THALES

lepIications of Contracts for
Security Certifications

Nikolai KOSMATOV

Joint work with Loic CORRENSON, Lionel BLATTER,
Adel DJOUDI, Martin HANA, Pascale LE GALL,
Virgile PREVOSTO, Louis RILLING, Virgile ROBLES

Lorenz workshop “Contract Languages”
March 4-8, 2024

www.thalesgroup.com

I Tool context: ACSL, Frama-C and its deductive verification plugin WP

Frama-C is a platform for analysis and verification of C programs
a d

» ACSL (ANSI C Specification Language) supported by Frama-C

T

any way, in whole or ir
ales 2018 All rights reserve

Software Analyzers

©Th

WP plugin: Weakest Precondition based tool for deductive verification

ent of Thales

> Proof of semantic properties of the program
» Modular verification (function by function)

prior written cons

2 Input: a program and its specification in ACSL

arty without the

» WP generates verification conditions (VCs)

> Relies on Why3 and Automatic Theorem Provers to discharge VCs
- Alt-Ergo, Z3, CVC4, CVC5, ...

ent may not be reproduced, modified, adapted, published, translated, in

part or disclosed to a third p

This docum

THALES

IT

I Example of a C program annotated in ACSL

/+@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;
ensures \result = 0 <==>

(\forall integer j; 0 <= j < n ==> t[j] == 0);

*/
int all_zeros(int t[], int n) {
int k;
/%@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; 0<=j<k ==> t[j]==0;

loop assigns k;
loop variant n—k;
*/
for(k = 0; k < n; k++)
if (t[k] = 0)
return O;
return 1;

¥

Can be proven

with Frama-C/WP __

THALES

I Outline

.] Motivation: Specification and verification of global (security) properties
| High-Level ACSL Requirements (HILARE), or Metaproperties, and MetAcsl tool
| Examples of Proof with MetAcsl and WP

| Application to certification of JavaCard Virtual Machine

ny way, i Wh\

- ©Tha \ 20 8 All rights r

ent of Thale

| Relational properties
> Specification and verification using self-composition
> Verification using a VCGen: formalization and proof in Coq

| Conclusion and perspectives

This document may not be reproduced, modified, ada pT d p ublished, 1 nslated, i

part or disclosed to a third p rty without the prior writte

THALES

IT

I Motivation: Why security properties are hard to specify and verify in Frama-C?

| Integrity for some data area data: no satisfactory solutions:

assigns \nothing; or assigns <what can be modified>;

any way, in whole orin

©Thales 2018 All rights reserve:

> Specifies that data area data cannot be modified by the function
> Does not work if data can be modified only under some condition cond (access rights,...)

ent of Thales

assigns data;
ensures !\old(cond)==> \at(data,Pre)== \at(data, Post);

> Specifies that data area data is unchanged after the function if cond was false

prior written cons

> It does not forbid internal modifications inside the function (risk of attack)
» Whatif cond can be modified?

arty without the

» How to ensure that data cannot be modified even temporarily inside the function?

ent may not be reproduced, modified, adapted, published, translated, in

disclosed to a third p

] Confidentiality: no direct solution at all in Frama-C

d

1

Tr
P

s THALES

I Motivation: Global (High-Level) properties are hard to specify and to maintain

o
o

Specifying global properties with contracts: manual and tedious. No

explicit link between clauses.
/ is a weak
Invariant

/*Q@ ensures A;

Manual process

ST > ensures Z; */
T struct Pagex page_alloc();

-
~~~~~~~~
~~~~~~

/*Q@ ensures A;

ensures Z; */
void page_free(struct Page* p);

Assessing if contracts form a global property is difficult, especially after an
update.

THALES

I Examples of High-Level Properties
> Anon-privileged user never reads a privileged (private) data page
> A privileged user never writes to a non-privileged (public) page

in any way, in whole orin
les 2018 All rights reserve:

> The privilege level of a page cannot be changed unless...
> The privilege level of a user cannot be changed unless...

> Afree page cannot be read or written, and must contain zeros
> Object data can be written only by the object owner

g
s}
o
©
3
S
o}

2
a
ko]
o}
°
o}
°
¢}
0
S

> Object data can be read only by the object owner

Such properties can be expressed as

oe reproduced, mo
arty without the

ird pc

> Constraints on reading / writing operations, calls to some functions,

> Strong or weak invariants

nt may not k

part or disclosed to a th

This docume

THALES

IT

I Solution: Metaproperties, or HILARE (High-Level ACSL Requirements)

We introduce meta-properties, which are a combination of:

@ A set of targets functions, on which the property must hold.

foo {foo, bar} \ALL \diff(\ALL,{foo, bar})
@ A context, which characterizes the situation in which the property
must hold.
\strong_invariant \writing \reading
@ An ACSL predicate, expressed over the set of global variables.
A <B *p == \separated(\written, p)
meta \prop,

\name (A < B everywhere in foo and bar),
\targets ({foo, bar}),

\context (\strong_invariant),

A < B;

le_ THALES

I Available Contexts

@ Strong invariant: Everywhere in the function
@ Weak invariant: Before and after the function

@ Upon writing: Whenever the memory is modified. The predicate can
use a special meta-variable \written, referencing the address(es)
being written to at a particular point.

meta \prop, \name(X is only modified if null),
\targets(\ALL) , \context(\writing),
'\separated(\written, &X) = X == 0;

@ Upon reading: Similarly, when memory is read
@ Upon calling: Similarly, when a function is called

meta \prop, \name(foo can only be called from bar),
\targets(\diff (\ALL, bar)),
\context(\calling), \called # &foo;

> IHALES

©Thales 2018 All rights reserved.

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - ¢

B

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

© /*@ meta "A unchanged unless";
*/

O /*@ requires

O ensures

(C=0

(C =0

If all instances are proved,

the metaproperty is true MetAcs!

I Example: Integrity Metaproperty Verified with MetAcsl — Writing context

Initial C code:

O assigns A,
*/
void foo(vgs

== 0) {

A =13

A
&) /*@ check A unchanged unless: 2: meta: C < 0 - \separated(&B, &A);

B =10C:
}
, e Contrary to an assert,
a check is not kept in the
proof context and does

not overload the proof

- J

/*@ check |A_unchanged unless: 1: meta:/C < 0 - \separated(&A, J&A);

tests.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A unchanged unless),
4 ‘targets(\ALL), ‘context(\writing),
= C < ® ==> \separated(\written, &A);
6 */

7/*@

8 requires A==B;

9 assigns A,B;

18 ensures (>=0 && A==C && B==C ||

11 C<@ && A==\old(A) && B==\old(B); */
12 void foo(){

13 if (C=>=0){

14 A

15 B
16 1}

C;
c;

MetAcsl instantiates a
metaproperty in all
relevant locations

HALES

Example: Confidentiality Metaproperty Verified with MetAcsl — Reading context

Thales 2018 All rights reserved.

P

o)

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

=

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

(&)
(o)
(&)

&)

&)

(&)
(&)

J/*¥@ meta
*/
/*@ requires A
ensures
(C=0 a
(C =0 A
assigns A,
*/
void foo(void)
{
/*@ check A not read:
if (C == 0) {
/*@ check A not read:
A= C;
/*@ check A not read:
B =C;
}
return;

}

"A not read";

1]
m

==
1]

_1:

CaB=C) v
wvold(A) A B = \old(B));

_2:

_3:

MetAcs!

Initial C code:

|

meta: ‘\separated(&C, &A)J */

meta: ‘\separated(&C, &A); */
A 4
meta:| \separated(&C, &A); */

testd.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A not read),

4 \targets(\ALL), ‘\context(\reading),
e\ separated(\read, &A);

6 */

7 /%@

8 requires A==B;

9 assigns A,B;

10 ensures C>=0 && A==C && B==C ||
11 C<b && A==\old(A) && B==\old(B); */
12 void foo(){

13 if (C == 0){

14 A=C;
15 B =C;
16 }

17 }

18

THALES

Example: Strong Invariant

B

Initial C code:

test2.c

1lint A, B, C;

2 /*@

3 meta \prop, \name(A B eq strong),

4 \targets(\ALL), \context(\strong invariant),
5 A == B; // FAILS

6 */

7 /%@

8 requires A==B;

9 assigns A,B;

18 ensures C>=0 && A==C && B==C ||
11 C<0 && A==\old(A) && B==\old(B); */
12 void foo(){

13 if (C=>=0){
14 A C
15 B C
16 }

17 }

18

i Does not hold as a
strong invariant

betw. lines 14,15

3

52 . . .
Resulting code after generating assertions
3 £ . .

with MetAcsl and proof with Frama-C/WP:
2E int A;

g % int B;

52 int c;

So @ /*@ meta "A B eq strong";

P */

58 O /*@ check requires A B eq strong: 1: meta:

%§ (8] requires A = B;

35 O check ensures A B eq_strong: _1: meta:

g‘é O ensures

5c (C=0AnA=SCAB=C)V

8% (C <@ A A=\old(A) A B =\old(B));

85 (&) assigns A, B;

8o */

£ void foo(void)

i {

33 if (C >= 0) {

8% A =C;

8o 0 /*@ check A B eq strong: 3: meta: A =

o= B = C;

g% O /*@ check A_B eq strong: 4: meta: A =

8 }

“g:j ©® /%@ check A B eq strong: 2: meta:|/A = B;

é‘g return;

2% ©® /*@ check A B eq strong: 5: meta:|/A = B;

= Q }

THALES

Example: Weak Invariant

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:
2 int A;
8 int B;
£ int C;
? @ /+@ meta "A B eq weak";
*/
O /*@ check requires A B eq weak: 1: meta: A = B;
(8] requires A = B;
0 check ensures A B eq weak: 1: meta: A = B;
(&) ensures
(C=2=0ANA=CAB=C)V
(C<0 A A="\old(A) A B = \old(B));

0 assigns A, B;
*/
void foo(void)
{
if (C >=0) {
A= C;
B = C;
}
return;

}

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

B

Initial C code:

test3.c

lint A, B, C;

2 /*@

3 meta \prop, \name(A B eq weak),
4 \targets(\ALL), \context(\weak invariant),
5 A == B;

6 */

7/*@

8 requires A==B;

9 assigns A,B;

18 ensures C==0 && A==C && B==C ||

11 C<0 && A==\old(A) && B==\old(B);
12 void foo(){

13 if (C==0){

Holds as a weak

14 A=C; 1 1

s soc invariant
16 }

17 }

18

s amalES

I Examples of HILAREs

meta \prop, \name(Do not write to lower pages outside free),
\targets(\diff(\ALL , {page free})),
\context(\writing),

©Thales 2018 All rights reserved.

part or disclosed to a third party without the prior written consent of Thales - ¢

\forall integer i; ® <= 1 < MAX_PAGE_NB ==>

\let p = pages + 1i;

p->status == PAGE_ALLOCATED &&

user_level > p->confidentiality_ level ==>
\separated(\written, p->data + (0.. PAGE_SIZE - 1));

meta \prop, \name(Free pages are never read),
\targets(\ALL),
\context(\reading),

\forall integer 1; ® <= 1 < MAX_PAGE_NB &%
pages[i].status == PAGE_FREE ==>
\separated(\read, pages[i].data + (0 .. PAGE_SIZE - 1));

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

THALES

B

I Application to certification of JavaCard Virtual Machine

| Common Criteria Certification
| JavaCard Virtual Machine
| General approach

| Proof issues and statistics

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

THALES

B

Assurance Assurance Assurance Components by Evaluation

class Family Assurance Level
EAL1 | EAT) [EAL3 [EAI4 [EAIS [E
ADV_ARC 1 1 1
ADV FESP 1 2 3 4
ADV_IMP 1
ADV INT
| ADV SPM
ADV _TDS
Guidance AGD OPE
documents | AGD PRE
ALC_CMC
ALC CMS
ALC DEL
ALC DVS
ALC FIR
ALC LCD
ALC TAT
ASE CCL
ASE ECD
Security ASE INT
Target ASE OBJ
evaluation ASE REQ
ASE SPD
ASE TSS 1
ATE COV
ATE DPT
ATE FUN
ATE IND | 1 2

=3

-1

—_

EAL1 Functionally tested

It [= (Lh

Development

EAL2 Structurally tested

EAL3 Methodically tested and checked

| bt |t [

1o 1o | [|1

EAL4 Methodically designed, tested and
reviewed

MD—‘L—I’\U’IF—‘D—‘U‘IH’J\JMML—‘#
rrl
M—-mm.—-.—-a\—-wl\ae\.—-ﬁ

S A
Ll € SN N el el]
I G S

Life-cycle
support

EALS Semiformally designed and tested

[uy

EALG Semiformally verified design and
tested

=t [[[

EAL7 Formally verified design and tested

I

[e = Y I Y =

Source:
CCpart3v3.1 - Table 1
(https://www.commoncriteriaportal.org/cc/)

THALES

Tests

Vulnerability
assessment

[V WO N O NS T R O O e R e e
O AR) TR RO el el S OV e e e R
| to ke w || | = | ro | bo [| | = 2 |
LV LR R I oo UV e el R VR el e el VER

[uy
(&) Pl | = | =

AVA VAN | 1 2

https://www.commoncriteriaportal.org/cc/

I Common Criteria: Certified products (consulted on March 7, 2024)

published, translated, in any way, in whole orin

This document may not be reproduced, modified, adapted,

©Thales 2018 All rights reserved

part or disclosed to a third party without the prior written consent of Thales

=

Certified Products by Assurance Level and Certification Date

B,

OMMON CRITERL

Basic 0 0 0 0 0 0 0 0 0 0 1 4 38 44 0 87
EAL1 0 0 0 0 0 0 0 0 0 3 4 3 0 1 13
EAL1+ 0 0 0 0 0 0 0 0 0 0 1 0 2 0 5
EAL2 0 0 0 0 0 0 0 1 0 17 15 39 12 12 1 97
EAL2+ 0 0 0 0 0 2 1 5 2 28 43 35 30 33 1 180
EAL3 0 0 0 0 0 2 0 0 0 9 =) 4 0 2 2 28
EAL3+ 0 0 0 0 0 3 1 0 1 4 12 18 29 13 1 82
EAL4 0 0 0 0 0 0 3 0 5 6 5 3 2 3 0 27
EAL4+ 1 0 0 0 1 3 7 5 6 44 60 66 73 90 8 364
EALS 0 0 0 0 0 0 1 0 0 0 2 0 4 2 0 9
EALS+ 0 0 0 0 2 2 4 17 12 41 69 44 39 77 14 321
EAL6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2
EAL6+ 0 0 0 0 0 1 0 0 0 20 20 30 33 37 2 143
EALY 0 0 0 0 0 0 0 0 0 0 1 0 1 0

EAL7+ 0 0 0 0 0 0 0 0 0 0 0

Medium 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None 0 0 0 0 0 0 0 0 0 38 44 77 75| 113 13 360
US Standard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

THALES

I Context: three fields of expertise

-~

Standard Security Assurance
Specification Requirements Verification
JavalCardVirualMachine Evaluation Assurance Level WP: Deductive verification

b

N a

ORACLE
Java Card

COMMON CRITERIA

JCVM / k EAL6-EAL7 / K

/

- C implementation of the Standard Specification of the JCVM

- Formal Security Properties meet Security Assurance Requirements
- Formal verification of global formal security properties using Frama-C/WP

THALES

I JCVM: Standard Specification (1/2)

ORACLE
Java Card

- Execute Java Card applications’ bytecode with basic operations
- Bytecodes are read iteratively inside the main dispatch loop

- 3 main memory areas: Java stack, data heap and code area

- 3 types of heap memory: persistent, transient reset/deselect

- A unique context assigned to each Java Card binary (CAP file)
- Object owner context is stored inside the object header

T

THALES

B

,

ed, adapted, published, translated, in any way, in whole or

e prior written consent of Thales

This document may not be reproduce

part or disclosed to a th

©Thales 2018 All rights reserved

ird party withou

B

I JCVM: Standard Specification (2/2)

K The Firewall guarantees isolation of heap data
between different contexts

- Java Card Runtime Environment (JCRE) context is
privileged context devoted to system operations

- Well-defined exceptions: global arrays, shareable

\\ interfaces, ...

~

a

4

system space

ORACLE’

Java Card

Java Card RE Context '

|
applet space
context 1 context 2
applet A applet C
applet B applet D
CAP File A CAPFile B
applet firewall
THALES

I EALG6-EAL7: Formal verification of Security Properties @

Security Aspect

.Firewall: “The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code

#
between packages (that is, controlled execution contexts) as well as between packages and the JCRE context...”
[Java Card System — Open Configuration Protection Profile — V3.1]

Security properties (simplified examples)

-integrity_header: allocated objects' headers cannot be modified during a VM run.
- integrity_data: allocated objects’ data can be modified only by the owner.
- confidentiality_data: allocated objects’ data can be read only by the owner.

©Thales 2018 All rights reserved.

Evaluation Assurance Levels

EAL1 EAL2 EAL3 EAL4 EALS _

\)

Formal verification

 Formal verification of security properties |

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

THALES

=

I Frama-C/WP: Formal Deductive Verification

/*@
requires P; .
assigns 0 QACSL function contract

L;
ensures E;
*/
<type> function (<type> argl,<type> arg2, ..){

/*@

loop invariant I;

loop assigns L; 0 ACSL loop contract
loop variant m;

w7/

Basic level
(STEP1 : Write ACSL annotations

(Formal Specification)

v

(STEP2: Frama-C/WP computes proof goals)

(Based on Hoare logic))

~N

(STEP3: Discharge proof goals with

Formal Specification Structure

(QED, Alt-Ergo via Whys, ...)

Advanced level features
| Ghost code

Predicates, Lemmas

:Proof scripts

THALES

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

©Thales 2018 All rights reserved.

B

Verification of security properties with MetAcsl|

THALES

uilding a future we can all trust

| Integrity_data and Confidentiality_data cannot be verified with WP as global invariants

| We use metaproperties: application context:
name targets all functlon(s) whenever a location is re:dd

— ~— T

meta \prop,\name (méta_persi_objects_confidenty, \targets ((\ALD) , \context ({zeading) ,

(\forall integer i; 0 <= i < gNumObjs && !'gIsTrans[i] &&
ObjHeader [gHeadStart[i] + 0] != JCC ==>
\separated (\read,PersiData+ (gDataStart[i]..gDataEnd[i]))), */

[

The read location must be separated from the data of any persistent object if the current context is not its owner.

MetAcsl translates metaproperties into assertions/checks at each relevant program point.

If all assertions/checks are proved, the metaproperty is proved.

Thanks to the translation of metaproperties into checks that do not overload proof contexts, the metaproperty-
based approach scales very well, despite a great number of generated annotations.

THALES

I Specification effort

JCVM C code ACSL Annotations
User provided annotations MetAcsl RTE
Functions #LocC # Loc Ghost # Loc ACSL # Loc ACSL # Loc ACSL
381 (7,014 (162) 35,480 2,290

Large code

A few yet necessary

12,432 before preprocessing macros that
gather redundant annotations

Still a considerable effort

Automatically generated from 36
metaproperties only

2| - User-provided annotations: predicates, lemmas, function contracts, loop contracts and other assertions
~ | - MetAcsl: automatically generated annotations according to user-defined metaproperties
- | -RTE: automatically generated annotations in order to prevent undefined behaviors

THALES

I Some Issues (l), Solutions (S) and Perspectives (P)

. | Companion ghost model

n

» |: Automatic proof fails on low-level code (bit-fields)

> S: Linking bits to ghost integer variables brings the prover back into its comfort zone

> P: Proof at the abstract level for some properties can help [as discussed at Dagstuhl]

] Proof scripts for complex predicates
> |: Automatic proof fails to use the right predicates

> S: Guide the first proof steps by unfolding relevant predicates or instantiating values

> S&P: New proof strategy mechanism to generate scripts automatically [TACAS™24]

] Carefully chosen lemmas

> |: Automatic proof fails repeatedly in similar cases

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

> S: Lemmas help to re-use the same reasoning

THALES

B

I New proof strategy mechanism to generate scripts automatically [TACAS'24]
.] Instead of creating the proof script interactively in Frama-C/WP
2 With much time spent for try-and-wait-and-debug attempts

any way, in who \ 'h

- ©Tha \ s 2018 All rights re

| The verification engineer creates a proof strategy
» Written directly in the source code as a special annotation

2 Including one or several alternatives (proof tactics) to try
- unfolding, rewriting, enumerating, calling a solver,...
2 Indicating possible strategies to apply on the resulting proof goals (children)

nsent of Thales

» Possibly attached to specific proof goals

arty without the prior written co

> Typically, applied to help automatic SMT solvers to prove the goal

| The tool automatically tries to apply provided strategies and records a proof script when the
proof succeeds

This document may not be reproduced, modified, adapted, published, Troms\ ted, i

part or disclosed to a third p

THALES

B

New proof strategy mechanism : examples

| Example 1: a lemma unproven in Frama-C/WP with Alt-Ergo

lemma vhm_preserved{Ll,L2}:

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

Thales 2018 All rights reserved.

-©

part or disclosed to a third party without the prior written consent of Thales

=5

valid_heap_model{L1} A
mem_model_footprint_intact{L1l,L2} A
‘at (gNumObjs ,L1) == \at(glumObjis ,L2)} A
object_headers_intact{L1i,L2}

= valid_heap_model{L2};

| A proof strategy that generates a script proving the lemma

1 strategy FastAltErgo: \prover("alt-ergo", 1); // run Alt-Ergo for 1s

2 strategy EagerAltErgo: \prover("alt-ergo" ,10); // run Alt-Ergo for 10s

3 strategy UnfoldVhmThenProver: /74 SBirategy with three steps:

4 FastAltErgo, A7 1) fast prover attiempt

5 \tactic("Wp.unfold", A7 2) if unproved, unfold

6 ‘pattern(F_valid_heap_model ({..3})), SY predicate walid_heap_model

7 ‘“children(UnfoldVhmThenProver) J, S7 and apply itself recursively
8 EagerAltErgo; S7 3) lomnger prover attempt

! proocf UnfoldVhmThenProver: vhm_preserved; S/ dssociate strategy to goal

THALES

I New proof strategy mechanism : examples

| Example 1: a lemma unproven in Frama-C/WP with Alt-Ergo

i lemma dn3:

2 %W unsigned char c d;
3 (c & 0x8E) == 2 A

4 (c & 0x01) == 1 A

5 (d & 0x8F) == 0

[

= ((c+d) & 0x03) == 0x03;

| A proof strategy that generates a script proving the lemma

141]

1 strategy RangeThenProver: \param("inf" ,0) ,\param("sup" ,255),

2 “tactic ("Wp.range", 6 ‘children(RangeThenProver)),
3 \pattern(is_uint8(e)), T \prover("alt-ergo" ,2);
4 \select(e), & proof RangeThenProver: dn3;

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

THALES

B

I New proof strategy mechanism : initial experiments
. | Applied to the proof of the real-life JCVM code at Thales
> 8,000+ lines of C and 30,000+ lines of ACSL

» Complete proof for 85,000 goals using Alt-Ergo with a 250s timeout requires 800+ proof scripts.

any way, in who \ i

©Thales 2018 All rights r

| With the new extension: significant time savings
> after a manual creation of strategies (~2 days),

nsent of Thale

» WP automatically produces more than 50% of the required scripts, whose
> Their manual creation would take ~1 person-month.

ty wfh ut the prior written co

| An even greater number of proof scripts is expected to be generated from strategies

> This will strongly facilitate industrial verification

This document may not be reproduced, modified, adapted, published, T nslated, in

part or disclosed to a third par

THALES

B3

I Relational properties

| Specification and verification using self-composition

| Verification using a VCGen: formalization and proof in Coq

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

THALES

B

I Relational properties (RPs): how to relate program calls

Monotonicity ?

Vx1, X2, X1 < xp = f(x1) < f(x2)

How to specify
this property 7

/*@ requires 1000 > x;

@ ensures ?;
@ assigns \nothing; x/

int £ (int x) {

}

return x + 1;

How to prove
this property 7
|

How to use
this property 7

THALES

I Specification of relational properties (RPs) in Frama-C

Extension of ACSL:
» New clause relational

» New built-in \callpure

Example with pure function:

/*@ requires 1000 > x;
@ relational \forall int x1,x2; x1 < x2 ==>
@ \callpure (£f,x1) < \callpure(f, x2);
@ assigns \nothing; x/
int £ (int x) {
return x + 1;

}

THALES

I Proposal 1: Proof of relations properties by self-composition [TACAS’17]

g}

» Inspired by Self-composition [Barthe et al (2011)]

ny way, in whole or in

- ©Thales 2018 All rights reserve

» Inline involved function calls
» Express the RP as a standard ACSL assertion

nt of Thales

void relational_ wrapper_1(int x1, int x2) {

arty without the prior written conse

This document may not be reproduced, modified, adapted, published, translated, in a

/*@ assert xl1 < x2 ==> return_1l < return_2; x/
3 return;
J Express the RP
in ACSL
e THALES

I Proposal 1: Use of relations properties as hypotheses

/*@ axiomatic RP_axiom ({
@ logic int £ acsl(int x);

@

[Valid if the inserted
assertion holds

Assumed: bridge]
}x/

betw. f and £ acsl

/*@ requires 1000 > x;
@ assigns \nothing;

int f(int x) {
return x + 1;

RP for £

—

Proved by using the]

}

int g(int x) {
return f£(x) + 1;

}

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

THALES

B

I A large range of relational properties addressed

Relational Properties (RPs) :

2018 All rig eserve:

» |Invoking at least two function calls

O Th

» Invoking possibly dissimilar functions

» Invoking possible nested calls

tthe pr

G
9
o

yird party withou

f
isclosed to a tr
—_—

Q

—

Q

3

—

—=h

| |

Q .
|—l

4

:'5“‘"\

| e |

Q

3

—

his documer

T

THALES

B

I A large range of relational properties addressed: some examples

,in any way, in whole orin

g}

19)
>
o]
a
o

k)

<

©

o

N
@
0]

S

Vxl,x2 € Z:
x1 < x2 = f(x1) < f(x2)

V x;
f(x+1)=1f(x)=(x+1)

vx, fi(x) < flx) < B(x)
¥x, f(f(x)) = f(x)

v Msg, Key;
Decrypt(Encrypt(Msg, Key), Key) = Msg

¥ t,subyy, ..., Subep;
t = subgp U ... U subgy =
max(t) = max(max(subgy), ..., max(subs,))

¥x1,x2,y, f(x1 4+ x2,y) = f(x1,y) + f(x2,y)

Va, b, c, Med(a, b, c) = Med(a, c, b)

THALES

I Relational Property Verification: Related Work

® Proof systems (Relational Hoare Logic [Benton, POPL 2004], Relational
Separation Logic [vang. TCS 2007] Cartesian Hoare Logic [Sousa and Dillig.
PLDI 2016], Equivalence proofs [Beckert, Ulbrich]...):
e Separated memory state for each program.

e Require a dedicated decision system.
e No modular proofs or relational contracts.

® Code transformations (Self-Composition [Barthe et al. MSCS 2011],
Program Products [Barthe, LAMP. 2016], ...):

e Allow use of verification methods for Hoare Triples.
e Require renaming and joining the memory state of each tag.
e No modular proofs or relational contracts.

o THALES

I Proposal 2: Proof of relations properties via a VCGen [iIFM’22, ISOLA’22]

.] Relational property verification based on a VCGen (verification condition generator)

ny way, i nwh\

| Enabling modular verification of relational properties

©Tha \ 20 8 All rights r

| Fully formalized and proved sound in the Coq proof assistant for a while language with
procedures and aliasing.

nt of Thales -

This document may not be reproduced, modified, adapted, published, franslated, i

part or disclosed to a third party without the prior written conse

THALES

B

I Relational property, formally

A Relational Property is a property about n programs ¢y, ..., ¢,: if each
program ¢; starts in o; and ends in o) = [¢;],0; such that (o1,0,)
satisfies P, then (o1, ..., o) satisfies Q.

d party withc

o
9
o

We use following notation for Relational Properties:

vz {P}(a){Q}.

entmay r

or disclosed to a thir

his docum

T

THALES

a8

I Example of relational property

We want to prove that both programs below are equivalent:]
X1 = 1 x; = 0;
{ = x2(2 } (1) ~ x3:=0; { x3(1)= x3(2 }
Ca"(}/t\um) Ca"(_)/mun)

With procedure environment {ys . — body(Vsum)} where:

if X1 < Xp then {

X3 = X3 + X1,

body(Ysum) = X1 =x1 +1;
Ca"(ysum)
} else { skip }

o THALES

I Verification Condition Generator (VCGen): main principle

Construction of first-order formulas whose validity implies the validity of
the Hoare Triple.

® Naive generation: if statements make the size of the formulas grow
exponantially.

® Optimized generation: the formulas size is lineare in the size of the
initial program.

o THALES

I Verification Condition Generator (VCGen): main principle

® ‘7. generates the main verification condition: the postcondition holds
in the final state, assuming auxiliary annotations hold;

® ‘7, generates auxiliary verification conditions stemming from
assertions, loop invariants, and preconditions of called procedures;

® 7. generates verification conditions for the auxiliary procedures.

Theorem: VCGen is sound

If
Vo € X, P(o) = Tc[c](o, ¢, Q),

Vo € L, P(o) = T.[c](o, ¢),
then we have ¢ : {P}c{Q}.

Ly

-

y

2 THALES

I Verification of relational properties with VCGen

What do we want

For each command in a relational property, we separately generate
the associated logical formulas.

Proposal

Using extensions of 7, 7, and T, we translate the relational veri-
fication problem directly into first-order formulas.

s THALES

I Relational Verification Condition Generator (VCGen)

Construction of first-order formulas whose validity implies the validity of
the Relational Property.

® 7., generates the main verification condition (using 7¢): the
relational postcondition holds in the final state, assuming auxiliary
annotations hold;

® 7., generates auxiliary verification conditions (using 7) stemming
from assertions, loop invariants, and preconditions of called

procedures;
® 7, translates relational contracts into first order formulas;

e [lifts relational contract environment into a standard contract
environment;

® 7; generates verification conditions for the procedures: procedure
bodies respect their relationals contracts.

e THALES

I Relational Verification Condition Generator (VCGen) is sound

Theorem: Relational VCGen is sound

If

o~

W(0k)".(0k)" ¢, P((06)") A Torl60') =
Ter((@)" (90", (90", £(6:97) Ap-p = Q((04)".(o4)").

and
(o)™ ¥ P(0k)") A Tor(69) =
Tar((c)", (00)", £(3, 1)),
and ~
Te (B,), %
then we have 1 : {ﬁ}(ck)”{@} |

s THALES

I Conclusion

>

©Thales 2018 All rights reserved.

’
’
’
)
)
)

)
b
)
)

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

B

| Successful industrial application of deductive verification

World-first proof of real-life JavaCard VM code

EALY certificate issued by ANSSI, the French certification body
Careful combination of: ghost code, lemmas, proof scripts, ...
High level of automation (99% of goals proved automatically)
MetAcsl is crucial for specification of security properties

Proof integrated into the Continuous Integration process

Efficient tool support from Frama-C developers was essential

| Promising approach for relational property verification based on a VCGen

Modular verification of Relational Properties
Separated memory state for each program
Proven sound in the Coq proof assistant

Relies on optimized verification condition generation

THALES

I Ongoing and future work directions

| Custom and more flexible proof strategies to save manual script creation effort
» New extension of Frama-C/WP for proof strategies to be presented at TACAS 2024

» About 50% of necessary proof scripts are generated automatically!

| Reasoning about metaproperties and other annotations can be helpful
» Preliminary ideas proposed in Virgile Robles’ PhD thesis

» Externalizing verification of metaproperties at the callsite for two functions reduced proof time by 1 hour!!

.] Scaling to large programs having parts with and without low-level operations, or where some of the
maintained properties are irrelevant

» Collaborative memory models

» More abstract levels of reasoning

| Developing industry-ready sound tools for verification of relational properties

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

-] Participating in collaborative projects to apply innovative verification techniques to Thales products

THALES

B8

References

> Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall and Virgile Prevosto.
“RPP: Automatic Proof of Relational Properties by Self-Composition.” TACAS 2017. Springer.

Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“MetAcsl: Specification and Verification of High-Level Properties.” TACAS 2019. Springer.

in any way, in whole orin
©Thales 2018 All rights reserved.

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Tame your annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties”. TAP 2019. Springer.

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Methodology for Specification and Verification of High-Level Properties with MetAcs|”. FormaliSE 2021. |[EEE.

> Adel Djoudi, Martin Hana and Nikolai Kosmatov.
“Formal verification of a JavaCard virtual machine with Frama-C”. FM 2021. Springer.

> Adel Djoudi, Martin Hana, Nikolai Kosmatov, Milan Kfizenecky, Franck Ohayon, Patricia Mouy, Arnaud Fontaine and David Féliot.
“A Bottom-Up Formal Verification Approach for Common Criteria Certification:
Application to JavaCard Virtual Machine”. ERTS 2022, Best paper award.

> Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto and Pascale Le Gall.
“An Efficient VCGen-based Modular Verification of Relational Properties.” ISOLA 2022. Springer.

> Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto and Pascale Le Gall.
“Certified Verification of Relational Properties.” iFM 2022. Springer.

This document may not be reproduced, modified, adapted, publ
part or disclosed to a third party without the prior written consent o

> Loic Correnson, Allan Blanchard, Adel Djoudi and Nikolai Kosmatov.
“Automate where Automation Fails: Proof Strategies for Frama-C/WP.” TACAS 2024. Springer. To appear.

THALES

g

