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Formal verification of security properties of trusted software

The Trusted Platform Module has become a key security component

 used by OS and applications through the TPM Software Stack (TSS)

 tpm2-tss is a popular open-source implementation of this stack

Formal verification of the tpm2-tss library is important

 vulnerabilities could allow an attacker to recover sensitive data or take control of the system

Motivation

 Proof of global security properties in Frama-C, with MetAcsl and Wp, on large security-critical code [Djoudi et al. FM’21]

– Can be challenging on large real-life code not designed for verification

 Verification of functional properties and absence of runtime errors for a subset of functions of tpm2-tss involved in 

communications with the TPM [ZIANI et al., iFM’23]

– Several limitations of deductive verification with Frama-C/WP identified (e.g. dynamic allocation, reasoning at byte-level)



4

Our goal: runtime verification of security properties of trusted software

Explore an alternative approach: runtime verification for a set of test cases with Frama-C/E-ACSL

 More features of C are supported (e.g. the ability to reason at byte-level and dynamic allocation)

Contributions of this work 

 runtime verification of high-level properties in tpm2-tss using the Frama-C platform

 case study on a function call on a high-level layer to a TPM command

 Integrity and confidentiality of sensitive data verified

 proposed methodology for the verification high-level security properties over sensitive data

Target application

 Secure import of an object onto the TPM using the TSS (TPM Software Stack)

 How to specify and verify security properties on real-life safety-critical code ?

 Code not written with verification in mind
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Frama-C Verification Platform 

Plugin-based open-source verification platform for C code analysis:

 ACSL (ANSI/ISO C Specification Language) to specify functional properties of programs

 Developed by CEA List

Wp plugin for deductive verification

 Formal verification of functional properties 

 Generates proof obligations to be proved by solvers

 Recognized by ANSSI for highest levels of certification

E-ACSL plugin for runtime verification

 Translates ACSL properties into executable code

MetAcsl plugin for high-level and global properties

 Translates them into low-level annotations, to be verified by other tools
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TPM (Trusted Platform Module)

Standard for a secure cryptoprocessor:

 Platform integrity (during boot), disk encryption (dm-crypt, Bitlocker), protection and 

enforcement of software licenses

Different types of TPM 2.0 implementations

 Discrete, Integrated, Firmware, Hypervisor, Software (implemented by several vendors : 

Infineon, ST, etc)

TPM2 Software Stack (TSS) :

 Specification by the TCG, providing an API/access layer

 Several open-source libraries

 Goal : tpm2-tss (by the tpm2-software community)

 Target: import of a sensitive information (e.g. an encryption key) onto the TPM, from 

higher-level layers (TPM2_Create TPM command, Esys_Create function on ESAPI layer)
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TPM Software Stack

• FAPI (Feature API) : designed to capture most common

use cases  TPM (tss2-fapi)

• ESAPI (Enhanced System API) : Session management, 

support for cryptographic capabilities (tss2-esys)

• SAPI (System API) : access to all the functionnality of the 

TPM (tss2-sys)

• TCTI (TPM Command Transmission Interface) (tss2-tcti)

• TAB (TPM Access Broker) & Resource Manager

• Device Driver

• TPM
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Related Work

TPM related safety and security

 Formal analysis of key exchange [Zhang & Zhao, 2020]

 Proof of cryptographic support using CryptoVerif [Wang et al., 2016]

 Analysis of HMAC authorization [Shao et al., 2018]

 Study of usability and security of TPM library APIs [Rao et al., 2022]

Formal verification of high-level properties and real-life code

 Study of the correctness of OpenJDK’s TimSort using the KeY tool [de Gouw et al., 2015]

 Verification of traffic tunnel control system verification software with VerCors [Oortwijn et al., 2019]

 Verification of a TCP stack using SPARK and KLEE [Cluzel et al., 2021]

 Proof of security properties on the JavaCard Virtual Machine with Frama-C [Djoudi et al., 2021]

 Deductive Verification of Smart Contracts with Dafny [Cassez et al., 2022]

 …
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Verification methodology

1. Define the memory representation to be used for sensitive data

2. Identify the target pieces of sensitive data, and add them into the model 

– data at a high-level of abstraction

– data whose security has to be ensured

3. Define security properties over sensitive data

– e.g. integrity and confidentiality as previously shown

4. Run verification with MetAcsl and E-ACSL

– If not defined, define a main function/entry point 

– Parse with MetAcsl, instrument with E-ACSL, compile with E-ACSL/GCC, execute the output

5. Use the verification results to iteratively refine the previous definitions

– A detected violation of integrity (resp. confidentiality) indicates either an “illegal” write (resp. read), or that a sensitive data should not be 

considered as sensitive at that point, or a “legal” write (resp. read) not yet handled by the current definitions

6. Repeat Steps 4 and 5 

– Until all detected violations of integrity or confidentiality correspond to security flaws
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Companion Memory Model for Sensitive Data

Step 1: Define memory representation to be used for sensitive data

Memory representation of the companion model with global arrays

 _all_sens used to store addresses of pieces of sensitive data 

 _len_sens used to store their size in memory in bytes

 _nb_sens used as a tracking index of the next available slot

 3 helper functions

– remove_sens to remove the piece of data at a given index

– add_as_sens to add a piece of data into the model

– is_sens to check if a given address and size correspond to a recorded data in the model

Target subset of functions

 A simplified integration test for Esys_Create (to import an object onto the TPM without 

parameter encryption)

 Removed dependencies to other calls to TPM commands, to external libraries,       and 

simplified the command transmission interface

#define MAX_SENS 100
int _len_sens[MAX_SENS]; 
char * _all_sens[MAX_SENS];  
int _nb_sens;
// define _sens_##data##_idx
int _sens_exData1_idx = -1;  
int _sens_exData2_idx = -1;
int _sens_exData3_idx = -1;
bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = 0;}
int add_as_sens(void *ptr, int size)
{

int ret_idx;
if(_nb_sens ≥ MAX_SENS ∨ _nb_sens < 0) {ret_idx =-1;}
else {

_all_sens[_nb_sens] = (char*) (ptr);
_len_bank[_nb_sens] = size;
idx = _nb_sens++; }

return ret_idx;
}
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Defining and Verifying High-level Security Properties

#define MAX_SENS 100
int _len_sens[MAX_SENS]; 
char * _all_sens[MAX_SENS];  
int _nb_sens;
// define _sens_##data##_idx
int _sens_exData1_idx = -1;   
int _sens_exData2_idx = -1;
int _sens_exData3_idx = -1;   
bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = 0;}
int add_as_sens(void *ptr, int size)
{

int ret_idx;
if(_nb_sens ≥ MAX_SENS ∨ _nb_sens < 0) {ret_idx =-1;}
else {

_all_sens[_nb_sens] = (char*) (ptr);
_len_bank[_nb_sens] = size;
idx = _nb_sens++; }

return ret_idx;
}

Step 2: Identify sensitive data whose security has to be 

ensured, and add them into the model. 

Common global view of sensitive information

 tpm2-tss avoids the usage of global state variables

 Necessary to render the data visible at a global level for MetAcsl properties

Identify and add sensitive data to the model

 Assuming the sensitive data inSensitive is already in the representation, 

any copy of said data should be added as well

 store_input_parameters is a tpm2-tss function that copies the data into 

the esysContext context 

 We add the data copied into the esysContext to the representation

 _sens_exData1_idx to keep track

/** Store sensitive data inside the ESYS_CONTEXT */
static void store_input_parameters (

ESYS_CONTEXT *esysContext, const TPM2B_SENSITIVE_CREATE *inSensitive)
{

...
esysContext->in.Create.inSensitiveData = *inSensitive;
esysContext->in.Create.inSensitive =

&esysContext->in.Create.inSensitiveData;
/* We add the part of context containing the imported sensitive 

object to our representation of sensitive data. */
_sens_exData1_idx = 
add_as_sens( esysContext->in.Create.inSensitive, 

(int) sizeof(esysContext->in.Create.inSensitiveData) );
}

}
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Defining and Verifying High-level Security Properties

Step 2: Identify sensitive data whose security has to be 

ensured, and add them into the model. 

Identify and add sensitive data to the model on lower-

level layers

 Assuming the sensitive data inSensitive is already in the model, any 

copy of said data should be added as well

 Tss2_MU_TPM2B_SENS_CREATE_Marshal is a TSS function that copies the 

data into a byte buffer in the sysContext context 

 We add the data copied into the sysContext to the model

– The address of the data in the buffer is given by ctx->cmdBuffer + sens_offset

– The size is computed using the size subfields, following the TCG specification

 _sens_exData2_idx to keep track

TSS2_RC Tss2_Sys_Create_Prepare(
TSS2_SYS_CONTEXT *sysContext, const TPM2B_SENS_CREATE *inSensitive, ...)

{
...

size_t sens_offset = ctx->nextData; 
rval = Tss2_MU_TPM2B_SENS_CREATE_Marshal(

inSens, ctx->cmdBuffer, ctx->maxCmdSize, &ctx->nextData);
/* We add the part of the command buffer containing the imported 

sensitive object to our representation of sensitive data. */
int sys_sens_size = (int) sizeof(inSensitive->size) + 

(int) sizeof(inSensitive->sens.auth.size) + 
(int) inSensitive->sens.auth.size +

(int) sizeof(inSensitive->sens.data.size) +
(int) inSensitive->sens.data.size; 

_sens_exData2_idx = 
add_as_sens(ctx->cmdBuffer + sens_offset, sys_sens_size);

}

#define MAX_SENS 100
int _len_sens[MAX_SENS]; 
char * _all_sens[MAX_SENS];  
int _nb_sens;
// define _sens_##data##_idx
int _sens_exData1_idx = -1;   
int _sens_exData2_idx = -1;
int _sens_exData3_idx = -1;
bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = 0;}
int add_as_sens(void *ptr, int size)
{

int ret_idx;
if(_nb_sens ≥ MAX_SENS ∨ _nb_sens < 0) {ret_idx =-1;}
else {

_all_sens[_nb_sens] = (char*) (ptr);
_len_bank[_nb_sens] = size;
idx = _nb_sens++; }

return ret_idx;
}
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Defining and Verifying High-level Security Properties

Step 3: Define security properties 

Defining integrity and confidentiality

 _write_sens and _read_sens arrays used to determine whether a 

piece of sensitive data can be written or read

 We define integrity as the separation between written location 

(\written) and any non-writable sensitive data.

 We define confidentiality as the separation between any read 

location (\read) and any non-readable sensitive data.

 Properties defined as MetAcsl global properties :

– the \name provides a name

– the \targets defines the set of functions in which the property shall be 

verified

– \context(\writing) (resp. \context(\reading)) means the property must 

hold whenever a memory location is written (resp. read)

int _write_sens[MAX_SENS];
int _read_sens[MAX_SENS];

/*@ meta \prop, \name(integrity),
\targets(\diff(\ALL, \union({excluded_1, excluded_2}))),   //exclude unsupported
\context (\writing),
∀ int i; 0 ≤ i < _nb_sens ⇒ 0 ≤ _nb_sens ≤ MAX_SENS ⇒ //index within bounds

0 < _len_sens[i] ⇒ // sens data exists
_write_sens[i] ≠ 1 ⇒ // sens data is marked as not writable
\separated(\written, (char*) _all_sens[i]+(0..(size_t)(_len_sens[i]-1))); */

/*@ meta \prop, \name(confidentiality), 
\targets(...),   
\context (\reading),
∀ int i; 0 ≤ i < _nb_sens ⇒ 0 ≤ _nb_sens ≤ MAX_SENS ⇒ //index within bounds

0 < _len_sens[i] ⇒ //sens data exists
_read_sens[i] ≠ 1 ⇒ //sens data is marked as not readable
\separated(\read, (char*) _all_sens[i]+(0..(size_t)(_len_sens[i]-1))); */
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Defining and Verifying High-level Security Properties

Step 4: Run verification with MetAcsl and E-ACSL

 If not defined, define a main function/entry point 

 Parse with MetAcsl, instrument with E-ACSL, compile with GCC, execute the 
output

Step 5: Use verification results to refine previous definitions

 A detected violation of integrity (resp. confidentiality) indicates either:

– an “illegal” write (resp. read)

– that a sensitive data should not be modeled at the reported program point, 

– or a “legal” write (resp. read) not yet handled by the current definitions

Refining the handling of sensitive data

 The sensitive data **outPrivate is in the model before the call to free

 *outPrivate should be removed from the model before being freed 

 _sens_exData3_idx to keep track

#define MAX_SENS 100
int _len_sens[MAX_SENS]; 
char * _all_sens[MAX_SENS];  
int _nb_sens;
// define _sens_##data##_idx
int _sens_exData1_idx = -1;  
int _sens_exData2_idx = -1;  
int _sens_exData3_idx = -1;    
bool is_sens(void *ptr, int size, int idx)
void remove_sens(int idx){_len_sens[idx] = 0;}

if (outPrivate != NULL){
if((*outPrivate) != NULL) {

/*remove the sensitive data from the model before freeing*/
if(is_sens(*outPrivate, 

(int) sizeof(TPM2B_PRIVATE),
_sens_exData3_idx))

remove_sens(_sens_exData3_idx);
free((void*) (*outPrivate));
(*outPrivate)=NULL;

}
}
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Summary of results

Proposed methodology for specification of: 

– a shared representation of sensitive data usable for MetAcsl based approaches

– properties expressing that sensitive data is never modified, never read when it is not supposed to

Successful verification on a (simplified) import operation with TPM2_Create command/Esys_Create

function:

– 86 functions operations involved in the import operation: 

› 36 “unique” internal TSS operations, 50 marshal functions 

– Approximately 20k lines of code, (12k interfaces, 8k actual function implementations, marshal defined as non unfolded 

macros)

– Target : high-level function call simplified by removing dependencies to external libraries such as OpenSSL calls, and 

replaced the TCTI with a dummy, and no prior or subsequent communications with the TPM

– Verified both the integrity and the confidentiality of target pieces of sensitive data
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Evaluation

RQ1: Expressiveness 

 Our approach renders sensitive data visible at a global level

– usable for the definition of high-level  security properties with MetAcsl, extending its capabilities

 Verifiable with other Frama-C plug-ins such as Wp or E-ACSL.

RQ2: Effectiveness

 Requires a much smaller specification effort on real-life code than that of deductive verification for ACSL properties

 Goals regarding memory separations are much easier to verify, while deductive verification can require a lot of intermediary 

specifications

RQ3: Efficiency

 Processing times for the target code (approx. 19 min) are considerably shorter than what would be required for proof with Wp

 Lesser specification effort

Threats to validity

 E-ACSL has its own limitations wrt. the support of certain parts of ACSL

 Previous conclusions may not hold on a different target, codes with linked data structures or with external dependencies
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Main Achievements

Advanced verification case study for a complex 

security critical library

Aimed to extend the capabilities of MetAcsl for 

the definition of global properties 

Proposed verification methodology of high-level 

security properties at runtime

Some tool limitations were identified

 temporary code simplifications were proposed

 simplifications should become unnecessary after tool extensions

Our verification approach is readily available for 

extension

Artifact available at:
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Ongoing and future work

Extend the range of verified properties

 Currently, only the integrity and the confidentiality of sensitive data were verified

Extend the verification for a larger perimeter of code

 Consider other critical features and functions

 By reintroducing cryptographic capabilities of the TSS, and running the code with a real or simulated TPM

Improve the automation of the approach

Combined approaches

 For instance, combine the deductive verification of Wp with the runtime verification of E-ACSL to take the best of both worlds

 To perform a more thorough and more complete verification of high-level security properties. 


