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I Tool context: ACSL, Frama-C and its deductive verification plugin WP

Frama-C is a platform for analysis and verification of C programs
a d

» ACSL (ANSI C Specification Language) supported by Frama-C

T

any way, in whole or ir
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Software Analyzers
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WP plugin: Weakest Precondition based tool for deductive verification

ent of Thales

> Proof of semantic properties of the program
» Modular verification (function by function)

prior written cons

2 Input: a program and its specification in ACSL

arty without the

» WP generates verification conditions (VCs)

> Relies on Why3 and Automatic Theorem Provers to discharge VCs
- Alt-Ergo, Z3, CVC4, CVC5, ...
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I Example of a C program annotated in ACSL

/+@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;
ensures \result = 0 <==>

(\forall integer j; 0 <= j < n ==> t[j] == 0);

*/
int all_zeros(int t[], int n) {
int k;
/%@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; 0<=j<k ==> t[j]==0;

loop assigns k;
loop variant n—k;
*/
for(k = 0; k < n; k++)
if (t[k] = 0)
return O;
return 1;

¥

Can be proven

with Frama-C/WP __
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I Outline

. ] Motivation: Specification and verification of global (security) properties
| High-Level ACSL Requirements (HILARE), or Metaproperties, and MetAcsl tool
| Examples of Proof with MetAcsl and WP

| Application to certification of JavaCard Virtual Machine

ny way, i Wh\

- ©Tha \ 20 8 All rights r

ent of Thale

| Relational properties
> Specification and verification using self-composition
> Verification using a VCGen: formalization and proof in Coq

| Conclusion and perspectives
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I Motivation: Why security properties are hard to specify and verify in Frama-C?

| Integrity for some data area data: no satisfactory solutions:

assigns \nothing; or assigns <what can be modified>;

any way, in whole orin

©Thales 2018 All rights reserve:

> Specifies that data area data cannot be modified by the function
> Does not work if data can be modified only under some condition cond (access rights,...)

ent of Thales

assigns data;
ensures !\old(cond)==> \at(data,Pre)== \at(data, Post);

> Specifies that data area data is unchanged after the function if cond was false

prior written cons

> It does not forbid internal modifications inside the function (risk of attack)
» Whatif cond can be modified?

arty without the

» How to ensure that data cannot be modified even temporarily inside the function?

ent may not be reproduced, modified, adapted, published, translated, in

disclosed to a third p

] Confidentiality: no direct solution at all in Frama-C
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I Motivation: Global (High-Level) properties are hard to specify and to maintain

o
o

Specifying global properties with contracts: manual and tedious. No

explicit link between clauses.
/ is a weak
Invariant

/*Q@ ensures A;

Manual process

ST > ensures Z; */
T struct Pagex page_alloc();

-
~~~~~~~~
~~~~~~

/*Q@ ensures A;

ensures Z; */
void page_free(struct Page* p);

Assessing if contracts form a global property is difficult, especially after an
update.
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I Examples of High-Level Properties
> Anon-privileged user never reads a privileged (private) data page
> A privileged user never writes to a non-privileged (public) page

in any way, in whole orin
les 2018 All rights reserve:

> The privilege level of a page cannot be changed unless...
> The privilege level of a user cannot be changed unless...

> Afree page cannot be read or written, and must contain zeros
> Object data can be written only by the object owner
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> Object data can be read only by the object owner

Such properties can be expressed as

oe reproduced, mo
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> Constraints on reading / writing operations, calls to some functions,

> Strong or weak invariants
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I Solution: Metaproperties, or HILARE (High-Level ACSL Requirements)

We introduce meta-properties, which are a combination of:

@ A set of targets functions, on which the property must hold.

foo {foo, bar} \ALL \diff(\ALL,{foo, bar})
@ A context, which characterizes the situation in which the property
must hold.
\strong_invariant \writing \reading
@ An ACSL predicate, expressed over the set of global variables.
A <B *p == \separated(\written, p)
meta \prop,

\name (A < B everywhere in foo and bar),
\targets ({foo, bar}),

\context (\strong_invariant),

A < B;

le_ THALES




I Available Contexts

@ Strong invariant: Everywhere in the function
@ Weak invariant: Before and after the function

@ Upon writing: Whenever the memory is modified. The predicate can
use a special meta-variable \written, referencing the address(es)
being written to at a particular point.

meta \prop, \name(X is only modified if null),
\targets(\ALL) , \context(\writing),
'\separated(\written, &X) = X == 0;

@ Upon reading: Similarly, when memory is read
@ Upon calling: Similarly, when a function is called

meta \prop, \name(foo can only be called from bar),
\targets(\diff (\ALL, bar)),
\context(\calling), \called # &foo;

> IHALES
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Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

© /*@ meta "A unchanged unless";
*/

O /*@ requires

O ensures

(C=0

(C =0

If all instances are proved,

the metaproperty is true MetAcs!

I Example: Integrity Metaproperty Verified with MetAcsl — Writing context

Initial C code:

O assigns A,
*/
void foo(vgs

== 0) {

A =13

A
&) /*@ check A unchanged unless: 2: meta: C < 0 - \separated(&B, &A);

B =10C:
}
, e Contrary to an assert,
a check is not kept in the
proof context and does

not overload the proof

- J

/*@ check |A_unchanged unless: 1: meta:/C < 0 - \separated(&A, J&A);

tests.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A unchanged unless),
4 ‘targets(\ALL), ‘context(\writing),
= C < ® ==> \separated(\written, &A);
6 */

7/*@

8 requires A==B;

9 assigns A,B;

18 ensures (>=0 && A==C && B==C ||

11 C<@ && A==\old(A) && B==\old(B); */
12 void foo(){

13 if ( C=>=0 ){

14 A

15 B
16 1}

C;
c;

MetAcsl instantiates a
metaproperty in all
relevant locations

HALES



Example: Confidentiality Metaproperty Verified with MetAcsl — Reading context

Thales 2018 All rights reserved.
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Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

(&)
(o)
(&)

&)

&)

(&)
(&)

J/*¥@ meta
*/
/*@ requires A
ensures
(C=0 a
(C =0 A
assigns A,
*/
void foo(void)
{
/*@ check A not read:
if (C == 0) {
/*@ check A not read:
A= C;
/*@ check A not read:
B =C;
}
return;

}

"A not read";

1]
m

==
1]

_1:

CaB=C) v
wvold(A) A B = \old(B));

_2:

_3:

MetAcs!

Initial C code:

|

meta: ‘\separated(&C, &A)J */

meta: ‘\separated(&C, &A); */
A 4
meta:| \separated(&C, &A); */

testd.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A not read),

4 \targets(\ALL), ‘\context(\reading),
e\ separated(\read, &A);

6 */

7 /%@

8 requires A==B;

9 assigns A,B;

10 ensures C>=0 && A==C && B==C ||
11 C<b && A==\old(A) && B==\old(B); */
12 void foo(){

13 if ( C == 0 ){

14 A=C;
15 B =C;
16 }

17 }

18
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Example: Strong Invariant

B

Initial C code:

test2.c

1lint A, B, C;

2 /*@

3 meta \prop, \name(A B eq strong),

4 \targets(\ALL), \context(\strong invariant),
5 A == B; // FAILS

6 */

7 /%@

8 requires A==B;

9 assigns A,B;

18 ensures C>=0 && A==C && B==C ||
11 C<0 && A==\old(A) && B==\old(B); */
12 void foo(){

13 if ( C=>=0 ){
14 A C
15 B C
16 }

17 }

18

i Does not hold as a
strong invariant

betw. lines 14,15

3

52 . . .
Resulting code after generating assertions
3 £ . .

with MetAcsl and proof with Frama-C/WP:
2E int A;

g % int B;

52 int c;

So @ /*@ meta "A B eq strong";

P */

58 O /*@ check requires A B eq strong: 1: meta:

%§ (8] requires A = B;

35 O check ensures A B eq_strong: _1: meta:

g‘é O ensures

5c (C=0AnA=SCAB=C)V

8% (C <@ A A=\old(A) A B =\old(B));

85 (&) assigns A, B;

8o */

£ void foo(void)

i {

33 if (C >= 0) {

8% A =C;

8o 0 /*@ check A B eq strong: 3: meta: A =

o= B = C;

g% O /*@ check A_B eq strong: 4: meta: A =

8 }

“g:j ©® /%@ check A B eq strong: 2: meta:|/A = B;

é‘g return;

2% ©® /*@ check A B eq strong: 5: meta:|/A = B;

= Q }
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Example: Weak Invariant

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:
2 int A;
8 int B;
£ int C;
? @ /+@ meta "A B eq weak";
*/
O /*@ check requires A B eq weak: 1: meta: A = B;
(8] requires A = B;
0 check ensures A B eq weak: 1: meta: A = B;
(&) ensures
(C=2=0ANA=CAB=C)V
(C<0 A A="\old(A) A B = \old(B));

0 assigns A, B;
*/
void foo(void)
{
if (C >=0) {
A= C;
B = C;
}
return;

}

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

B

Initial C code:

test3.c

lint A, B, C;

2 /*@

3  meta \prop, \name(A B eq weak),
4 \targets(\ALL), \context(\weak invariant),
5 A == B;

6 */

7/*@

8 requires A==B;

9 assigns A,B;

18  ensures C==0 && A==C && B==C ||

11 C<0 && A==\old(A) && B==\old(B);
12 void foo(){

13 if ( C==0 ){

Holds as a weak

14 A=C; 1 1

s soc invariant
16 }

17 }

18

s amalES



I Examples of HILAREs

meta \prop, \name(Do not write to lower pages outside free),
\targets(\diff(\ALL , {page free})),
\context( \writing ),

©Thales 2018 All rights reserved.

part or disclosed to a third party without the prior written consent of Thales - ¢

\forall integer i; ® <= 1 < MAX_PAGE_NB ==>

\let p = pages + 1i;

p->status == PAGE_ALLOCATED &&

user_level > p->confidentiality_ level ==>
\separated(\written, p->data + (0.. PAGE_SIZE - 1));

meta \prop, \name(Free pages are never read),
\targets(\ALL),
\context( \reading ),

\forall integer 1; ® <= 1 < MAX_PAGE_NB &%
pages[i].status == PAGE_FREE ==>
\separated(\read, pages[i].data + (0 .. PAGE_SIZE - 1));

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
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I Application to certification of JavaCard Virtual Machine

| Common Criteria Certification
| JavaCard Virtual Machine
| General approach

| Proof issues and statistics

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.
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Assurance Assurance Assurance Components by Evaluation

class Family Assurance Level
EAL1 | EAT) [ EAL3 [EAI4 [EAIS [ E
ADV_ARC 1 1 1
ADV FESP 1 2 3 4
ADV_IMP 1
ADV INT
| ADV SPM
ADV _TDS
Guidance AGD OPE
documents | AGD PRE
ALC_CMC
ALC CMS
ALC DEL
ALC DVS
ALC FIR
ALC LCD
ALC TAT
ASE CCL
ASE ECD
Security ASE INT
Target ASE OBJ
evaluation ASE REQ
ASE SPD
ASE TSS 1
ATE COV
ATE DPT
ATE FUN
ATE IND | 1 2

=3

-1

—_

EAL1 Functionally tested

It [ = (Lh

Development

EAL2 Structurally tested

EAL3 Methodically tested and checked

| bt |t [

1o 1o | [ |1

EAL4 Methodically designed, tested and
reviewed

MD—‘L—I’\U’IF—‘D—‘U‘IH’J\JMML—‘#
rrl
M—-mm.—-.—-a\—-wl\ae\.—-ﬁ

S A
Ll € SN N el el ]
I G S

Life-cycle
support

EALS Semiformally designed and tested

[uy

EALG Semiformally verified design and
tested

=t [ [ [

EAL7 Formally verified design and tested

I

[ e = Y I Y =

Source:
CCpart3v3.1 - Table 1
(https://www.commoncriteriaportal.org/cc/)
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Vulnerability
assessment

[V WO N O NS T R O O e R e e
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https://www.commoncriteriaportal.org/cc/

I Common Criteria: Certified products (consulted on March 7, 2024)

published, translated, in any way, in whole orin

This document may not be reproduced, modified, adapted,

©Thales 2018 All rights reserved

part or disclosed to a third party without the prior written consent of Thales

=

Certified Products by Assurance Level and Certification Date

B,

OMMON CRITERL

Basic 0 0 0 0 0 0 0 0 0 0 1 4 38 44 0 87
EAL1 0 0 0 0 0 0 0 0 0 3 4 3 0 1 13
EAL1+ 0 0 0 0 0 0 0 0 0 0 1 0 2 0 5
EAL2 0 0 0 0 0 0 0 1 0 17 15 39 12 12 1 97
EAL2+ 0 0 0 0 0 2 1 5 2 28 43 35 30 33 1 180
EAL3 0 0 0 0 0 2 0 0 0 9 =) 4 0 2 2 28
EAL3+ 0 0 0 0 0 3 1 0 1 4 12 18 29 13 1 82
EAL4 0 0 0 0 0 0 3 0 5 6 5 3 2 3 0 27
EAL4+ 1 0 0 0 1 3 7 5 6 44 60 66 73 90 8 364
EALS 0 0 0 0 0 0 1 0 0 0 2 0 4 2 0 9
EALS+ 0 0 0 0 2 2 4 17 12 41 69 44 39 77 14 321
EAL6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2
EAL6+ 0 0 0 0 0 1 0 0 0 20 20 30 33 37 2 143
EALY 0 0 0 0 0 0 0 0 0 0 1 0 1 0

EAL7+ 0 0 0 0 0 0 0 0 0 0 0

Medium 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None 0 0 0 0 0 0 0 0 0 38 44 77 75| 113 13 360
US Standard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

THALES



I Context: three fields of expertise

-~

Standard Security Assurance
Specification Requirements Verification
JavalCardVirualMachine Evaluation Assurance Level WP: Deductive verification

b

N a

ORACLE
Java Card

COMMON CRITERIA

JCVM / k EAL6-EAL7 / K

/

- C implementation of the Standard Specification of the JCVM

- Formal Security Properties meet Security Assurance Requirements
- Formal verification of global formal security properties using Frama-C/WP

THALES



I JCVM: Standard Specification (1/2)

ORACLE
Java Card

- Execute Java Card applications’ bytecode with basic operations
- Bytecodes are read iteratively inside the main dispatch loop

- 3 main memory areas: Java stack, data heap and code area

- 3 types of heap memory: persistent, transient reset/deselect

- A unique context assigned to each Java Card binary (CAP file)
- Object owner context is stored inside the object header

T
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I JCVM: Standard Specification (2/2)

K The Firewall guarantees isolation of heap data
between different contexts

- Java Card Runtime Environment (JCRE) context is
privileged context devoted to system operations

- Well-defined exceptions: global arrays, shareable

\\ interfaces, ...

~

a

4

system space

ORACLE’

Java Card

Java Card RE Context '

|
applet space
context 1 context 2
applet A applet C
applet B applet D
CAP File A CAPFile B
applet firewall
THALES



I EALG6-EAL7: Formal verification of Security Properties @

Security Aspect

.Firewall: “The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code

#
between packages (that is, controlled execution contexts) as well as between packages and the JCRE context...”
[Java Card System — Open Configuration Protection Profile — V3.1]

Security properties (simplified examples)

-integrity_header: allocated objects' headers cannot be modified during a VM run.
- integrity_data: allocated objects’ data can be modified only by the owner.
- confidentiality_data: allocated objects’ data can be read only by the owner.

©Thales 2018 All rights reserved.

Evaluation Assurance Levels

EAL1 EAL2 EAL3 EAL4 EALS _

\ )

Formal verification

 Formal verification of security properties |

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales
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I Frama-C/WP: Formal Deductive Verification

/*@
requires P; .
assigns 0 QACSL function contract

L;
ensures E;
*/
<type> function (<type> argl,<type> arg2, ..){

/*@

loop invariant I;

loop assigns L; 0 ACSL loop contract
loop variant m;

w7/

Basic level
(STEP1 : Write ACSL annotations

(Formal Specification)

v

(STEP2: Frama-C/WP computes proof goals )

(Based on Hoare logic) )

~N

(STEP3: Discharge proof goals with

Formal Specification Structure

(QED, Alt-Ergo via Whys, ...)

Advanced level features
| Ghost code

Predicates, Lemmas

:Proof scripts

THALES



This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
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Verification of security properties with MetAcsl|

THALES

uilding a future we can all trust

| Integrity_data and Confidentiality_data cannot be verified with WP as global invariants

| We use metaproperties: application context:
name targets all functlon(s) whenever a location is re:dd

— ~— T

meta \prop,\name (méta_persi_objects_confidenty, \targets ((\ALD) , \context ({zeading) ,

( \forall integer i; 0 <= i < gNumObjs && !'gIsTrans[i] &&
ObjHeader [gHeadStart[i] + 0] != JCC ==>
\separated (\read,PersiData+ (gDataStart[i]..gDataEnd[i])) ), */

[

The read location must be separated from the data of any persistent object if the current context is not its owner.

MetAcsl translates metaproperties into assertions/checks at each relevant program point.

If all assertions/checks are proved, the metaproperty is proved.

Thanks to the translation of metaproperties into checks that do not overload proof contexts, the metaproperty-
based approach scales very well, despite a great number of generated annotations.

THALES




I Specification effort

JCVM C code ACSL Annotations
User provided annotations MetAcsl RTE
# Functions #LocC # Loc Ghost # Loc ACSL # Loc ACSL # Loc ACSL
381 (7,014 (162) 35,480 2,290

Large code

A few yet necessary

12,432 before preprocessing macros that
gather redundant annotations

Still a considerable effort

Automatically generated from 36
metaproperties only

2| - User-provided annotations: predicates, lemmas, function contracts, loop contracts and other assertions
~ | - MetAcsl: automatically generated annotations according to user-defined metaproperties
- | -RTE: automatically generated annotations in order to prevent undefined behaviors

THALES




I Some Issues (l), Solutions (S) and Perspectives (P)

. | Companion ghost model

n

» |: Automatic proof fails on low-level code (bit-fields)

> S: Linking bits to ghost integer variables brings the prover back into its comfort zone

> P: Proof at the abstract level for some properties can help [as discussed at Dagstuhl]

] Proof scripts for complex predicates
> |: Automatic proof fails to use the right predicates

> S: Guide the first proof steps by unfolding relevant predicates or instantiating values

> S&P: New proof strategy mechanism to generate scripts automatically [TACAS™24]

] Carefully chosen lemmas

> |: Automatic proof fails repeatedly in similar cases

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

> S: Lemmas help to re-use the same reasoning

THALES
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I New proof strategy mechanism to generate scripts automatically [TACAS'24]
. ] Instead of creating the proof script interactively in Frama-C/WP
2 With much time spent for try-and-wait-and-debug attempts

any way, in who \ 'h

- ©Tha \ s 2018 All rights re

| The verification engineer creates a proof strategy
» Written directly in the source code as a special annotation

2 Including one or several alternatives (proof tactics) to try
- unfolding, rewriting, enumerating, calling a solver,...
2 Indicating possible strategies to apply on the resulting proof goals (children)

nsent of Thales

» Possibly attached to specific proof goals

arty without the prior written co

> Typically, applied to help automatic SMT solvers to prove the goal

| The tool automatically tries to apply provided strategies and records a proof script when the
proof succeeds

This document may not be reproduced, modified, adapted, published, Troms\ ted, i

part or disclosed to a third p
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New proof strategy mechanism : examples

| Example 1: a lemma unproven in Frama-C/WP with Alt-Ergo

lemma vhm_preserved{Ll,L2}:

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

Thales 2018 All rights reserved.

-©

part or disclosed to a third party without the prior written consent of Thales

=5

valid_heap_model{L1} A
mem_model_footprint_intact{L1l,L2} A
‘at (gNumObjs ,L1) == \at(glumObjis ,L2)} A
object_headers_intact{L1i,L2}

= valid_heap_model{L2};

| A proof strategy that generates a script proving the lemma

1 strategy FastAltErgo: \prover("alt-ergo", 1); // run Alt-Ergo for 1s

2 strategy EagerAltErgo: \prover("alt-ergo" ,10); // run Alt-Ergo for 10s

3 strategy UnfoldVhmThenProver: /74 SBirategy with three steps:

4 FastAltErgo, A7 1) fast prover attiempt

5 \tactic("Wp.unfold", A7 2) if unproved, unfold

6 ‘pattern(F_valid_heap_model ({..3})), SY predicate walid_heap_model

7 ‘“children(UnfoldVhmThenProver) J, S7 and apply itself recursively
8 EagerAltErgo; S7 3) lomnger prover attempt

! proocf UnfoldVhmThenProver: vhm_preserved; S/ dssociate strategy to goal

THALES



I New proof strategy mechanism : examples

| Example 1: a lemma unproven in Frama-C/WP with Alt-Ergo

i lemma dn3:

2 %W unsigned char c d;
3 (c & 0x8E) == 2 A

4 (c & 0x01) == 1 A

5 (d & 0x8F) == 0

[

= ((c+d) & 0x03) == 0x03;

| A proof strategy that generates a script proving the lemma

141 ]

1 strategy RangeThenProver: \param("inf" ,0) ,\param("sup" ,255),

2 “tactic ("Wp.range", 6 ‘children(RangeThenProver) ),
3 \pattern(is_uint8(e)), T \prover("alt-ergo" ,2);
4 \select(e), & proof RangeThenProver: dn3;

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.
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I New proof strategy mechanism : initial experiments
. | Applied to the proof of the real-life JCVM code at Thales
> 8,000+ lines of C and 30,000+ lines of ACSL

» Complete proof for 85,000 goals using Alt-Ergo with a 250s timeout requires 800+ proof scripts.

any way, in who \ i

©Thales 2018 All rights r

| With the new extension: significant time savings
> after a manual creation of strategies (~2 days),

nsent of Thale

» WP automatically produces more than 50% of the required scripts, whose
> Their manual creation would take ~1 person-month.

ty wfh ut the prior written co

| An even greater number of proof scripts is expected to be generated from strategies

> This will strongly facilitate industrial verification

This document may not be reproduced, modified, adapted, published, T nslated, in

part or disclosed to a third par
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I Relational properties

| Specification and verification using self-composition

| Verification using a VCGen: formalization and proof in Coq

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved
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I Relational properties (RPs): how to relate program calls

Monotonicity ?

Vx1, X2, X1 < xp = f(x1) < f(x2)

How to specify
this property 7

/*@ requires 1000 > x;

@ ensures ?;
@ assigns \nothing; x/

int £ (int x) {

}

return x + 1;

How to prove
this property 7
|

How to use
this property 7
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I Specification of relational properties (RPs) in Frama-C

Extension of ACSL:
» New clause relational

» New built-in \callpure

Example with pure function:

/*@ requires 1000 > x;
@ relational \forall int x1,x2; x1 < x2 ==>
@ \callpure (£f,x1) < \callpure(f, x2);
@ assigns \nothing; x/
int £ (int x) {
return x + 1;

}

THALES



I Proposal 1: Proof of relations properties by self-composition [TACAS’17]

g}

» Inspired by Self-composition [Barthe et al (2011)]

ny way, in whole or in

- ©Thales 2018 All rights reserve

» Inline involved function calls
» Express the RP as a standard ACSL assertion

nt of Thales

void relational_ wrapper_1(int x1, int x2) {

arty without the prior written conse

This document may not be reproduced, modified, adapted, published, translated, in a

/*@ assert xl1 < x2 ==> return_1l < return_2; x/
3 return;
J Express the RP
in ACSL
e THALES



I Proposal 1: Use of relations properties as hypotheses

/*@ axiomatic RP_axiom ({
@ logic int £ acsl(int x);

@

[ Valid if the inserted
assertion holds

Assumed: bridge ]
}x/

betw. f and £ acsl

/*@ requires 1000 > x;
@ assigns \nothing;

int f(int x) {
return x + 1;

RP for £

—

Proved by using the ]

}

int g(int x) {
return f£(x) + 1;

}

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved
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I A large range of relational properties addressed

Relational Properties (RPs) :

2018 All rig eserve:

» |Invoking at least two function calls

O Th

» Invoking possibly dissimilar functions

» Invoking possible nested calls

tthe pr

G
9
o

yird party withou

f
isclosed to a tr
—_—

Q

—

Q

3

—

—=h

| |

Q .
|—l

4

:'5“‘"\

| e |

Q

3

—

his documer

T

THALES

B



I A large range of relational properties addressed: some examples

,in any way, in whole orin

g}

19)
>
o]
a
o

k)

<

©

o

N
@
0]

S

Vxl,x2 € Z:
x1 < x2 = f(x1) < f(x2)

V x;
f(x+1)=1f(x)=(x+1)

vx, fi(x) < flx) < B(x)
¥x, f(f(x)) = f(x)

v Msg, Key;
Decrypt(Encrypt(Msg, Key), Key) = Msg

¥ t,subyy, ..., Subep;
t = subgp U ... U subgy =
max(t) = max(max(subgy), ..., max(subs,))

¥x1,x2,y, f(x1 4+ x2,y) = f(x1,y) + f(x2,y)

Va, b, c, Med(a, b, c) = Med(a, c, b)
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I Relational Property Verification: Related Work

® Proof systems (Relational Hoare Logic [Benton, POPL 2004], Relational
Separation Logic [vang. TCS 2007] Cartesian Hoare Logic [Sousa and Dillig.
PLDI 2016], Equivalence proofs [Beckert, Ulbrich]... ):
e Separated memory state for each program.

e Require a dedicated decision system.
e No modular proofs or relational contracts.

® Code transformations (Self-Composition [Barthe et al. MSCS 2011],
Program Products [Barthe, LAMP. 2016], ...):

e Allow use of verification methods for Hoare Triples.
e Require renaming and joining the memory state of each tag.
e No modular proofs or relational contracts.

o THALES



I Proposal 2: Proof of relations properties via a VCGen [iIFM’22, ISOLA’22]

. ] Relational property verification based on a VCGen (verification condition generator)

ny way, i nwh\

| Enabling modular verification of relational properties

©Tha \ 20 8 All rights r

| Fully formalized and proved sound in the Coq proof assistant for a while language with
procedures and aliasing.

nt of Thales -
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I Relational property, formally

A Relational Property is a property about n programs ¢y, ..., ¢,: if each
program ¢; starts in o; and ends in o) = [¢;],0; such that (o1, ....0,)
satisfies P, then (o1, ..., o) satisfies Q.

d party withc

o
9
o

We use following notation for Relational Properties:

vz {P}(a){Q}.

entmay r

or disclosed to a thir
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I Example of relational property

We want to prove that both programs below are equivalent: ]
X1 = 1 x; = 0;
{ = x2(2 } (1) ~ x3:=0; { x3(1)= x3(2 }
Ca"(}/t\um) Ca"(_)/mun)

With procedure environment {ys . — body(Vsum)} where:

if X1 < Xp then {

X3 = X3 + X1,

body(Ysum) = X1 =x1 +1;
Ca"(ysum)
} else { skip }

o THALES




I Verification Condition Generator (VCGen): main principle

Construction of first-order formulas whose validity implies the validity of
the Hoare Triple.

® Naive generation: if statements make the size of the formulas grow
exponantially.

® Optimized generation: the formulas size is lineare in the size of the
initial program.

o THALES



I Verification Condition Generator (VCGen): main principle

® ‘7. generates the main verification condition: the postcondition holds
in the final state, assuming auxiliary annotations hold;

® ‘7, generates auxiliary verification conditions stemming from
assertions, loop invariants, and preconditions of called procedures;

® 7. generates verification conditions for the auxiliary procedures.

Theorem: VCGen is sound

If
Vo € X, P(o) = Tc[c](o, ¢, Q),

Vo € L, P(o) = T.[c](o, ¢),
then we have ¢ : {P}c{Q}.

Ly

-

y
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I Verification of relational properties with VCGen

What do we want

For each command in a relational property, we separately generate
the associated logical formulas.

Proposal

Using extensions of 7, 7, and T, we translate the relational veri-
fication problem directly into first-order formulas.

s THALES



I Relational Verification Condition Generator (VCGen)

Construction of first-order formulas whose validity implies the validity of
the Relational Property.

® 7., generates the main verification condition (using 7¢): the
relational postcondition holds in the final state, assuming auxiliary
annotations hold;

® 7., generates auxiliary verification conditions (using 7) stemming
from assertions, loop invariants, and preconditions of called

procedures;
® 7, translates relational contracts into first order formulas;

e [ lifts relational contract environment into a standard contract
environment;

® 7; generates verification conditions for the procedures: procedure
bodies respect their relationals contracts.

e THALES



I Relational Verification Condition Generator (VCGen) is sound

Theorem: Relational VCGen is sound

If

o~

W(0k)".(0k)" ¢, P((06)") A Torl60') =
Ter((@)" (90", (90", £(6:97) Ap-p = Q((04)".(o4)").

and
(o)™ ¥ P(0k)") A Tor(69) =
Tar((c)", (00)", £(3, 1)),
and ~
Te (B, ), %
then we have 1 : {ﬁ}(ck)”{@} |
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I Conclusion

>
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| Successful industrial application of deductive verification

World-first proof of real-life JavaCard VM code

EALY certificate issued by ANSSI, the French certification body
Careful combination of: ghost code, lemmas, proof scripts, ...
High level of automation (99% of goals proved automatically)
MetAcsl is crucial for specification of security properties

Proof integrated into the Continuous Integration process

Efficient tool support from Frama-C developers was essential

| Promising approach for relational property verification based on a VCGen

Modular verification of Relational Properties
Separated memory state for each program
Proven sound in the Coq proof assistant

Relies on optimized verification condition generation

THALES



I Ongoing and future work directions

| Custom and more flexible proof strategies to save manual script creation effort
» New extension of Frama-C/WP for proof strategies to be presented at TACAS 2024

» About 50% of necessary proof scripts are generated automatically!

| Reasoning about metaproperties and other annotations can be helpful
» Preliminary ideas proposed in Virgile Robles’ PhD thesis

» Externalizing verification of metaproperties at the callsite for two functions reduced proof time by 1 hour!!

. ] Scaling to large programs having parts with and without low-level operations, or where some of the
maintained properties are irrelevant

» Collaborative memory models

» More abstract levels of reasoning

| Developing industry-ready sound tools for verification of relational properties

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.
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