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I Tool context: ACSL, Frama-C and its deductive verification plugin WP

Frama-C is a platform for analysis and verification of C programs
a d

» ACSL (ANSI C Specification Language) supported by Frama-C
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ent of Thales

> Proof of semantic properties of the program
» Modular verification (function by function)
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» WP generates verification conditions (VCs)

> Relies on Why3 and Automatic Theorem Provers to discharge VCs
- Alt-Ergo, Z3, CVC4, CVC5, ...
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I Example of a C program annotated in ACSL

/+@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;
ensures \result = 0 <==>

(\forall integer j; 0 <= j < n ==> t[j] == 0);

*/
int all_zeros(int t[], int n) {
int k;
/%@ loop invariant 0 <= k <= n;

loop invariant \forall integer j; 0<=j<k ==> t[j]==0;

loop assigns k;
loop variant n—k;
*/
for(k = 0; k < n; k++)
if (t[k] = 0)
return O;
return 1,

}

Can be proven

with Frama-C/WP __
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I Outline

. ] Motivation: Specification and verification of global (security) properties
| High-Level ACSL Requirements (HILARE), or Metaproperties, and MetAcsl tool
| Examples of Proof with MetAcsl and WP

| Application to certification of JavaCard Virtual Machine
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I Motivation: Global (High-Level) properties are hard to specify and to maintain

Specifying global properties with contracts: manual and tedious. No

explicit link between clauses.
/ is a weak
Invariant

/*Q@ ensures A;

Manual process

ST > ensures Z; */
T struct Pagex page_alloc();

-
~~~~~~~~
~~~~~~

/*Q@ ensures A;

ensures Z; */
void page_free(struct Page* p);

Assessing if contracts form a global property is difficult, especially after an
update.
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I Examples of High-Level Properties
2 Anon-privileged user never reads a privileged (private) data page
> Aprivileged user never writes to a non-privileged (public) page

in any way, in whole orin
les 2018 All rights reserve:

» The privilege level of a page cannot be changed unless...
» The privilege level of a user cannot be changed unless...

» Afree page cannot be read or written, and must contain zeros
» Object data can be written only by the object owner
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» Object data can be read only by the object owner

Such properties can be expressed as
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» Constraints on reading / writing operations, calls to some functions,

» Strong or weak invariants
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I Solution: Metaproperties, or HILARE (High-Level ACSL Requirements)

We introduce meta-properties, which are a combination of:

@ A set of targets functions, on which the property must hold.

foo {foo, bar} \ALL \diff(\ALL,{foo, bar})
@ A context, which characterizes the situation in which the property
must hold.
\strong_invariant \writing \reading
@ An ACSL predicate, expressed over the set of global variables.
A <B *p == \separated(\written, p)
meta \prop,

\name (A < B everywhere in foo and bar),
\targets ({foo, bar}),

\context (\strong_invariant),

A < B;
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I Available Contexts

@ Strong invariant: Everywhere in the function
@ Weak invariant: Before and after the function

@ Upon writing: Whenever the memory is modified. The predicate can
use a special meta-variable \written, referencing the address(es)
being written to at a particular point.

meta \prop, \name(X is only modified if null),
\targets(\ALL) , \context(\writing),
'\separated(\written, &X) = X == 0;

@ Upon reading: Similarly, when memory is read
@ Upon calling: Similarly, when a function is called

meta \prop, \name(foo can only be called from bar),
\targets(\diff (\ALL, bar)),
\context(\calling), \called # &foo;
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Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

© /*@ meta "A unchanged unless";
*/

O /*@ requires

O ensures

(C=0

(C =0

If all instances are proved,

the metaproperty is true MetAcs!

I Example: Integrity Metaproperty Verified with MetAcsl — Writing context

Initial C code:

O assigns A,
*/
void foo(vgs

== 0) {

A =13

A
&) /*@ check A unchanged unless: 2: meta: C < 0 - \separated(&B, &A);

B =10C:
}
, e Contrary to an assert,
a check is not kept in the
proof context and does

not overload the proof

- J

/*@ check |A_unchanged unless: 1: meta:/C < 0 - \separated(&A, J&A);

tests.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A unchanged unless),
4 ‘targets(\ALL), ‘context(\writing),
= C < ® ==> \separated(\written, &A);
6 */

7/*@

8 requires A==B;

9 assigns A,B;

18 ensures (>=0 && A==C && B==C ||

11 C<@ && A==\old(A) && B==\old(B); */
12 void foo(){

13 if ( C=>=0 ){

14 A

15 B
16 1}

C;
c;

MetAcsl instantiates a
metaproperty in all
relevant locations
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Example: Confidentiality Metaproperty Verified with MetAcsl — Reading context
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Resulting code after generating assertions
with MetAcsl and proof with Frama-C/WP:

(&)
(o)
(&)

&)

&)

(&)
(&)

J/*¥@ meta
*/
/*@ requires A
ensures
(C=0 a
(C =0 A
assigns A,
*/
void foo(void)
{
/*@ check A not read:
if (C == 0) {
/*@ check A not read:
A= C;
/*@ check A not read:
B =C;
}
return;

}

"A not read";

1]
m

==
1]

_1:

CaB=C) v
wvold(A) A B = \old(B));

_2:

_3:

MetAcs!

Initial C code:

|

meta: ‘\separated(&C, &A)J */

meta: ‘\separated(&C, &A); */
A 4
meta:| \separated(&C, &A); */

testd.c

lint A, B, C;

2 /%@

3 meta \prop, \name(A not read),

4 \targets(\ALL), ‘\context(\reading),
e\ separated(\read, &A);

6 */

7 /%@

8 requires A==B;

9 assigns A,B;

10 ensures C>=0 && A==C && B==C ||
11 C<b && A==\old(A) && B==\old(B); */
12 void foo(){

13 if ( C == 0 ){

14 A=C;
15 B =C;
16 }

17 }

18
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I Examples of HILAREs

meta \prop, \name(Do not write to lower pages outside free),
\targets(\diff(\ALL , {page free})),
\context( \writing ),

©Thales 2018 All rights reserved.

\forall integer i; ® <= 1 < MAX_PAGE_NB ==>

\let p = pages + 1i;

p->status == PAGE_ALLOCATED &&

user_level > p->confidentiality_ level ==>
\separated(\written, p->data + (0.. PAGE_SIZE - 1));

meta \prop, \name(Free pages are never read),
\targets(\ALL),
\context( \reading ),

\forall integer 1; ® <= 1 < MAX_PAGE_NB &%
pages[i].status == PAGE_FREE ==>
\separated(\read, pages[i].data + (0 .. PAGE_SIZE - 1));
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Application to certification of JavaCard Virtual Machine:
Verification of security properties with MetAcsl| THALES

| Integrity and Confidentiality cannot be verified with WP as global invariants

| We use metaproperties: application context:
name targets all functlon(s) whenever a location is I'e.Hd

— ~— T

meta \prop,\name (méta_persi_objects_confidenty, \targets ((\ALD) , \context ({zeading) ,

( \forall integer i; 0 <= i < gNumObjs && !'gIsTrans[i] &&
ObjHeader [gHeadStart[i] + 0] != JCC ==>
\separated (\read,PersiData+ (gDataStart[i]..gDataEnd[i])) ), */

[

The read location must be separated from the data of any persistent object if the current context is not its owner.

MetAcsl translates metaproperties into assertions/checks at each relevant program point.

If all assertions/checks are proved, the metaproperty is proved.

Thanks to the translation of metaproperties into checks that do not overload proof contexts, the metaproperty-
based approach scales very well, despite a great number of generated annotations.
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I Conclusion

| Large sets of properties can be automatically translated into basic annotations

» High-level (e.g. security) properties using MetAcsl, but also:
- relational properties with RPP, temporal logic properties with Aorai, test objectives with LTest

ny way, in who \

n consent of Thales - © Thales 2018 All rights

| Various tools can be applied on the resulting annotations
» This facilitates tool collaboration

| Successful industrial application of deductive verification with Frama-C / MetAcsl|
» World-first proof of real-life JavaCard Virtual Machine code
» EALYT certificate issued by ANSSI, the French certification body
» High level of automation (99% of goals proved automatically)

arty without the prior writte

> MetAcsl is crucial for specification of security properties
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