THALES

list
_

-

Mieux automatiser la vérification déductive avec
des stratégies de preuve dans Frama-C/WP

Initially présented at TACAS 2024.
Automate where Automation Fails: Proof Strategies
for Frama-C/WP

Loic CORRENSON, Allan BLANCHARD (CEA List),
Nikolai KOSMATOV, Adel DJOUDI (Thales)

AFADL 2024, Strasbourg, le 5 juin 2024

www.thalesgroup.com

I Tool context: ACSL, Frama-C and its deductive verification plugin WP

Frama-C is a platform for analysis and verification of C programs
a d

» ACSL (ANSI C Specification Language) supported by Frama-C

T

any way, in whole or ir
ales 2018 All rights reserve

Software Analyzers

©Th

WP plugin: Weakest Precondition based tool for deductive verification

ent of Thales

> Proof of semantic properties of the program
» Modular verification (function by function)

prior written cons

2 Input: a program and its specification in ACSL

arty without the

» WP generates verification conditions (VCs)

> Relies on Why3 and Automatic Theorem Provers to discharge VCs
- Alt-Ergo, Z3, CVC4, CVC5, ...

ent may not be reproduced, modified, adapted, published, translated, in

part or disclosed to a third p

This docum

THALES

IT

I Example of a C program annotated in ACSL

/+@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;
ensures \result = 0 <==>

(\forall integer j; 0 <= j < n ==> t[j] == 0);

*/
int all_zeros(int t[], int n) {
int k;
/%@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; 0<=j<k ==> t[j]==0;

loop assigns k;
loop variant n—k;
*/
for(k = 0; k < n; k++)
if (t[k] = 0)
return O;
return 1;

¥

Can be proven

with Frama-C/WP __

THALES

I Specification and Verification of Global Properties (Metaproperties) with MetAcsl|

n

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

Initial C code:

© Thales 2018 All rights reserved

a check is not kept in the
proof context and does
not overload the proof

_

MetAcsl instantiates a
metaproperty in all

$

é © /*@ meta "A unchanged unless"; test5.c

3 */ : .

ge O /*@ requires if all inst g ;;2(; A, B, C;

ig ® en?ErSSB altinstances are prove ! 3 meta \prop, \name(A unchanged unless),
55 (€ <o the metaproperty is true MetAcs| 4 \targets(\ALL), \context(\writing),
25 - < C < @ ==> \separated(\written, &A):
o8 0O assigns A, N

o +/ o

E% "Eold foo(y 8 requires A==B;

£5 : == 0) { 9 assigns A,B;

o /*@|check |A_unchanged unless: _1: meta:|C < 0 - \separated(&A,[&A); i? enEzge;&c:i?\ﬁdt\f&g&;:glé||j|3:|- ./
o A =T . _ == —= ;

?E 0 /*@ check A unchanged unless: 2: meta: C < 0 - \separated(&B, &A); ig W;:: -{Fog{ii 8){

8% } e 14 A= C;

§§ return; o oo

g } Conftrary to an assert, (16}

J

IT

relevant locations

HALES

I Motivation: avoid interactive proof

. | Many successful applications of deductive verification in recent years

ny way, i nwh\

| Deductive verifiers manage to automatically prove the greatest number of proof goals, also
called proof obligations, or verification conditions (VCs)

- ©Thales 2018 All rights r

2 This is in particular due to powerful and constantly evolving SMT solvers they rely on.

nt of Thales

| The remaining unproven goals typically require some form of interactive proof:
> with a proof script indicating a few initial proof steps to make the goal more suitable for an automatic prover, or
> a fully interactive proof in a proof assistant like Coq.

| The need for an interactive proof remains an important obstacle to a wider application of
deductive verification on large projects

This document may not be reproduced, modified, odopfed p ublished, translated, in an

part or disclosed to a third party without the prior written co

THALES

IT

I Proposal: New proof strategy mechanism to generate scripts automatically
.] Instead of creating the proof script interactively in Frama-C/WP
2 With much time spent for try-and-wait-and-debug attempts

any way, in who \ 'h

- ©Tha \ s 2018 All rights re

| The verification engineer creates a proof strategy
» Written directly in the source code as a special annotation

2 Including one or several alternatives (proof tactics) to try
- unfolding, rewriting, enumerating, calling a solver,...
2 Indicating possible strategies to apply on the resulting proof goals (children)

nsent of Thales

> Possibly attached to specific proof goals

arty without the prior written co

> Typically, applied to help automatic SMT solvers to prove the goal

| The tool automatically tries to apply provided strategies and records a proof script when the
proof succeeds

This document may not be reproduced, modified, adapted, published, Troms\ ted, i

part or disclosed to a third p

THALES

IT

WP Plug-in Manual

For Frama-C 28.14+dev (Nickel)

Patrick Baudin, Francois Bobot, Loic Correnson, Zaynah Dargaye, Allan Blanchard

ey list
_

2.5 Proof Strategies

Introduced since Frama-C 28.0 (Nickel)

Proof obligations generated by WP are usually discharged by an SMT solver specified by the user
through command line option —wp-prover. As described in previous sections, complex proof obligations
may also be split into simpler sub-goals by applying Tactics from the TIP user interface.

Proof strategies provide user-defined heuristics to automatically try various combinations of provers,
timeouts and tactics, depending on the proof context. This is a much more effective technique than
relying on manually edited scripts through the TIP user interface. Here are some benefits of using proof
strategies:

— Proof strategies are automatic: there is no need for entering GUI session.

— Proof strategies can be associated to individual functions, lemmas or properties, or tried globally.

— Tactics are applied following patterns: depending on your case study, you can define fine-tuned
strategies to solve your common issues.

I Strategy — Alternatives

1ales 2018 All rights reser

©Tr

alternative ::=

\prover("p",...,"p", timeout)
\tactic("id", param, ..., param)
\auto("id",...,"id")
\default

strateqy

ed, adapted, publ

difie

tthe pr

1ot be reproduced, mo
d party withou

or disclosed to a thir

THALES

IT

New proof strategy mechanism : examples

| Example 1: a lemma unproven in Frama-C/WP with Alt-Ergo

lemma vhm_preserved{Ll,L2}:

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

Thales 2018 All rights reserved.

-©

part or disclosed to a third party without the prior written consent of Thales

FQT

valid_heap_model{L1} A
mem_model_footprint_intact{L1l,L2} A
‘at (gNumObjs ,L1) == \at(glumObjis ,L2)} A
object_headers_intact{L1i,L2}

= valid_heap_model{L2};

| A proof strategy that generates a script proving the lemma

1 strategy FastAltErgo: \prover("alt-ergo", 1); // run Alt-Ergo for 1s

2 strategy EagerAltErgo: \prover("alt-ergo" ,10); // run Alt-Ergo for 10s

3 strategy UnfoldVhmThenProver: /74 SBirategy with three steps:

4 FastAltErgo, A7 1) fast prover attiempt

5 \tactic("Wp.unfold", A7 2) if unproved, unfold

6 ‘pattern(F_valid_heap_model ({..3})), SY predicate walid_heap_model

7 ‘“children(UnfoldVhmThenProver) J, S7 and apply itself recursively
8 EagerAltErgo; S7 3) lomnger prover attempt

! proocf UnfoldVhmThenProver: vhm_preserved; S/ dssociate strategy to goal

THALES

I New proof strategy mechanism : examples

| Example 2: a lemma unproven in Frama-C/WP with Alt-Ergo

i lemma dn3:

2 %W unsigned char c d;
3 (c & 0x8E) == 2 A

4 (c & 0x01) == 1 A

5 (d & 0x8F) == 0

[

= ((c+d) & 0x03) == 0x03;

| A proof strategy that generates a script proving the lemma

141]

1 strategy RangeThenProver: \param("inf" ,0) ,\param("sup" ,255),

2 “tactic ("Wp.range", 6 ‘children(RangeThenProver)),
3 \pattern(is_uint8(e)), T \prover("alt-ergo" ,2);
4 \select(e), & proof RangeThenProver: dn3;

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved.

THALES

B

Demo: Script Tactics

WP — TIP
typed_lemma_dn3 Timeout (Alt-Ergo) (Cached)

Lemma 'dn3': F D y 5 Doy
{
land (142, c_0) 5 Cut
land (143, d_0)
is_uint8(c_0).
is_uint8(d_0). Induction
bit_test(c_0, 0).

Filter

Lemma

land(3, c_@ + d_@) = 3. Range (0-25..

\ 4

1

and upper.

o THALES

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

©Thales 2018 All rights reserved.

B

Demo: Generated script thanks to the provided strategy

[~/Frama-C/master]
$./bin/frama-c -wp -wp-prover tip ~/work/bits auto.c
[kernel] Parsing /Users/correnson/work/bits auto.c (with preprocessing
[wp] 1 goal scheduled
[wp] [Cache] not used
[wp] Proved goals: b7l

Qed: 0 (6ms)

Script: 1 (Tactics 9) (Qed 2314/2314 6ms)
[wp] Updated session

- 1 new valid script

[~/Frama-C/master]

s

THALES

I New proof strategy mechanism : initial experiments
. | Applied to the proof of the real-life JCVM code at Thales
> 8,000+ lines of C and 30,000+ lines of ACSL

» Complete proof for 85,000 goals using Alt-Ergo with a 250s timeout requires 800+ proof scripts.

any way, in who \ i

©Thales 2018 All rights r

| With the new extension: significant time savings
> after a manual creation of strategies (~2 days),

nsent of Thale

» WP automatically produces more than 50% of the required scripts, whose
> Their manual creation would take ~1 person-month.

ty wfh ut the prior written co

| An even greater number of proof scripts is expected to be generated from strategies

> This will strongly facilitate industrial verification

This document may not be reproduced, modified, adapted, published, T nslated, in

part or disclosed to a third par

THALES

B

I Conclusion

In

| A new mechanism to automate proof in Frama-C/WP

| Facilitates deductive verification on large projects, avoids time-consuming interactive proof scripts
| Makes the proof more robust w.r.t. changes in the code, spec, tools...

| Promising experimental results on an industrial project at Thales

Future Work

| Extend the strategy language for more complex strategies (e.g. with instantiation)

| Alarger evaluation on other projects

] Scaling to large programs having parts with and without low-level operations, or where some of the
maintained properties are irrelevant
» Collaborative memory models

» More abstract levels of reasoning

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

THALES

B

References

On proof strategies:

> Loic Correnson, Allan Blanchard, Adel Djoudi and Nikolai Kosmatov.
“‘Automate where Automation Fails: Proof Strategies for Frama-C/WP.” TACAS 2024. Springer.

On MetAcsl:

©Thales 2018 All rights reserved.

il
2
5
3
=
5
2
k)

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“MetAcsl: Specification and Verification of High-Level Properties.” TACAS 2019. Springer.

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Tame your annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties”. TAP 2019. Springer.

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Methodology for Specification and Verification of High-Level Properties with MetAcsI”. FormaliSE 2021. IEEE.

On JavaVard Virtual Machine verification for certification:

> Adel Djoudi, Martin Hana and Nikolai Kosmatov.
“‘Formal verification of a JavaCard virtual machine with Frama-C”. FM 2021. Springer.

> Adel Djoudi, Martin Hana, Nikolai Kosmatov, Milan Kfizenecky, Franck Ohayon, Patricia Mouy, Arnaud Fontaine and David Féliot.
“A Bottom-Up Formal Verification Approach for Common Criteria Certification:
Application to JavaCard Virtual Machine”. ERTS 2022, Best paper award.

This document may not be reproduced, modified, adapted, publ
part or disclosed to a third party without the prior written consent of T

THALES

B

THALES

Back-Up Slides

www.thalesgroup.com

Assurance Assurance Assurance Components by Evaluation

class Family Assurance Level
EAL1 | EAT) [EAL3 [EAI4 [EAIS [E
ADV_ARC 1 1 1
ADV FESP 1 2 3 4
ADV_IMP 1
ADV INT
| ADV SPM
ADV _TDS
Guidance AGD OPE
documents | AGD PRE
ALC_CMC
ALC CMS
ALC DEL
ALC DVS
ALC FIR
ALC LCD
ALC TAT
ASE CCL
ASE ECD
Security ASE INT
Target ASE OBJ
evaluation ASE REQ
ASE SPD
ASE TSS 1
ATE COV
ATE DPT
ATE FUN
ATE IND | 1 2

=3

-1

—_

EAL1 Functionally tested

It [= (Lh

Development

EAL2 Structurally tested

EAL3 Methodically tested and checked

| bt |t [

1o 1o | [|1

EAL4 Methodically designed, tested and
reviewed

MD—‘L—I’\U’IF—‘D—‘U‘IH’J\JMML—‘#
rrl
M—-mm.—-.—-a\—-wl\ae\.—-ﬁ

S A
Ll € SN N el el]
I G S

Life-cycle
support

EALS Semiformally designed and tested

[uy

EALG Semiformally verified design and
tested

=t [[[

EAL7 Formally verified design and tested

I

[e = Y I Y =

Source:
CCpart3v3.1 - Table 1
(https://www.commoncriteriaportal.org/cc/)

THALES

Tests

Vulnerability
assessment

[V WO N O NS T R O O e R e e
O AR) TR RO el el S OV e e e R
| to ke w || | = | ro | bo [| | = 2 |
LV LR R I oo UV e el R VR el e el VER

[uy
(&) Pl | = | =

AVA VAN | 1 2

https://www.commoncriteriaportal.org/cc/

I Common Criteria: Certified products (consulted on March 7, 2024)

published, translated, in any way, in whole orin

This document may not be reproduced, modified, adapted,

©Thales 2018 All rights reserved

part or disclosed to a third party without the prior written consent of Thales

B

Certified Products by Assurance Level and Certification Date

B,

OMMON CRITERL

Basic 0 0 0 0 0 0 0 0 0 0 1 4 38 44 0 87
EAL1 0 0 0 0 0 0 0 0 0 3 4 3 0 1 13
EAL1+ 0 0 0 0 0 0 0 0 0 0 1 0 2 0 5
EAL2 0 0 0 0 0 0 0 1 0 17 15 39 12 12 1 97
EAL2+ 0 0 0 0 0 2 1 5 2 28 43 35 30 33 1 180
EAL3 0 0 0 0 0 2 0 0 0 9 =) 4 0 2 2 28
EAL3+ 0 0 0 0 0 3 1 0 1 4 12 18 29 13 1 82
EAL4 0 0 0 0 0 0 3 0 5 6 5 3 2 3 0 27
EAL4+ 1 0 0 0 1 3 7 5 6 44 60 66 73 90 8 364
EALS 0 0 0 0 0 0 1 0 0 0 2 0 4 2 0 9
EALS+ 0 0 0 0 2 2 4 17 12 41 69 44 39 77 14 321
EAL6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2
EAL6+ 0 0 0 0 0 1 0 0 0 20 20 30 33 37 2 143
EALY 0 0 0 0 0 0 0 0 0 0 1 0 1 0

EAL7+ 0 0 0 0 0 0 0 0 0 0 0

Medium 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None 0 0 0 0 0 0 0 0 0 38 44 77 75| 113 13 360
US Standard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

THALES

,

ed, adapted, published, translated, in any way, in whole or

e prior written consent of Thales

This document may not be reproduce

part or disclosed to a th

©Thales 2018 All rights reserved

ird party withou

B

I JCVM: Standard Specification (2/2)

K The Firewall guarantees isolation of heap data
between different contexts

- Java Card Runtime Environment (JCRE) context is
privileged context devoted to system operations

- Well-defined exceptions: global arrays, shareable

\\ interfaces, ...

~

a

4

system space

ORACLE’

Java Card

Java Card RE Context '

|
applet space
context 1 context 2
applet A applet C
applet B applet D
CAP File A CAPFile B
applet firewall
THALES

I EALG6-EAL7: Formal verification of Security Properties @

Security Aspect

.Firewall: “The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code

#
between packages (that is, controlled execution contexts) as well as between packages and the JCRE context...”
[Java Card System — Open Configuration Protection Profile — V3.1]

Security properties (simplified examples)

-integrity_header: allocated objects' headers cannot be modified during a VM run.
- integrity_data: allocated objects’ data can be modified only by the owner.
- confidentiality_data: allocated objects’ data can be read only by the owner.

©Thales 2018 All rights reserved.

Evaluation Assurance Levels

EAL1 EAL2 EAL3 EAL4 EALS _

\)

Formal verification

 Formal verification of security properties |

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

THALES

B

I Specification effort

JCVM C code ACSL Annotations
User provided annotations MetAcsl RTE
Functions #LocC # Loc Ghost # Loc ACSL # Loc ACSL # Loc ACSL
381 (7,014 (162) 35,480 2,290

Large code

A few yet necessary

12,432 before preprocessing macros that
gather redundant annotations

Still a considerable effort

Automatically generated from 36
metaproperties only

2| - User-provided annotations: predicates, lemmas, function contracts, loop contracts and other assertions
~ | - MetAcsl: automatically generated annotations according to user-defined metaproperties
- | -RTE: automatically generated annotations in order to prevent undefined behaviors

THALES

I Some Issues (I), Solutions (S) and Perspectives (P)

. | Companion ghost model

n

» |: Automatic proof fails on low-level code (bit-fields)

> S: Linking bits to ghost integer variables brings the prover back into its comfort zone

> P: Proof at the abstract level for some properties can help [as discussed at Dagstuhl]

] Proof scripts for complex predicates
> |: Automatic proof fails to use the right predicates

> S: Guide the first proof steps by unfolding relevant predicates or instantiating values

> S&P: New proof strategy mechanism to generate scripts automatically [TACAS™24]

] Carefully chosen lemmas

> |: Automatic proof fails repeatedly in similar cases

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

> S: Lemmas help to re-use the same reasoning

THALES

B

