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Context: Verification of Distributed Algorithms

● Distributed algorithms include consensus protocols  
– the processes (nodes) of a network, executing the same code, have to come to the 

agreement on some data
– Ex: Leader election, identification of working nodes 

● An active research area: several verified algorithms exist
– Synchronous: Bully algorithm [Garcia-Molina, 1982]
– Asynchronous: Lamport’s leader election protocol [1998]

● proved e.g. in TLA+, UPPAAL 
● As each protocol is tightly linked to the considered setting, engineers often need to verify other 

protocols
● Thales designed several (confidential) consensus protocols whose properties had to be verified
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Target Protocol Characteristics
● The system is composed of p identical computing nodes

– Nodes can perform various tasks and receive a part of the workload

● The nodes are fully interconnected
– any node can send messages to any other node to communicate computation results 

● Periodically, each node sends to all other nodes a special state message indicating that the 
sender is still alive and providing some additional data

● The algorithm uses these messages to compute a list of all working nodes in the network 
– Used for workload balancing, clock synchronization, leader election, etc.

● Local uncertainty and time variations modeled
– Each node’s period is within predefined bounds, and activation time can be perturbed by jitters

● A node sends a state message every second activation
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Example 1: Periods, jitters and activation time
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Target Properties
● Final property (Pα): all working nodes reach a consensus about the set of 

working nodes after α rounds (in our algorithm, α = 7)  

● Intermediate properties (Pj): Some partial knowledge (“likely 
information”) after j rounds

● In our algorithm, only P2, P5, P7 are stronger than the previous ones
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Verification Methodology: Overview 
● Use a model Msim simulating all nodes with all possible interleavings

– quickly check expected properties
– detect counter-examples
– prove for a small number of nodes (up to 4)
– does not scale for bigger number of nodes (>20)

● Use an abstact model Mabs  to simulate a unique node, assume properties about 
other nodes and timing related properties
– prove for bigger number of nodes
– detect counter-examples

● Use a specific timing model MT to establish timing related properties
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Model M
sim

● Simulates the 
whole network

● Explicitly  
represents all 
nodes

● Activates nodes in 
a loop
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Model M
abs

● Models one node  

● Assumptions on 
other nodes

● Assumptions for 
timing properties

● While proving Pl 
for nodei , we  
assume P1,…,Pl-1 
for other nodes
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Timing properties (Model M
T
)

● Property Ptimed relates the number of executions of two 
nodes for given system parameters

● Proved using a parametric timed automaton, an extension 
of a timed automaton, in IMITATOR model-checker
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Imprecision due to Abstraction
● In model Msim the consensus was reached after α = 7 activations

● In the abstract model Mabs it was reached after α = 8 activations 

● This extra delay is due to abstraction
● It was not an issue for system developers, a rigorous proof being 

more important. 
● Therefore, we use α = 8 in the specification and verification of Mabs

● The other key properties (P2 and P5) were true for the same j
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Experiments
● Three tools: SafeProver (by SafeRiver), CBMC, KLEE

● Run on both models Msim and Mabs

● Goal: record the results that industrial engineers can obtain
– without an advanced knowledge of these tools
– on a real-life distributed algorithm

● The goal was NOT to compare the tools or to judge their 
potential
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Results with SafeProver
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Results with CBMC without failures
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Results with CBMC with failures
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Results with KLEE
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Lessons Learned (1/5)
● Several consensus algorithms were verified 
● Industrial users often need to verify a specific algorithm

– Prefer to prove the existing (or slightly adapted) legacy algorithm
– Existing algorithms may not meet target system constraints 

● memory size, network usage, computational time, non-interference with 
other computations, relevant fault models and robustness constraints, 
the level of possible variations of the activation or communication times.
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Lessons Learned (2/5)
● After verifying one algorithm, the engineer often needs to adapt it to a 

new system and to verify again
● Generic verification methodologies applicable to large families of similar 

algorithms are required 
● We present such a methodology for a family of consensus algorithms
● Criteria for acceptance of the methodology include 

– Capacity to perform the proof
– Possibility to analyze the real-life code or have a model very similar to the code
– Possibility to produce and easily read counter-examples
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Lessons Learned (3/5)
● Models of consensus algorithms have a high combinatorial complexity

– due to several free variables in the initial state, lots of possible interleavings...

● Complexity highly increases with the number of nodes and executions
● Symbolic tools seem to be most suitable for such algorithms 

– symbolic model checking and symbolic execution

● Timed model checking alone was not sufficient in our experiments 
– Timed model checkers we tried did not scale
– Modeling language must be close to the code 
– Need to easily generate and read counter-examples 
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Lessons Learned (4/5)
● Symbolic model checkers (SafeProver and CBMC) very powerful both for 

finding counter-examples and proving the correct version of the algorithm
– Support of bit operations was particularly useful 
– A compact bit-level encoding of data improved the results 

● Symbolic execution with Klee 
– Very useful to detect counter-examples for small numbers of nodes / executions
– Due to combinatorial explosion, cannot explore all paths to show the absence of 

errors on the correct models
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Lessons Learned (5/5)
● Abstracting the system model using abstraction was 

essential to scale for a large number of nodes
– Proof on the complete model Msim worked for few nodes (p < 5), 

– But it ran out of time and memory for bigger numbers of nodes 
required in the target systems

● The rely-guarantee based approach (dating back to 
[Jones,1983]) solved this issue for the algorithms we faced
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Future Work
● Application of the methodology to other industrial algorithms 
● Proof of the assumptions for the real-life C code using deductive 

verification (e.g. in Frama-C)
● Experiences using other verification tools (model checking and 

symbolic execution)

More generally,
● Collecting the engineers’ needs and applying recent software 

verification advancements to industrial projects remains a priority for 
the formal methods group of Thales Research and Technology



  22

Back-Up Slides
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State Update & Message Computation 
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Fault Models
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