THALES

l?roof of Security Properties:

Application to JavaCard Virtual
Machine

Adel DJOUDI, Nikolai KOSMATOV
Joint work with Martin HANA

Frama-C Days 2024
Paris, June 13, 2024

www.thalesgroup.com

-,
o
c
=
=
o

| Specification and verification of security properties with MetAcsl
| Experience of Verification of JavaCard Virtual Mathine for Common Criteria Certification

| Ongoing and Future Work

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - © Thales 2018 All rights reserved

THALES

IT

©Thales 2018 All rights reserved.

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

Tool challenge: deductive verification of global security properties

| Expressivity challenge Code size

A

» Initial uncertainty about ability to specify high-level global
security properties (confidentiality & integrity) with ACSL

| Local properties

» ACSL annotations
» Frama-C/RTE ensures that code is free of undefined behaviors (Dedwwe Venﬂmo;

| Global properties

. . . . ”_____~~\ Scalability
» Frama-C/WP ensures weak global invariants for integrity ¢ Deduciive verfication '\ Expressivity
(maintained at function calls and returns, at loop invariants...) M=’ "
» FRAMA-C/MetAcsl ensures strong global invariants >
(maintained at every sequence point in the program) both for »OC‘;\-\@% o\ooci\\'\es
integrity and confidentiality o o

(FM 2021) Djoudi et al. Formal Verification of a JavaCard Virtual Machine with Frama-C

THALES

IT

I High-level (security) properties are hard to specify and verify in Frama-C
Examples of High-Level Properties

> A non-privileged user never reads a privileged (private) data page

any way, in whole orin
ales 2018 All rights reserve

> A privileged user never writes to a non-privileged (public) page

©Th

> The privilege level of a page cannot be changed unless...

ent of Thales

> The privilege level of a user cannot be changed unless...
> Afree page cannot be read or written, and must contain zeros

prior written cons

> Object data can be written only by the object owner

ced, modified, adapted, published, translated, in

> Object data can be read only by the object owner

arty without the

Such properties can be expressed as

> Constraints on reading / writing operations, calls to some functions,

ent may not be reprodu

» Strong or weak invariants

part or disclosed to a third p

This docum

THALES

IT

I Solution: Metaproperties, or HILARE (High-Level ACSL Requirements)

We introduce meta-properties, which are a combination of:

@ A set of targets functions, on which the property must hold.

foo {foo, bar} \ALL \diff(\ALL,{foo, bar})
@ A context, which characterizes the situation in which the property
must hold.
\strong_invariant \writing \reading
@ An ACSL predicate, expressed over the set of global variables.
A <B *p == \separated(\written, p)
meta \prop,

\name (A < B everywhere in foo and bar),
\targets ({foo, bar}),

\context (\strong_invariant),

A < B;

s THALES

I Security Properties as Metaproperties

| Writing context: for integrity

> The given predicate must hold whenever the memory is modified.

any way, in w& \

©Thales 2018 All right:

> The predicate uses a predefined variable \written that refers to the written memory location.
> Typically, we specify that some variable Var is not written by \separated (&Var, \written)

ent of Thales

| Reading context: for confidentiality

prior writte

2 The given predicate must hold whenever the memory is read.
> The predicate uses a predefined variable \read that refers to the read memory location.

arty without the

> Typically, we specify that some variable Var is notread by \separated (&Var, \read)

ent may not be reproduced, modified, ada pfed, published, translated, in

part or disclosed to a third p

This docum

THALES

IT

I Examples of Metaproperties

meta \prop, \name(Do not write to lower pages outside free),
\targets(\diff(\ALL , {page free})),
\context(\writing),

©Thales 2018 All rights reserved.

\forall integer i; ® <= 1 < MAX_PAGE_NB ==>

\let p = pages + 1i;

p->status == PAGE_ALLOCATED &&

user_level > p->confidentiality_ level ==>
\separated(\written, p->data + (0.. PAGE_SIZE - 1));

meta \prop, \name(Free pages are never read),
\targets(\ALL),
\context(\reading),

\forall integer 1; ® <= 1 < MAX_PAGE_NB &%
pages[i].status == PAGE_FREE ==>
\separated(\read, pages[i].data + (0 .. PAGE_SIZE - 1));

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

THALES

IT

©Thales 2018 All rights reserved.

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - ¢

rET

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

© /*@ meta "A unchanged unless";
*/

O /*@ requires

O ensures

(C=0

(C =0

If all instances are proved,

the metaproperty is true MetAcs!

I Example: Integrity Metaproperty Verified with MetAcsl — Writing context

Initial C code:

O assigns A,
*/
void foo(vgs

== 0) {

A =13

A
&) /*@ check A unchanged unless: 2: meta: C < 0 - \separated(&B, &A);

B =10C:
}
, e Contrary to an assert,
a check is not kept in the
proof context and does

not overload the proof

- J

/*@ check |A_unchanged unless: 1: meta:/C < 0 - \separated(&A, J&A);

tests.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A unchanged unless),
4 ‘targets(\ALL), ‘context(\writing),
= C < ® ==> \separated(\written, &A);
6 */

7/*@

8 requires A==B;

9 assigns A,B;

18 ensures (>=0 && A==C && B==C ||

11 C<@ && A==\old(A) && B==\old(B); */
12 void foo(){

13 if (C=>=0){

14 A

15 B
16 1}

C;
c;

MetAcsl instantiates a
metaproperty in all
relevant locations

HALES

I Common Criteria Certification for Integrated Circuits and Smart cards

n

£9
5 8
<) itari
3 T HA LE.HET “4Common Criteria
S=
o<
2 ©
>z
5 N
EAL7

. EALG

13 L‘_"E-*. EAL5
ange o

Q’{y U el

EAL1
Formal verification
required for EAL6/EAL7

>/ Qe (B

Meet High-security requirements of customers.
Chips in ID documents are tiny computers with embedded Operating System and applications.

We apply deductive verification with Frama-C/WP on a C implementation of a Java Card Virtual Machine.

This document may not be reproduced, modified, adapted, puk
part or disclosed to a third party without the prior written consent o

THALES

IT

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

Common Criteria : security policy and security mechanism

©Thales 2018 All rights reserved.

> Security problem

» Threats to Confidentiality and Integrity

> Security Objective

» Ensure isolation of data according to their owners
> Security Requirements

» Catalogue of security mechanisms related to the Firewall

B

Firewall Security Aspect

“The Firewall shall ensure controlled sharing of class instances, and isolation of their data and code between
packages (that is, controlled execution contexts) as well as between packages and the JCRE context...”

[Java Card System — Open Configuration Protection Profile — V3.1]

Software Security
development Assurance
Specification J [Security Policy J
A
verification refinement
traceability \ 4
Implementation] ------- { Security and Functional Mechanism]
THALES

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

reserved.

©Thales 2018 All rights

=

Novel Bottom-up approach accepted by ANSSI : intrinsic refinement

C

Specification

verification

Security Policy

i)

traceability

Ajqesoesy dn-wonog

Implementation

compliance

Security and Functional Mechanism

N

b

Code transformations
are however needed due
to proof tool limitations.

Formal interpretation
of CC requirements
with ACSL

Bottom-up approach
intrinsically encompasses
the refinement from the
security and functional
specifications

through the design to the
implementation.

(ERTS 2022) A Bottom-Up Formal Verification Approach for Common Criteria Certification: Application to JavaCard Virtual Machine

(jointly with ANSSI and CEA-Leti, best paper award)

THALES

Bastore : function contract example

103
104
105

©Thales 2018 All rights reserved.

/*@ admit requires bcv: valid ref or null;

requires vhm: valid heap model; 17 (}
ensures vhm: valid heap model;
ensures oh: object headers intact{Pre, Post}; */

//

Admitted hypothesis without proof

B

Properties propagated up to the main dispatch loop and maintained as global loop invariants.

£

g 106 void aastore (u4 ObjRef, ud4 DestOff, ul Ref) { // ul/u4: unsigned char/int

5% 1107 if(! firewall (ObjRef,DestOff)) // Check access and

gz 108 return; // exit if forbidden

2°1109 if(GET_FLAG (ObjHeader+ObjRef) & 0x08) // If transient bit set,

gg 110 TransData [GET OFF (ObjHeader+ObjRef) + DestOff] = Ref; // write to transient body

fcl111 else // Otherwise

§§ 112 PersiData[GET OFF (ObjHeader+ObjRef) + DestOff] = Ref; // write to persistent body

%g 113 updateJdPC () ;

§§ 114 } toy example
25 s aastore: write value Ref into a given array at a given offset)
22 |- valid_heap_model is maintained both as pre-condition and post-condition

ff - Line 105 ensures security property integrity _header

“2\- Firewall is called to check the access)

@ Further details in : Djoudi, A., Hana, M., Kosmatov, N., Formal Verification of a JavaCard Virtual Machine with Frama-C. FM 2021.

THALES

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

z

©Thales 2018 All rights reserved.

-

* Functional
properties
 Ghost code

properties

Achievements

Formal Model
Expressivity

» Global security

//////////

Formal Model
Representativity

Application on
source code
Limited code
fransformations
Full traceability

//////////

part or disclosed to a third party without the prior written consent of Thales

B

501
Verification
Efficiency

C: 8K loc

ACSL(user): 40k loc

Proof Oblig.: 80k

Proof Scripts: 1k
Proof time: 5h

O

Verification tool
auvtomation
Metaprop. : 50
MetAcsl: 700k loc
RTE: 5K loc
Strategies: 500

THALES

I Feedbacks from certification evaluations at Thales DIS (with CEA-Leti and ANSSI)

.] Good points

-~ > Straightforward correspondence from the security mechanisms to the formal model ~ November 2023
? » The approach perfectly fits into the continuation of other tasks of the CC evaluation process 35
ii » Immediate understanding of formal entities (e.g. JCVM memory model) £
%é » No refinement, thus no relation between multiple models to be evaluated August 2023 ;
: » The implementation challenges the formal model by construction :
i October 2022
% B H H « *
¢z | Points of attention 2
‘E » Code complexity directly transferred to the model X
98 . o October 2021
32 » Sensitivity to tool scalability issues =
f 2 » Organization of a high number of manual annotations

i THALES

z

Ongoing and future work

| More expressivity

» Handle more C features (eg. union types, setjmp/longjmp, function pointers)

any way, in whole orin

ales 2018 All rights reserved.

» Extend supported ACSL features (e.g. statement contracts, \from clauses)

» Combine Frama-C/WP memory models to adapt to locally used C features Formal verification of security

properties is mature and integrated
into the software engineering
» Automatic generation of proof scripts is required for industrial usage process.

| More automation

» CC documentation generation (traceability of security requirements)

» Need for an IDE dedicated to C/ACSL coding and proof debugging Tool enhancements are still needed

to facilitate daily usage by
specification and verification

» Enhance proof parallelization engineers.

| More efficiency

» Enhance proof time profiling (especially for Qed simplifications)

» Allow partial proofs as needed while updating code and specification

THALES

I Ongoing and Future Work, cont’d

| Reasoning about metaproperties and other annotations can be helpful
» Sometime metaproperties can be deduces from other ones and ACSL annotations

» Preliminary ideas of deduction proposed in Virgile Robles’ PhD thesis

©Thales 2018 All rights reserved.

» Externalizing verification of metaproperties at the callsite for two functions reduced proof time by 1 hour!!

| Scaling to large programs
» Complex programs often have parts with many properties and with low-level operations
» Some of the maintained properties are irrelevant for some properties
» More abstract levels of reasoning can be helpful

» Combining deductive verification with abstract interpretation based tools [Bernier et al, FASE 2024]

| Automatic generation of global properties from a high-level specification mechanism
» Express global properties in a dedicated domain-specific language

» Generate metaproperties from it

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

» Create a bridge between high-level and code-level artifacts

THALES

B

I References

0]
o]

pted,

rights reserved.

Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“MetAcsl: Specification and Verification of High-Level Properties.” TACAS 2019. Springer.

Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Tame your annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties”. TAP 2019. Springer.

Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Methodology for Specification and Verification of High-Level Properties with MetAcsI”. FormaliSE 2021. IEEE.

Adel Djoudi, Martin Hana and Nikolai Kosmatov.
“Formal verification of a JavaCard virtual machine with Frama-C”. FM 2021. Springer.

Adel Djoudi, Martin Hana, Nikolai Kosmatov, Milan Kfizenecky, Franck Ohayon, Patricia Mouy, Arnaud Fontaine and David
Féliot.

“A Bottom-Up Formal Verification Approach for Common Criteria Certification:

Application to JavaCard Virtual Machine®. ERTS 2022, Best paper award.

Loic Correnson, Allan Blanchard, Adel Djoudi and Nikolai Kosmatov.
“‘Automate where Automation Fails: Proof Strategies for Frama-C/WP.” TACAS 2024. Springer. To appear.

THALES

