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Formal verification of security properties of trusted software

> The Trusted Plaiform Module has become a key security component
» used by OS and applications through the TPM Software Stack (TSS)

»  tpma2-iss is a popular open-source implementation of this stack

> Formal verification of the tpm2-tss library is important

» vulnerabilities could allow an attacker to recover sensitive data or take conftrol of the system

> Motivation
»  Proof of global security properties in Frama-C, with MetAcsl and Wp, on large security-critical code [Djoudi et al. FM’21]
— Can be challenging on large real-life code not designed for verification

»  Verification of functional properties and absence of runtime errors for a subset of functions of tpm2-tss involved in
communications with the TPM [ZIANI et al., iFM’23]

— Several limitations of deductive verification with Frama-C/WP identified (e.g. dynamic allocation, reasoning at byte-level)
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Our goal: runtime verification of security properties of trusted software

> Explore an alternative approach: runtime verification for a set of test cases with Frama-C/E-ACSL

»  More features of C are supported (e.g. the ability to reason at byte-level and dynamic allocation)

> Contributions of this work

» runtime verification of high-level properties in tpm2-tss using the Frama-C platform
» case study on a function call on a high-level layer to a TPM command

» Integrity and confidentiality of sensitive data verified

»  proposed methodology for the verification high-level security properties over sensitive data

> Target application
» Secure import of an object onto the TPM using the TSS (TPM Software Stack)
»  How to specify and verify security properties on real-life safety-critical code ¢

»  Code not written with verification in mind
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Frama-C Verification Platform

> Plugin-based open-source verification platform for C code analysis:
»  ACSL (ANSI/ISO C Specification Language) to specify functional properties of programs r dlll a
» Developed by CEA List

Software Analyzers
> Wp plugin for deductive verification
» Formal verification of functional properties

» Generates proof obligations to be proved by solvers

»  Recognized by ANSSI for highest levels of certification e —
> E-ACSL plugin for runtime verification

include/tss2/tss2_tpm2_types.h

/%@ requires © = hashAlg < 65536;
requires 8 < hmacKeySize;
requires \valid_read(hmacKey);
requires \valid_read(hmacKey + (0 .. hmacKeySize - 1));
requires \valid read(label); 306
requires valid_read_tpm2b_digest(contextu); 307
requires valid read tpm2b_digest(contextV); 308
requires © s bitLength < 4294967296; 309
requires \valid(counterInout);
requires use digest size € {9, 1}; 311
requires \valid(outKey);

KDFa Key derivation

Except of ECDH this function is used for key derivation.
@paran[in] hashAlg The hash algorithm to use.

@paran(in] hmacKey The hmackey used in KDFa.

@paran]in] hmacKeySize The size of the HMAC key

@paran[in] label Indicates the use of the produced key.

“ 313 + @paran(in] contextu, contextV are used for construction of a binar
TSS2_RC iesys_crypto KDFa(TPM2 ALG ID hashAlg, uints_t *hmacKey, 314 containing information related to the derived key.

»  Translates ACSL properties into executable code e copo b gt g e T e e TSR L L R R
TPH2D, NONCE *contexty, TPHZB NONCE scontextV, 316 * @paran[in,out] counterIndut Counter for the KDFa iterations. If se
317 ¢ value will be used for the firt iteration step. The

ooo20000000

sr/tss2-esys/esys_crypto.c
iesys_crypto_authHmac

uint32_t bitLength, uint32_t *counterInOut,
counter value will be written to counterInOut.

iesys_crypto_KDFaHmac e : 7
BYTE *outKey, BOOL use digest size
jsmpcoypio.KDre { et 2 319 *+ @paramfout] outKey Byte buffer for the derived key (caller-allocat
~wp T5S2 RC _retres; @paranlin] use digest size Indicate whether the digest size of has
s { used as size of the generated key or the bitLength para
int _va arge = (int)hashAlg; 322 :
° ° ° 3 char const *_va_argl = label; 323 + @retval TSS2 RC SUCCESS on success.
e CS p U g I n or Ig - eve q n g o q pro p er Ies = uint32_t bitLength; 324 * @retval TSS2 ESYS RC BAD VALUE if hashAlg is unknown or unsupporte
void *_va argsi {6 _va arge, & _va argl, & _va arg2}; 325 +/
¥ Gecurrence doLog (LOGLEVEL DEBUG, “esys crypta”,LOGLEVEL WARNING,& LOGMODULE status, 3267552 RC
- Metrics nedia/sf 4 Stage/4 tps 2-t55/5rC/ts52-esys/esys crypto.c’, 327 iesys_crypto KDFa(TPM2 ALG ID hashAlg,
ys_crypto KDFa®, 328 uints_t * heacKey,
L: As bitlength: 317, 329 size_t hmacKeySize,
const char *label,

S KDFa hmac key hashAlg: i
¥ ephct (void * const *)(_va args)): 330
331 TPM2B NONCE * contexty,

»  Translates them into low-level annotations, to be verified by other tools e 2 TG e e

his s a C enumeration constant, defined in enum _anonenum_log_level_27 with a value of 6.

~Eva
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TPM (Trusted Platform Module)

> Standard for a secure cryptoprocessor: T R U ST E D®

» Platform integrity (during boot), disk encryption (dm-crypt, Bitlocker), protection and C 0 M P U TI N G
enforcement of software licenses

> Different types of TPM 2.0 implementations

» Discrete, Integrated, Firmware, Hypervisor, Software (implemented by several vendors :
Infineon, ST, etc)

> TPM2 Software Stack (TSS) :
»  Specification by the TCG, providing an APl/access layer
»  Several open-source libraries

v Goal : tpm2-tss (by the tpm2-software community)

»  Target: import of a sensitive information (e.g. an encryption key) onto the TPM, from
higher-level layers (TPM2_Create TPM command, Esys_Create function on ESAPI layer)

THALES

we can all trust




z

TPM Software Stack

- FAPI (Feature API) : designed to capture most common
use cases TPM (tss2-fapi)

- ESAPI (Enhanced System API) : Session management,
support for cryptographic capabilities (tss2-esys)

- SAPI (System API) : access to all the functionnality of the
TPM (tss2-sys)

« TCTI (TPM Command Transmission Interface) (tss2-tcti)

- TAB (TPM Access Broker) & Resource Manager
- Device Driver

« TPM

THALES
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TCG Software Stack 2.0
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Related Work

> TPM related safety and security

» Formal analysis of key exchange [Zhang & Zhao, 2020]

» Proof of cryptographic support using CryptoVerif [Wang et al., 2016]
» Analysis of HMAC authorization [Shao et al., 2018]

» Study of usability and security of TPM library APIs [Rao et al., 2022]

> Formal verification of high-level properties and real-life code

» Study of the correctness of OpenlJDK's TimSort using the KeY tool [de Gouw et al., 2015]

» Verification of traffic tunnel control system verification software with VerCors [Oortwijn et al., 2019]
» Verification of a TCP stack using SPARK and KLEE [Cluzel et al., 2021]

» Proof of security properties on the JavaCard Virtual Machine with Frama-C [Djoudi et al., 2021]

» Deductive Verification of Smart Contracts with Dafny [Cassez et al., 2022]
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Verification methodology

1. Define the memory representation to be used for sensitive data

2. ldentify the target pieces of sensitive data, and add them into the model

— data at a high-level of abstraction
— data whose security has to be ensured

3. Define security properties over sensitive data

- e.qg. integrity and confidentiality as previously shown

4. Run verification with MetAcsl and E-ACSL

— If not defined, define a main function/entry point
—  Parse with MetAcsl, instrument with E-ACSL, compile with E-ACSL/GCC, execute the output

5. Use the verification results to iteratively refine the previous definitions

— A detected violation of integrity (resp. confidentiality) indicates either an “illegal” write (resp. read), or that a sensitive data should not be
considered as sensitive at that point, or a “legal” write (resp. read) not yet handled by the current definitions

6. Repeat Steps4 and 5

— Untfil all detected violations of integrity or confidentiality correspond to security flaws

THALES
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Companion Memory Model for Sensitive Data

‘ > Step 1: Define memory representation to be used for sensitive daia’

> Memory representation of the companion model with global arrays

len_sens[0] bytes

>
< >
\l |

I

len sens[_nb sens - 1] bytes

—1 | | |

A

_}ﬂqqfens
» _all sens used to store addresses of pieces of sensitive data char *_all sens |
» _len_sens used to store their size in memory in bytes int _len _sens | : | | S— 1| | | |
» _nb_sens used as a tracking index of the next available slot ‘ — MAX_SENS g

» 3 helper functions
— remove_sens to remove the piece of data at a given index
— add_as_sens to add a piece of data into the model

— 1is_sens to check if a given address and size correspond to a recorded data in the model

> Target subset of functions

» A simplified integration test for Esys_Create (to import an object onto the TPM without
parameter encryption)

» Removed dependencies to other calls to TPM commands, to external libraries, and

simplified the command transmission interface

#tdefine MAX_SENS 100

int _len_sens[MAX_SENS];
char * _all_sens[MAX_SENS];
int _nb_sens;

// define _sens_##data## idx

int _sens_exDatal_idx = -1;
int _sens_exData2_idx = -1;
int _sens_exData3_idx = -1;

bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = 0;}
int add_as_sens(void *ptr, int size)
{
int ret_idx;
if(_nb_sens > MAX_SENS V _nb_sens < 0) {ret_idx =-1;}
else {
_all _sens[_nb_sens]
_len_bank[_nb_sens]
idx = _nb_sens++; }
return ret_idx;

(char*) (ptr);
size;
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Defining and Verifying High-level Security Properties

> Step 2: Identify sensitive data whose security has to be
ensured, and add them into the model.

> Common global view of sensitive information

v tpm2-tss avoids the usage of global state variables

» Necessary to render the data visible at a global level for MetAcs| properties

> ldentify and add sensitive data to the model

» Assuming the sensitive data inSensitive is already in the representation,
any copy of said data should be added as well

» store_input_parameters is a tpm2-tss function that copies the data into
the esysContext context

»  We add the data copied into the esysContext to the representation

» _sens_exDatal_idx to keep track

THALES
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/** Store sensitive data inside the ESYS_CONTEXT */
static void store_input_parameters (
ESYS_CONTEXT *esysContext, const TPM2B_SENSITIVE_CREATE *inSensitive)

{

esysContext->in.Create.inSensitiveData = *inSensitive;
esysContext->in.Create.inSensitive =
&esysContext->in.Create.inSensitiveData;
/* We add the part of context containing the imported sensitive
object to our representation of sensitive data. */
_sens_exDatal_idx =
add_as_sens( esysContext->in.Create.inSensitive,
(int) sizeof(esysContext->in.Create.inSensitiveData) );

#tdefine MAX_SENS 100

int _len_sens[MAX_SENS];
char * _all_sens[MAX_SENS];
int _nb_sens;

// define _sens_##data## _idx

int _sens_exDatal_idx = -1;
int _sens_exData2_idx = -1;
int _sens_exData3_idx = -1;

bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = ©;}
int add_as_sens(void *ptr, int size)
{
int ret_idx;
if(_nb_sens 2 MAX_SENS V _nb_sens < @) {ret_idx =-1;}
else {
_all sens[_nb_sens]
_len_bank[_nb_sens]
idx = _nb_sens++; }
return ret_idx;

(char*) (ptr);
size;
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Defining and Verifying High-level Security Properties

> Step 2: Identify sensitive data whose security has to be

ensured, and add them into the model.

”

v

»

Identify and add sensitive data to the model on lower-
level layers

Assuming the sensitive data inSensitive is already in the model, any
copy of said data should be added as well

Tss2_MU_TPM2B_SENS_CREATE_Marshal is a TSS function that copies the
data into a byte buffer in the sysContext context

We add the data copied into the sysContext to the model
— The address of the data in the buffer is given by ctx->cmdBuffer + sens_offset

— The size is computed using the size subfields, following the TCG specification

_sens_exData2_idx to keep track

THALES
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TSS2_RC Tss2_Sys_Create_Prepare(
TSS2_SYS_CONTEXT *sysContext, const TPM2B_SENS_CREATE *inSensitive, ...)

{

( size t sens_offset = ctx->nextData; ]
rval = Tss2_MU_TPM2B_SENS_CREATE_Marshal(
inSens, ctx->cmdBuffer, ctx->maxCmdSize, &ctx->nextData);
/,/* We add the part of the command buffer containing the imported \\
sensitive object to our representation of sensitive data. */
int sys sens size = (int) sizeof(inSensitive->size) +
(int) sizeof(inSensitive->sens.auth.size) +
(int) inSensitive->sens.auth.size +
(int) sizeof(inSensitive->sens.data.size) +
\\ (int) inSensitive->sens.data.size; ,/
(_sens_exData2_idx = )
add_as_sens(ctx->cmdBuffer + sens_offset, sys sens size);

}

#tdefine MAX_SENS 100

int _len_sens[MAX_SENS];
char * _all_sens[MAX_SENS];
int _nb_sens;

// define _sens_##data## _idx

int _sens_exDatal_idx = -1;
int _sens_exData2_idx = -1;
int _sens_exData3_idx = -1;

bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = ©;}
int add_as_sens(void *ptr, int size)
{
int ret_idx;
if(_nb_sens 2 MAX_SENS V _nb_sens < @) {ret_idx =-1;}
else {
_all sens[_nb_sens]
_len_bank[_nb_sens]
idx = _nb_sens++; }
return ret_idx;

(char*) (ptr);
size;
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Defining and Verifying High-level Security Properties

‘ > Step 3: Define security properties ’

> Defining integrity and confidentiality

. . int it MAX_SENST;
» _write_sens and _read_sens arrays used to determine whether a e Thend emeTA SENS)
piece of sensitive data can be written or read ) e e N
. . . . . . \targets(\diff(\ALL, \union({excluded_1, excluded 2}))), //exclude unsupported
»  We define integrity as the separation between written location \context (\Writing),
(\written) and any non-writable sensitive data. e sse:s[<i]_n2>_sens N e/s/ s e
. . . . _wriie_sgns[i] A1l= // sens data is marked as not writable
»  We define COﬂfIdeﬂTIO“Ty as the SepOrOTIOH between any read \separated(\written, (char*) _all_sens[i]+(©..(size_t)(_len_sens[i]-1))); */
location (\read) and any non-readable sensitive data. /%@ meta \prop, \name(confidentiality),
. . . \targets(...),
» Properties defined as MetAcsl global properties : \context (\reading),
V int i; @ < i < _nb_sens = 0 < _nb_sens < MAX_SENS =  //index within bounds
— the \name provides a name @ < _len_sens[i] = //sens data exists
_read_sens[i] # 1 = //sens data is marked as not readable
- the \targets defines the set of functions in which the property shall be \separated(\read, (char*) _all sens[i]+(@..(size_t)(_len_sens[i]-1))); */
verified

— \context(\writing) (resp. \context(\reading)) means the property must
hold whenever a memory location is written (resp. read)
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Defining and Verifying High-level Security Properties

‘ > Step 4: Run verification with MetAcsl and E-ACSL ’

»  If not defined, define a main function/entry point

»  Parse with MetAcsl, instrument with E-ACSL, compile with GCC, execute the

output

‘ > Step 5: Use verification results to refine previous definiiions’

» A detected violation of integrity (resp. confidentiality) indicates either:
— an “illegal” write (resp. read)
— that a sensitive data should not be modeled at the reported program point,
- oralegal” write (resp. read) not yet handled by the current definitions

> Refining the handling of sensitive data

»  The sensitive data **outPrivate is in the model before the call to free
»  *outPrivate should be removed from the model before being freed

»  _sens_exData3_idx to keep frack
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if (outPrivate != NULL){
if((*outPrivate) != NULL) {
/*remove the sensitive data from the model before freeing*/
if(is_sens(*outPrivate,
(int) sizeof(TPM2B_PRIVATE),
_sens_exData3_idx))
remove_sens(_sens_exData3_idx);
free((void*) (*outPrivate));
(*outPrivate)=NULL;

#tdefine MAX_SENS 100

int _len_sens[MAX_SENS];
char * _all_sens[MAX_SENS];
int _nb_sens;

// define _sens_##data## _idx
int _sens_exDatal_idx
int _sens_exData2_idx
int _sens_exData3_idx = -1;

bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){ len_sens[idx] = 0;}

o
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Summary of resulis

> Proposed methodology for specification of:
— a shared representation of sensitive data usable for MetAcsl based approaches

— properties expressing that sensitive data is never modified, never read when it is not supposed to

> Successful verification on a (simplified) import operation with TPM2_Create command/Esys_Create
function:

— 86 functions operations involved in the import operation:
y 36 “unique” internal TSS operations, 50 marshal functions

— Approximately 20k lines of code, (12k interfaces, 8k actual function implementations, marshal defined as non unfolded
MAcCros)

— Target : high-level function call simplified by removing dependencies to external libraries such as OpenSSL calls, and
replaced the TCTI with a dummy, and no prior or subsequent communications with the TPM

— Verified both the integrity and the confidentiality of target pieces of sensitive data
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Evaluation

> RQ1: Expressiveness

» - Our approach renders sensitive data visible at a global level
— usable for the definition of high-level security properties with MetAcsl, extending its capabilities

»  Verifiable with other Frama-C plug-ins such as Wp or E-ACSL.

> RQ2: Effectiveness
»  Requires a much smaller specification effort on real-life code than that of deductive verification for ACSL properties

» - Goals regarding memory separations are much easier to verify, while deductive verification can require a lot of infermediary
specifications

> RQa3: Efficiency

»  Processing times for the target code (approx. 19 min) are considerably shorter than what would be required for proof with Wp

»  Lesser specification effort

> Threats to validity
» E-ACSL has its own limitations wrt. the support of certain parts of ACSL

»  Previous conclusions may not hold on a different target, codes with linked data structures or with external dependencies
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Main Achievements

> Advanced verification case study for a complex
security critical library

> Aimed to extend the capabilities of MetAcsl for
the definition of global properties

> Proposed verification methodology of high-level
security properties at runtime

> Some tool limitations were identified
v temporary code simplifications were proposed

» - simplifications should become unnecessary after tool extensions

> Our verification approach is readily available for
extension
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Ongoing and future work

> Extend the range of verified properties

»  Currently, only the integrity and the confidentiality of sensitive data were verified

> Extend the verification for a larger perimeter of code
» Consider other critical features and functions

» By reinfroducing cryptographic capabilities of the TSS, and running the code with a real or simulated TPM

> Improve the automation of the approach

> Combined approaches

» Forinstance, combine the deductive verification of Wp with the runtime verification of E-ACSL to take the best of both worlds

»  To perform a more thorough and more complete verification of high-level security properties.
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