THALES

Epecification and Verification of
High-level Properties with Frama-C
and MetAcsl

Nikolai KOSMATOV
Thales Research & Technology, cortAlx Labs

Joint work with Adel DJOUDI, Martin HANA, Pascale LE
GALL, Virgile PREVOSTO, Louis RILLING, Virgile ROBLES

Dagstuhl Seminar 25172, April 23-25, 2025

www.thalesgroup.com

I Tool context: ACSL, Frama-C and its deductive verification plugin WP

Frama-C is a platform for analysis and verification of C programs
a d

» ACSL (ANSI C Specification Language) supported by Frama-C

g}

any way, in whole orin
ales 2018 All rights reserve

Software Analyzers

©Th

WP plugin: Weakest Precondition based tool for deductive verification

ent of Thales

> Proof of semantic properties of the program
» Modular verification (function by function)

prior written cons

2 Input: a program and its specification in ACSL

arty without the

» WP generates verification conditions (VCs)

> Relies on Why3 and Automatic Theorem Provers to discharge VCs
- Alt-Ergo, Z3, CVC4, CVC5, ...

ent may not be reproduced, modified, adapted, published, translated, in

part or disclosed to a third p

This docum

THALES

IT

I Example of a C program annotated in ACSL

/+@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;
ensures \result = 0 <==>

(\forall integer j; 0 <= j < n ==> t[j] == 0);

*/
int all_zeros(int t[], int n) {
int k;
/%@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; 0<=j<k ==> t[j]==0;

loop assigns k;
loop variant n—k;
*/
for(k = 0; k < n; k++)
if (t[k] = 0)
return O;
return 1,

}

Can be proven

with Frama-C/WP __

THALES

I Outline

.] Motivation: Specification and verification of global (security) properties
| High-Level ACSL Requirements (HILARE), or Metaproperties, and MetAcsl tool
| Examples of Proof with MetAcsl and WP

| Application to certification of JavaCard Virtual Machine

ny way, i Wh\

ntof Thales - © Tha \ 20 8 All rights r

| Conclusion

This document may not be reproduced, modified, ada pT d p ublished, 1 nslated, i

part or disclosed to a third party without the prior writte

THALES

IT

I Motivation: Global (High-Level) properties are hard to specify and to maintain

Specifying global properties with contracts: manual and tedious. No

explicit link between clauses.
/ is a weak
Invariant

/*Q@ ensures A;

Manual process

ST > ensures Z; */
T struct Pagex page_alloc();

-
~~~~~~~~
~~~~~~

/*Q@ ensures A;

ensures Z; */
void page_free(struct Page* p);

Assessing if contracts form a global property is difficult, especially after an
update.

s THALES

I Examples of High-Level Properties
2 Anon-privileged user never reads a privileged (private) data page
> Aprivileged user never writes to a non-privileged (public) page

in any way, in whole orin
les 2018 All rights reserve:

» The privilege level of a page cannot be changed unless...
» The privilege level of a user cannot be changed unless...

» Afree page cannot be read or written, and must contain zeros
» Object data can be written only by the object owner

g
s}
o
©
3
S
o}

2
a
ko]
o}
°
o}
°
¢}
0
S

» Object data can be read only by the object owner

Such properties can be expressed as

oe reproduced, mo
arty without the

ird pc

» Constraints on reading / writing operations, calls to some functions,

» Strong or weak invariants

nt may not k

part or disclosed to a th

This docume

THALES

IT

I Solution: Metaproperties, or HILARE (High-Level ACSL Requirements)

We introduce meta-properties, which are a combination of:

@ A set of targets functions, on which the property must hold.

foo {foo, bar} \ALL \diff(\ALL,{foo, bar})
@ A context, which characterizes the situation in which the property
must hold.
\strong_invariant \writing \reading
@ An ACSL predicate, expressed over the set of global variables.
A <B *p == \separated(\written, p)
meta \prop,

\name (A < B everywhere in foo and bar),
\targets ({foo, bar}),

\context (\strong_invariant),

A < B;

. THALES

I Available Contexts

@ Strong invariant: Everywhere in the function
@ Weak invariant: Before and after the function

@ Upon writing: Whenever the memory is modified. The predicate can
use a special meta-variable \written, referencing the address(es)
being written to at a particular point.

meta \prop, \name(X is only modified if null),
\targets(\ALL) , \context(\writing),
'\separated(\written, &X) = X == 0;

@ Upon reading: Similarly, when memory is read
@ Upon calling: Similarly, when a function is called

meta \prop, \name(foo can only be called from bar),
\targets(\diff (\ALL, bar)),
\context(\calling), \called # &foo;

s Il HALES

©Thales 2018 All rights reserved.

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in
part or disclosed to a third party without the prior written consent of Thales - ¢

r:r

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

© /*@ meta "A unchanged unless";
*/

O /*@ requires

O ensures

(C=0

(C =0

If all instances are proved,

the metaproperty is true MetAcs!

I Example: Integrity Metaproperty Verified with MetAcsl — Writing context

Initial C code:

O assigns A,
*/
void foo(vgs

== 0) {

A =13

A
&) /*@ check A unchanged unless: 2: meta: C < 0 - \separated(&B, &A);

B =10C:
}
, e Contrary to an assert,
a check is not kept in the
proof context and does

not overload the proof

- J

/*@ check |A_unchanged unless: 1: meta:/C < 0 - \separated(&A, J&A);

tests.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A unchanged unless),
4 ‘targets(\ALL), ‘context(\writing),
= C < ® ==> \separated(\written, &A);
6 */

7/*@

8 requires A==B;

9 assigns A,B;

18 ensures (>=0 && A==C && B==C ||

11 C<@ && A==\old(A) && B==\old(B); */
12 void foo(){

13 if (C=>=0){

14 A

15 B
16 1}

C;
c;

MetAcsl instantiates a
metaproperty in all
relevant locations

HALES

Example: Confidentiality Metaproperty Verified with MetAcsl — Reading context

Thales 2018 All rights reserved.

P

o)

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

B

Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

(&)
(o)
(&)

&)

&)

(&)
(&)

J/*¥@ meta
*/
/*@ requires A
ensures
(C=0 a
(C =0 A
assigns A,
*/
void foo(void)
{
/*@ check A not read:
if (C == 0) {
/*@ check A not read:
A= C;
/*@ check A not read:
B =C;
}
return;

}

"A not read";

1]
m

==
1]

_1:

CaB=C) v
wvold(A) A B = \old(B));

_2:

_3:

MetAcs!

Initial C code:

|

meta: ‘\separated(&C, &A)J */

meta: ‘\separated(&C, &A); */
A 4
meta:| \separated(&C, &A); */

testd.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A not read),

4 \targets(\ALL), ‘\context(\reading),
e\ separated(\read, &A);

6 */

7 /%@

8 requires A==B;

9 assigns A,B;

10 ensures C>=0 && A==C && B==C ||
11 C<b && A==\old(A) && B==\old(B); */
12 void foo(){

13 if (C == 0){

14 A=C;
15 B =C;
16 }

17 }

18

THALES

I Examples of HILAREs

meta \prop, \name(Do not write to lower pages outside free),
\targets(\diff(\ALL , {page free})),
\context(\writing),

©Thales 2018 All rights reserved.

\forall integer i; ® <= 1 < MAX_PAGE_NB ==>

\let p = pages + 1i;

p->status == PAGE_ALLOCATED &&

user_level > p->confidentiality_ level ==>
\separated(\written, p->data + (0.. PAGE_SIZE - 1));

meta \prop, \name(Free pages are never read),
\targets(\ALL),
\context(\reading),

\forall integer 1; ® <= 1 < MAX_PAGE_NB &%
pages[i].status == PAGE_FREE ==>
\separated(\read, pages[i].data + (0 .. PAGE_SIZE - 1));

This document may not be reproduced, modified, adapted, published, franslated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

THALES

=

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in

part or disclosed to a third party without the prior written consent of Thales

©Thales 2018 All rights reserved.

B

Application to certification of JavaCard Virtual Machine:
Verification of security properties with MetAcsl| THALES

| Integrity and Confidentiality cannot be verified with WP as global invariants

| We use metaproperties: application context:
name targets all functlon(s) whenever a location is I'e.Hd

— ~— T

meta \prop,\name (méta_persi_objects_confidenty, \targets ((\ALD) , \context ({zeading) ,

(\forall integer i; 0 <= i < gNumObjs && !'gIsTrans[i] &&
ObjHeader [gHeadStart[i] + 0] != JCC ==>
\separated (\read,PersiData+ (gDataStart[i]..gDataEnd[i]))), */

[

The read location must be separated from the data of any persistent object if the current context is not its owner.

MetAcsl translates metaproperties into assertions/checks at each relevant program point.

If all assertions/checks are proved, the metaproperty is proved.

Thanks to the translation of metaproperties into checks that do not overload proof contexts, the metaproperty-
based approach scales very well, despite a great number of generated annotations.

THALES

I Conclusion

| Large sets of properties can be automatically translated into basic annotations

» High-level (e.g. security) properties using MetAcsl, but also:
- relational properties with RPP, temporal logic properties with Aorai, test objectives with LTest

ny way, in who \

n consent of Thales - © Thales 2018 All rights

| Various tools can be applied on the resulting annotations
» This facilitates tool collaboration

| Successful industrial application of deductive verification with Frama-C / MetAcsl|
» World-first proof of real-life JavaCard Virtual Machine code
» EALYT certificate issued by ANSSI, the French certification body
» High level of automation (99% of goals proved automatically)

arty without the prior writte

> MetAcsl is crucial for specification of security properties

This document may not be reproduced, mod'f' d, adapted, published, T nslated, in a

part or disclosed to a third p

THALES

B

References

> Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall and Virgile Prevosto.
“RPP: Automatic Proof of Relational Properties by Self-Composition.” TACAS 2017. Springer.

Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“MetAcsl: Specification and Verification of High-Level Properties.” TACAS 2019. Springer.

©Thales 2018 All rights reserved.
\'4

il
2
5
3
=
5
2
k)

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Tame your annotations with MetAcsl: Specifying, Testing and Proving High-Level Properties”. TAP 2019. Springer.

> Virgile Robles, Nikolai Kosmatov, Virgile Prevosto, Louis Rilling, and Pascale Le Gall.
“Methodology for Specification and Verification of High-Level Properties with MetAcs|”. FormaliSE 2021. |[EEE.

> Adel Djoudi, Martin Hana and Nikolai Kosmatov.
“Formal verification of a JavaCard virtual machine with Frama-C”. FM 2021. Springer.

> Adel Djoudi, Martin Hana, Nikolai Kosmatov, Milan Kfizenecky, Franck Ohayon, Patricia Mouy, Arnaud Fontaine and David Féliot.
“A Bottom-Up Formal Verification Approach for Common Criteria Certification:
Application to JavaCard Virtual Machine”. ERTS 2022, Best paper award.

> Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto and Pascale Le Gall.
“An Efficient VCGen-based Modular Verification of Relational Properties.” ISOLA 2022. Springer.

> Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto and Pascale Le Gall.
“Certified Verification of Relational Properties.” iFM 2022. Springer.

This document may not be reproduced, modified, adapted, publ
part or disclosed to a third party without the prior written consent of T

THALES

B

