
 1

Formal Verification of an Industrial Distributed
Algorithm: an Experience Report

Nikolai Kosmatov, Delphine Longuet, Romain Soulat

Thales Research & Technology, Palaiseau, France

(thanks to Etienne André, Laurent Fribourg, and Jean-Marc Mota
for their contribution to a previous case study)

ISOLA 2021, Rhodes, October 25, 2021

 2

Context: Verification of Distributed Algorithms

● Distributed algorithms include consensus protocols
– the processes (nodes) of a network, executing the same code, have to come to the

agreement on some data
– Ex: Leader election, identification of working nodes

● An active research area: several verified algorithms exist
– Synchronous: Bully algorithm [Garcia-Molina, 1982]
– Asynchronous: Lamport’s leader election protocol [1998]

● proved e.g. in TLA+, UPPAAL
● As each protocol is tightly linked to the considered setting, engineers often need to verify other

protocols
● Thales designed several (confidential) consensus protocols whose properties had to be verified

 3

Target Protocol Characteristics
● The system is composed of p identical computing nodes

– Nodes can perform various tasks and receive a part of the workload

● The nodes are fully interconnected
– any node can send messages to any other node to communicate computation results

● Periodically, each node sends to all other nodes a special state message indicating that the
sender is still alive and providing some additional data

● The algorithm uses these messages to compute a list of all working nodes in the network
– Used for workload balancing, clock synchronization, leader election, etc.

● Local uncertainty and time variations modeled
– Each node’s period is within predefined bounds, and activation time can be perturbed by jitters

● A node sends a state message every second activation

 4

Example 1: Periods, jitters and activation time

 5

Target Properties
● Final property (Pα): all working nodes reach a consensus about the set of

working nodes after α rounds (in our algorithm, α = 7)

● Intermediate properties (Pj): Some partial knowledge (“likely
information”) after j rounds

● In our algorithm, only P2, P5, P7 are stronger than the previous ones

 6

Verification Methodology: Overview
● Use a model Msim simulating all nodes with all possible interleavings

– quickly check expected properties
– detect counter-examples
– prove for a small number of nodes (up to 4)
– does not scale for bigger number of nodes (>20)

● Use an abstact model Mabs to simulate a unique node, assume properties about
other nodes and timing related properties
– prove for bigger number of nodes
– detect counter-examples

● Use a specific timing model MT to establish timing related properties

 7

Model M
sim

● Simulates the
whole network

● Explicitly
represents all
nodes

● Activates nodes in
a loop

 8

Model M
abs

● Models one node

● Assumptions on
other nodes

● Assumptions for
timing properties

● While proving Pl
for nodei , we
assume P1,…,Pl-1
for other nodes

 9

Timing properties (Model M
T
)

● Property Ptimed relates the number of executions of two
nodes for given system parameters

● Proved using a parametric timed automaton, an extension
of a timed automaton, in IMITATOR model-checker

 10

Imprecision due to Abstraction
● In model Msim the consensus was reached after α = 7 activations

● In the abstract model Mabs it was reached after α = 8 activations

● This extra delay is due to abstraction
● It was not an issue for system developers, a rigorous proof being

more important.
● Therefore, we use α = 8 in the specification and verification of Mabs

● The other key properties (P2 and P5) were true for the same j

 11

Experiments
● Three tools: SafeProver (by SafeRiver), CBMC, KLEE

● Run on both models Msim and Mabs

● Goal: record the results that industrial engineers can obtain
– without an advanced knowledge of these tools
– on a real-life distributed algorithm

● The goal was NOT to compare the tools or to judge their
potential

 12

Results with SafeProver

 13

Results with CBMC without failures

 14

Results with CBMC with failures

 15

Results with KLEE

 16

Lessons Learned (1/5)
● Several consensus algorithms were verified
● Industrial users often need to verify a specific algorithm

– Prefer to prove the existing (or slightly adapted) legacy algorithm
– Existing algorithms may not meet target system constraints

● memory size, network usage, computational time, non-interference with
other computations, relevant fault models and robustness constraints,
the level of possible variations of the activation or communication times.

 17

Lessons Learned (2/5)
● After verifying one algorithm, the engineer often needs to adapt it to a

new system and to verify again
● Generic verification methodologies applicable to large families of similar

algorithms are required
● We present such a methodology for a family of consensus algorithms
● Criteria for acceptance of the methodology include

– Capacity to perform the proof
– Possibility to analyze the real-life code or have a model very similar to the code
– Possibility to produce and easily read counter-examples

 18

Lessons Learned (3/5)
● Models of consensus algorithms have a high combinatorial complexity

– due to several free variables in the initial state, lots of possible interleavings...

● Complexity highly increases with the number of nodes and executions
● Symbolic tools seem to be most suitable for such algorithms

– symbolic model checking and symbolic execution

● Timed model checking alone was not sufficient in our experiments
– Timed model checkers we tried did not scale
– Modeling language must be close to the code
– Need to easily generate and read counter-examples

 19

Lessons Learned (4/5)
● Symbolic model checkers (SafeProver and CBMC) very powerful both for

finding counter-examples and proving the correct version of the algorithm
– Support of bit operations was particularly useful
– A compact bit-level encoding of data improved the results

● Symbolic execution with Klee
– Very useful to detect counter-examples for small numbers of nodes / executions
– Due to combinatorial explosion, cannot explore all paths to show the absence of

errors on the correct models

 20

Lessons Learned (5/5)
● Abstracting the system model using abstraction was

essential to scale for a large number of nodes
– Proof on the complete model Msim worked for few nodes (p < 5),

– But it ran out of time and memory for bigger numbers of nodes
required in the target systems

● The rely-guarantee based approach (dating back to
[Jones,1983]) solved this issue for the algorithms we faced

 21

Future Work
● Application of the methodology to other industrial algorithms
● Proof of the assumptions for the real-life C code using deductive

verification (e.g. in Frama-C)
● Experiences using other verification tools (model checking and

symbolic execution)

More generally,
● Collecting the engineers’ needs and applying recent software

verification advancements to industrial projects remains a priority for
the formal methods group of Thales Research and Technology

 22

Back-Up Slides

 23

State Update & Message Computation

 24

Fault Models

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

