simulation
approach, compiler, etc.), software-level approaches provide a use-
ful complement to physical evaluation: they are cheaper, can be
fully automatic and can rigorously consider all potential faults with
respect to the chosen fault simulation. Such techniques help to find
hybrid software/hardware attacks [1].

This study continues previous efforts [7, 8, 10, 12] in this direc-
tion. We consider a simple fault model that allows the attacker to
invert any subset of at most 𝑘 checks in the code. “Test inversion”
is seen as a very useful mode of fault simulation in a recent joint
report by the French certification and evaluation authorities [1,
Sec. 16.4].

Contributions. This short paper presents a source-code-level for-
mal verification technique of correct implementation of redundant-
check based countermeasures. Its purpose is to prove that provoking
up to 𝑘 test inversions in the code should not allow an attacker to
reach the protected code. It includes two steps: a dedicated code
instrumentation simulating possible faults in critical checks ("test
inversions") by mutations; and deductive verification of the result-
ing code trying to formally prove that the countermeasures effec-
tively prevent attacks. The proposed technique was implemented
inside LTest2 [3], an open-source testing toolset, and relies on the
Frama-C3 verification platform [9]. We evaluated this technique
on a real-life case study: the bootloader module of a secure USB
storage device called WooKey4, implemented by the ANSSI and

2https://github.com/ltest-dev/LTest
3https://frama-c.com
4https://wookey-project.github.io/target.html

1
2 if(𝐶1)
3 {code1;}
4 ...
5
6 if(𝐶𝑁)
7 {codeN;}
8
9 // Protected

→

1 int mut_1 = mutated ();
2 if((! mut_1 && 𝐶1) || (mut_1 && !𝐶1))
3 {code1;}
4 ...
5 int mut_N = mutated ();
6 if((! mut_N && 𝐶𝑁) || (mut_N && !𝐶𝑁))
7 {codeN;}
8 /*@ check !mut_1 && ... && !mut_N;*/
9 // Protected

Figure 3: (a) A code example, and (b) its automatic annota-

tion by mutations for fault simulation.

1 #define MAX_MUTATION 1 // Max number of modeled faults
2 unsigned int cpt_mut = 0;
3 /*@
4 assigns cpt_mut;
5 behavior cannot_mutate:
6 assumes cpt_mut ≥ MAX_MUTATION;
7 ensures !\result;
8 ensures cpt_mut == \at(cpt_mut , Pre);
9 behavior can_mutate:
10 assumes cpt_mut < MAX_MUTATION;
11 ensures \result ⇔ cpt_mut == \at(cpt_mut ,Pre) + 1;
12 ensures !\result ⇔ cpt_mut == \at(cpt_mut ,Pre);
13 */
14 int mutated ();

Figure 4: Uninterpreted function mutated and its contract.

supposed to be resistant to fault injection attacks. We were able to
formally prove the correctness of all redundant-check countermea-
sures in the module except two, and found an error in one of the
remaining ones. This error remained undetected despite the fact
that this module was rigorously analyzed by 10 evaluation centers5
as part of a recent evaluation challenge [1]. It confirms the interest
of the proposed dedicated approach.

2 VERIFICATION APPROACH

Overview. Our verification approach proceeds as follows. The user
indicates the beginning and the end of the critical sections of the
code, inside which all tests should resist to fault injection attacks.
This is done to focus only on the critical steps (containing authenti-
cation, integrity checks, version control, etc.) since other parts of
the code (e.g. following the authentication) are typically less critical
and do not integrate countermeasures. The end of the indicated
code segment corresponds to the protected point that gives access
e.g. to sensitive resources or information. In a critical code segment,
all checks are instrumented to simulate faults introduced by an
attacker according to the considered fault model: an attacker can in-
vert up to 𝑘 tests. The target property is expressed as an annotation
in the Acsl6 specification language and states that no attack can
reach the protected point. Then, a deductive verification tool is run
on the instrumented code to try to formally verify this annotation.
Figure 3b presents the instrumentation scheme for a critical part
of code, given in Fig. 3a, with 𝑁 tests. We will now detail its main
components.

Fault Simulation. To simulate a possible fault injection, we intro-
duce a specific function, called mutated, for which we provide only

5ITSEFs (Information Technology Security Evaluation Facility), or CESTIs in French
6https://github.com/acsl-language/acsl/releases/latest

https://github.com/ltest-dev/LTest
https://frama-c.com
https://wookey-project.github.io/target.html

Verifying Redundant-Check Based Countermeasures:
A Case Study SAC ’22, April 25–29, 2022, Virtual Event,

an Acsl specification, as shown in Fig. 4. The implementation of
this function is not required for our technique based on deduc-
tive verification. We can simulate at most 𝑘 faults (for any given
𝑘 ≥ 1) by changing the MAX_MUTATION macro definition to 𝑘 (here, we
set 𝑘 = 1). The specification on lines 3–13 guarantees that mutated

will return true (i.e. nonzero) at most MAX_MUTATION times during an
execution. The order in which the true and false values are returned
is left unspecified: it can be arbitrary. To count how many times
the function has returned true so far, we introduce a new variable
cpt_mut. Line 4 specifies that mutated only modifies cpt_mut, so it does not
interfere with the application code. Then, two cases are considered
(lines 5 and 9). If the maximal number of mutations has been hit
(line 6), the function returns false, i.e. does not trigger a mutation,
and the counter is unchanged (lines 7–8). If the maximal number of
mutations is not reached (line 10), then the function either returns
true and increments the counter (i.e. triggers a mutation), or returns
false and leaves the counter unchanged (lines 11–12).

As shown in Fig. 3b (e.g. line 1), for each test of a condition𝐶𝑖 , a
call to mutated is added and its result is stored in a variable mut_i, that
we call a mutation trigger. The role of mutation trigger mut_i is to
indicate if a test inversion should be performed on the condition
𝐶𝑖 .

Then the value of 𝐶𝑖 is combined with the mutation trigger in
order to trigger a test inversion, i.e. to take the opposite branch,
if mutated returned true (e.g. line 2). Such instrumentation can be
compared, albeit at a slightly higher level of abstraction, to the one
done by Lazart [12] over LLVM bitcode or by [11] over a translation
of assembly code at C level.

Verified Properties. At the end of the critical code segment (line 8
in Fig. 3b), we insert a check annotation, which states that all mutation
triggers are false at the protected point. If this check is proved, we
can conclude that the protected code section can never be reached
through up to 𝑘 test inversions, or in other words, that redundant-
check countermeasures are correctly implemented. Indeed, if there
is an attack path with a nonzero number of faults, i.e. on which
some mutation triggers are true, this annotation cannot be proved
in general. To try to prove this annotation, we rely on theWp plugin
of Frama-C [9], that is based on deductive verification.

One Difficulty: Function Calls and Loops. In the presence of func-
tion calls and loops, deductive verification tools like Wp usually
rely on manually written specifications. In our approach, having
to provide them would come against our goal to make the verifi-
cation process as automated as possible. For instance, to deal with
the example of Fig. 2, the user would need to provide a complete
specification of function check_code_integrity. To avoid these pitfalls,
we propose to inline the called functions and unroll the loops so
that the deductive verification tool can reason about the code with-
out additional annotations. This solution has limitations: it will
not work, for example, if the maximal number of loop iterations
is very large or cannot be bounded. In practice, in critical code
segments, loops with unbounded number of iterations are not so
common, and it is often possible to determine the maximal number
of loop iterations (a password is read at most three times, the se-
cret code to check or the payload to copy is of a fixed ou bounded
finite length, etc.). In our case study, this solution indeed allowed
avoiding additional specifications, except in one case (see below).

Critical Section
Location (Start-End)

Contains Nb of
Object.

(Unrolled)

Proof
ResultLoops Fun. Analysis

Call

automaton.c:61-65 no no 1 (13) ✓ Correct
automaton.c:368-374 no no 1 ✕ Bug
automaton.c:404-407 yes yes 1 ✓ Correct
automaton.c:426-429 yes yes 1 ✓ Correct
hash.c:86-91 no no 1 ✓ Correct
hash.c:114-122 yes yes 1 ✕ Correct?
main.c:408-453 no no 2 ✓ Correct
main.c:418-428 no no 2 ✓ Correct
main.c:429-439 no no 2 ✓ Correct
main.c:455-476 no no 2 ✓ Correct
main.c:569-578 no no 1 ✓ Correct
Total (before unrolling/inlining) 11
Total (after unrolling/inlining) 27
Proved 25/27
Time 130s

Figure 5: Summary of experiments with LTest on the coun-

termeasures in WooKey

3 EXPERIMENTS

The approach described above has been implemented in LTest [3],
a set of tools for coverage-oriented testing, mostly written in OCaml
as plugins of Frama-C [9], a program analysis platform for C code.
One of the plugins, LAnnotate, creates test objectives for given cri-
teria. We implemented our technique as a new criterion, Redundant
Check Countermeasures (RCC), which instruments countermea-
sures using annotations provided by the user. The instrumented
code can then be given to another plugin, LUncov, which tries to
prove, using Wp, that the target point cannot be reached by 𝑁 test
inversions.

We evaluated our tool on the 11 critical sections with redundant-
check based countermeasures in the bootloader of WooKey7. Parts
of code that are not protected by countermeasures were not consid-
ered. The table in Fig. 5 gives an overview of our experiments on
all redundant check countermeasures in WooKey. For each critical
section protected by redundant-check based countermeasures, the
first columns provide the location of the section, whether it contains
loops or function calls, the number of resulting objectives (that is,
assertions to prove). When different, we also give the number of
objectives after loop unfolding and function inlining. This number
increases for the first section since the assertion is located inside the
body of the unrolled loop. (In other cases, the number of assertions
does not change despite using loop unrolling or function inlining.)
The last two columns show the result of the proof (on the initial
code) and our manual analysis of this result.

We were able to prove the efficiency of 9 of them, in around 2
minutes. One unproven section is correct but too hard to prove
using Wp without adding function contracts and loop invariants: it
has three function calls involving loops and bitwise operations, so
that complete unrolling and inlining generates complex verification

7The tools were applied on the version of commit 00fd1c6 available on https://github.
com/wookey-project/bootloader/.

https://github.com/wookey-project/bootloader/
https://github.com/wookey-project/bootloader/

SAC ’22, April 25–29, 2022, Virtual Event, Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto

1 /* double if protection */
2 if (new_state == 0xff && !(new_state != 0xff)) {
3 dbg_log("%s:␣PANIC!␣this␣should␣never␣arise␣!",

__func__);
4 dbg_flush ();
5 loader_set_state(LOADER_ERROR);
6 return;
7 }
8 //Safe code

Figure 6: Wrong countermeasures inWooKey

1 /* double if protection */
2 if (𝐶1 && 𝐶1) {
3 // Safe code
4 }
5 // Error

(a) Safe code inside

/* double if protection */
if (𝐶1 || 𝐶1) {

// Error
}
// Safe code

(b) Safe code outside

Figure 7: Good countermeasure patterns

conditions. Its proof using additional annotations is left as future
work.

The second unproven section is shown in Fig. 6. The code sets
the bootloader state to LOADER_ERROR and exits if the value of new_state

is erroneous. The countermeasure is created by taking the conjunc-
tion of the original condition and its equivalent reformulation (see
line 2). Using our method, we were not able to prove this coun-
termeasure to be effective. In this case, it is indeed erroneous: the
doubled condition on line 2 does the opposite of its purpose. Instead
of protecting the critical code section, it allows a single mutation
to bypass the check. Figure 7 gives correct patterns for doubled
conditions (where the occurrences of condition 𝐶1 can be equiv-
alent but not necessarily the same, notably to avoid side-channel
indications of redundant-check locations). The error here comes
from the use of the logical operator AND (&&) instead of OR (||),
unlike in Fig. 7b. This type of countermeasure, using a logical con-
nector instead of successive if statements, occurs a few times in the
WooKey bootloader, but this is the only case where the protected
code is outside the condition block. In all other cases, the error is
caught after, like in Fig. 7a.

This example shows that it is very easy to make an error in
countermeasures that is not easy to find, as the code still works.
It confirms the need for dedicated tools for verifying the counter-
measures. After correcting the detected error, we proved a correct
implementation of this redundant-check based countermeasure as
well. Thus, our tool was able to automatically prove ∼90% of critical
sections in the target module without adding contracts.

4 CONCLUSION

We have proposed in this paper a method for formally verifying
at source-code level that countermeasures against test inversion
attacks are correctly implemented and shown that it can be success-
fully used on real C code thanks to Frama-C/LTest. We believe
that providing a suitable implementation for the mutated function
will make our instrumentation suitable also for finding faults using
a test generation based approach (like Lazart [12]). If so, it will al-
low the engineer to use the same instrumentation both to formally

prove the correct implementation of countermeasures and to gen-
erate test cases illustrating attacks. This extension is part of future
work. Future work also includes considering other fault models,
notably allowing the attacker to flip the value of any variable (up
to 𝑘 times) during the execution, automating the approach of [7]
thanks to the use of LAnnotate.
Acknowledgements. This work was partially supported by ANR
project SATOCROSS (grant ANR-18-CE25-0015-01). The authors
thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] ANSII and French ITSEFs. 2020. Inter-CESTI: Methodological and Technical
Feedbacks on Hardware Devices Evaluations. In SSTIC Symposium. 105–200.
https://actes.sstic.org/SSTIC20/sstic-2020-actes.pdf

[2] ANSSI. 2021. Règles de programmation pour le développement sécurisé de
logiciels en langage C.

[3] Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and Nikolai Kosmatov. 2014.
An All-in-One Toolkit for Automated White-Box Testing. In Proc. of the 8th
International Conference on Tests and Proofs (TAP 2014). Springer, 53–60. https:
//doi.org/10.1007/978-3-319-09099-3_4

[4] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. 2012.
Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and Counter-
measures. Proc. IEEE 100, 11 (2012), 3056–3076. https://doi.org/10.1109/JPROC.
2012.2188769

[5] Alessandro Barenghi, Luca Breveglieri, Israel Koren, Gerardo Pelosi, and
Francesco Regazzoni. 2010. Countermeasures against fault attacks on software im-
plemented AES: effectiveness and cost. In Proc. of the 5th Workshop on Embedded
Systems Security (WESS 2010). ACM. https://doi.org/10.1145/1873548.1873555

[6] Shivam Bhasin, Paolo Maistri, and Francesco Regazzoni. 2014. Malicious wave:
A survey on actively tampering using electromagnetic glitch. In Proc of the 2014
Int. Symp. on Electromagnetic Compatibility. IEEE, 318–321. https://ieeexplore.
ieee.org/document/6997169

[7] Maria Christofi, Boutheina Chetali, Louis Goubin, and David Vigilant. 2013. For-
mal verification of a CRT-RSA implementation against fault attacks. J. Cryptogr.
Eng. 3, 3 (2013), 157–167. https://doi.org/10.1007/s13389-013-0049-3

[8] Karine Heydemann, Jean-François Lalande, and Pascal Berthomé. 2019. Formally
verified software countermeasures for control-flow integrity of smart card C code.
Comput. Secur. 85 (2019), 202–224. https://doi.org/10.1016/j.cose.2019.05.004

[9] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C: A software analysis perspective. Formal Asp. Comput.
27, 3 (2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

[10] Guilhem Lacombe, David Féliot, Etienne Boespflug, and Marie-Laure Potet. 2021.
Combining Static Analysis and Dynamic Symbolic Execution in a Toolchain to
detect Fault Injection Vulnerabilities. In Proc. of the 10th International Workshop
on Security Proofs for Embedded Systems (PROOFS 2021), colocated with the 2021
Conference on Cryptographic Hardware and Embedded Systems (CHES 2021).

[11] Johan Laurent, Christophe Deleuze, Vincent Beroulle, and Florian Pebay-Peyroula.
2019. Analyzing Software Security Against Complex Fault Models with Frama-C
Value Analysis. In Proc. of the 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 2019). IEEE, 33–40. https://doi.org/10.1109/FDTC.2019.00013

[12] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. 2014.
Lazart: A Symbolic Approach for Evaluation the Robustness of Secured Codes
against Control Flow Injections. In Proc. of the 7th IEEE International Conference
on Software Testing, Verification and Validation (ICST 2014). IEEE, 213–222. https:
//doi.org/10.1109/ICST.2014.34

https://actes.sstic.org/SSTIC20/sstic-2020-actes.pdf
https://doi.org/10.1007/978-3-319-09099-3_4
https://doi.org/10.1007/978-3-319-09099-3_4
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1145/1873548.1873555
https://ieeexplore.ieee.org/document/6997169
https://ieeexplore.ieee.org/document/6997169
https://doi.org/10.1007/s13389-013-0049-3
https://doi.org/10.1016/j.cose.2019.05.004
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1109/FDTC.2019.00013
https://doi.org/10.1109/ICST.2014.34
https://doi.org/10.1109/ICST.2014.34

	Abstract
	1 Introduction
	2 Verification approach
	3 Experiments
	4 Conclusion
	References

