
Runtime Assertion Checking and
its Combinations with Static and Dynamic Analyses

Nikolay Kosmatov and Julien Signoles

Tests & Proofs 2014 Tutorial
July 25th, 2014

Motivation

Runtime verification of
rigorous, mathematical semantic properties of a C program

I safety properties:
I no division by zero
I no arithmetic overflow
I validity of memory accesses
I . . .

I functional properties:
I function preconditions must be satisfied by the caller
I function postconditions must be satisfied by the callee
I . . .

I . . .

Our goal

In this tutorial, we will see:

I how to specify a C program with the E-ACSL specification
language

I how to detect errors at runtime with the E-ACSL plug-in of
Frama-C

I how to combine runtime verification with other analyses

Presentation of Frama-C
Frama-C Overview
E-ACSL

Runtime Verification
Assertions
Function Contracts
Integers
Memory-Related Annotations

Combinations with Other Analyzers
Runtime Errors
Tests Generation and RAC
Deductive Method and RAC
Abstract Interpretation and RAC

Presentation of Frama-C
Frama-C Overview
E-ACSL

Runtime Verification
Assertions
Function Contracts
Integers
Memory-Related Annotations

Combinations with Other Analyzers
Runtime Errors
Tests Generation and RAC
Deductive Method and RAC
Abstract Interpretation and RAC

Frama-C at a glance

I Framework of Analyses of ISO C 99 Code

I Developed at CEA LIST (Software Security labs) and INRIA
Saclay (Toccata team).

I Released under LGPL license (Neon, March 2014)

I ACSL annotation language.
I Plug-in based extensible platform

I Collaboration of analyses over same code
I Inter plug-ins communication through ACSL formulae.
I Adding new (open/close-source) plug-ins is easy

I Used in several industrial contexts

http://frama-c.com

http://frama-c.com

ACSL: ANSI/ISO C Specification Language
Presentation

I like JML or Spec# for C programs
I based on Eiffel-like contracts
I allows the users to specify behavioral functional properties of

their programs
I designed for static analyzers
I independent from a particular analysis/tool
I lingua franca of Frama-C analyzers

http://frama-c.com/acsl

http://frama-c.com/acsl

ACSL
Basic Components

I first-order logic

I pure C expressions (side-effect-free expressions)

I C types + Z (integer) and R (real)

I built-ins predicates and logic functions, particularly over
pointers:

I \valid(p)

I \valid(p+0..2),

I \separated(p+0..2,q+0..5),

I \block_length(p)

I . . .
I . . .

E-ACSL: Executable-ACSL

E-ACSL, a specification language

I (large) executable subset of ACSL

I annotations may be evaluated at runtime

Main differences with ACSL:
I remove unexecutable ACSL constructs (e.g. axiomatics)

I compatible semantics changes

http://frama-c.com/e-acsl/e-acsl.pdf

http://frama-c.com/e-acsl/e-acsl.pdf

E-ACSL: Executable-ACSL
Benefits

Benefits:
I being executable allows to be understandable by dynamic

tools (testing tools, monitors)

I being based on ACSL allows to be supported by existing
Frama-C analyzers

I being translatable into C allows to be supported by other
analysis tools for C

E-ACSL plug-in

E-ACSL, a Frama-C plug-in

I converts an annotated C program p into another one p′

I p′ fails at runtime whenever an annotation is violated

I p′ and p have the same functional behavior if no annotation
is violated

Presentation of Frama-C
Frama-C Overview
E-ACSL

Runtime Verification
Assertions
Function Contracts
Integers
Memory-Related Annotations

Combinations with Other Analyzers
Runtime Errors
Tests Generation and RAC
Deductive Method and RAC
Abstract Interpretation and RAC

Assertions

What and why?

I ensure properties at some program points

I defensive programming

How?
I C macro assert provided by assert.h

I takes a C expression of type int as argument

I E-ACSL clause assert
I takes an E-ACSL predicate as argument
I much more expressive than C "boolean" expressions

Example 1: max

int max(int x, int y) { return x<y ? x : y; }

int main(void) {
int m = max(0, 0);
/*@ assert m == 0; */ // assert(m == 0);
m = max(-4, 3);
/*@ assert m == 3; */ // assert(m == 3);
return 0;

}

I generate the C code in file a.c with:

frama-c -e-acsl max.c \
-then-on e-acsl -print -ocode a.c

Function Contract
Principle

I goal: specification of imperative functions

I approach: give assertions (i.e. properties) about the
functions

I precondition is supposed to be true on entry (ensured by
callers of the function)

I postcondition must be true on exit (ensured by the function if
it terminates)

I nothing is guaranteed when the precondition is not satisfied

I termination may or may not be guaranteed (total or partial
correctness)

Function Contract
E-ACSL Plug-in

I the precondition is verified when entering the function

I the postcondition is verified when exiting the function

I the contract is thus verified for each function call

Example 2: absval

absval computes the absolute value of its argument.

/*@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */

int absval(int x) { return x>0 ? x : -x; }

I that is actually wrong when the argument is INT_MIN.

Example 2: absval

absval computes the absolute value of its argument.

/*@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */

int absval(int x) { return x>0 ? x : -x; }

I that is actually wrong when the argument is INT_MIN.

Example 2: absval
Solution, fixed

#include <limits.h>

/*@ requires x > INT_MIN;
@ ensures (x >= 0 ==> \result == x)
@ && (x < 0 ==> \result == -x); */

int absval(int x) { return x>0 ? x : -x; }

I preprocessing annotations requires to use the option
-pp-annot

Behaviors

I Global precondition (requires) and postcondition
(ensures) apply to all cases

I Behaviors refine global contract in particular cases

I For each behavior (case):
I the subdomain is defined by assumes clause
I additional constraints are given with local requires clauses
I the behavior’s postcondition is defined by ensures clauses,

ensured whenever assumes condition is true

I complete behaviors states that given behaviors cover
all cases (not supported by the E-ACSL plug-in yet)

I disjoint behaviors states that given behaviors do not
overlap (not supported by the E-ACSL plug-in yet)

Example 2: absval
Solution, improved

#include <limits.h>

/*@ requires x > INT_MIN;
@ behavior pos:
@ assumes x >= 0;
@ ensures \result == x;
@ behavior neg:
@ assumes x < 0;
@ ensures \result == -x;
@ complete behaviors;
@ disjoint behaviors; */

int absval(int x) { return x>0 ? x : -x; }

Integers
Specification language

I ACSL and E-ACSL use mathematical integers

I many advantages compared to bounded integers
I automatic theorem provers work much better with such

integers than with bounded integers arithmetics
I specify without implementation details in mind
I still possible to use bounded integers when required
I much easier to specify overflows

I yet runtime computations may be more difficult

Integers
E-ACSL plug-in

I E-ACSL uses GMP to represent mathematical integers

I try to avoid them as much as possible (interval-based type
system)

I no GMP in the previous examples

I indeed few GMP’s in practice

I only used when the annotations talk about (potentially) very
big integers

I in such a case, the generated code must be linked against
GMP

Example 3: pow

partial specification of pow

/*@ ensures \result > 0;
@ behavior pos:
@ assumes x > 0;
@ ensures \result % x == 0;
@ ensures (\result + 1) % x == 1; */

unsigned long long my_pow
(unsigned int x, unsigned int n)

I the generated program requires GMP

Pointers

I E-ACSL provides several built-in predicates to talk about
pointers

I \valid(p): is p valid?

I \initialized(p): is ∗p initialized?

I \base_addr(p): base address of the block containing p

I \block_length(p): length of the block containing p

I \offset(p): offset of p from base_addr(p)

I also provides assigns clause to talk about memory locations
which may change (not supported by the E-ACSL plug-in
yet).

Refering to another state

I specifications may require values at different program points

I \at(e,L) refers to the value of expression e at label L

I some predefined labels:
I \at(e,Here) refers to the current state
I \at(e,Old) refers to the pre-state
I \at(e,Post) refers to the post-state

I \old(e) is equivalent to \at(e,Old)

Example 4: swap

/*@ requires \valid(p);
@ requires \valid(q);
@ ensures *p == \old(*q);
@ ensures *q == \old(*p);
@ assigns *p \from \old(*q);
@ assigns *q \from \old(*p); */

void swap(int *p, int *q)
/* { ... } */

I the generated code is machine-dependent: add
-machdep x86_64 on an x86-64 architecture

I the generated program must be linked against the E-ACSL
memory library

I E-ACSL tries to minimize the instrumentation (dataflow
analysis)

Quantification

I E-ACSL is based on a first order logic

I it provides finite existential and universal quantifications over
terms

I quantifications must be guarded

\forall τ x1,. . .,xn;
a1 <= x1 <= b1 && . . . && an <= xn <= bn
==> p

\exists τ x1,. . .,xn;
a1 <= x1 <= b1 && . . . && an <= xn <= bn
&& p

Example 5: sum of matrices
A more advanced example about pointers and quantification

typedef int* matrix;

/*@ requires size >= 1;
@ requires \forall integer i, j;
@ 0 <= i < size && 0 <= j < size ==>
@ \valid(a+i*size+j) && \valid(b+i*size+j);
@ ensures \forall integer i, j;
@ 0 <= i < size && 0 <= j < size ==>
@ \valid(\result+i*size+j) &&
@ \result[i*size+j] ==
@ a[i*size+j]+b[i*size+j];
@ */

matrix sum(matrix a, matrix b, int size);

Example 5: sum of matrices
Error detection

Which memory errors are we able to detect here?

I spatial error: invalid memory access due to out-of-bounds
offset or array index

I temporal error: invalid memory access to a deallocated
memory object (use after free)

I memory leak: use more memory at the end of the execution
than at the beginning.

I use the special variable __memory_size

Presentation of Frama-C
Frama-C Overview
E-ACSL

Runtime Verification
Assertions
Function Contracts
Integers
Memory-Related Annotations

Combinations with Other Analyzers
Runtime Errors
Tests Generation and RAC
Deductive Method and RAC
Abstract Interpretation and RAC

Generating Annotations Automatically

C code may have runtime errors

I Frama-C plug-ins may generate annotations

I the RTE plug-in generates an annotation for each potential
runtime error

I possible to run RTE, then to run E-ACSL

I automatic detection of each runtime error

Errors in annotations?

I ACSL logic is total and 1/0 is logically significant
I help the user to write simple specification like u/v == 2
I 1/0 is defined but not executable

I E-ACSL logic is 3-valued
I the semantics of 1/0 is “undefined”
I lazy operators &&, ||, _?_:_, ==>

I correspond to Chalin’s Runtime Assertion Checking semantics
I consistent with ACSL: valid (resp. invalid) E-ACSL predicates

remain valid (resp. invalid) in ACSL
I Evaluating an undefined term must not crash

E-ACSL & RTE in a whole

Initial
user-annotated C

Code

Initial C Code
with RTE
annotations

RTE plug-in

Instrumented C
Code

E-ACSL plug-in

Intrusmented C
Code with RTE
annotations

RTE plug-in
on generated
C expression

Instrumented C
Code preventing

RTEs E-ACSL plug-in on
each new annotation

E-ACSL & RTE in a whole

Initial
user-annotated C

Code

Initial C Code
with RTE
annotations

RTE plug-in

Instrumented C
Code

E-ACSL plug-in

Intrusmented C
Code with RTE
annotations

RTE plug-in
on generated
C expression

Instrumented C
Code preventing

RTEs E-ACSL plug-in on
each new annotation

E-ACSL & RTE in a whole

Initial
user-annotated C

Code

Initial C Code
with RTE
annotations

RTE plug-in

Instrumented C
Code

E-ACSL plug-in

Intrusmented C
Code with RTE
annotations

RTE plug-in
on generated
C expression

Instrumented C
Code preventing

RTEs E-ACSL plug-in on
each new annotation

E-ACSL & RTE in a whole

Initial
user-annotated C

Code

Initial C Code
with RTE
annotations

RTE plug-in

Instrumented C
Code

E-ACSL plug-in

Intrusmented C
Code with RTE
annotations

RTE plug-in
on generated
C expression

Instrumented C
Code preventing

RTEs E-ACSL plug-in on
each new annotation

E-ACSL & RTE in a whole

Initial
user-annotated C

Code

Initial C Code
with RTE
annotations

RTE plug-in

Instrumented C
Code

E-ACSL plug-in

Intrusmented C
Code with RTE
annotations

RTE plug-in
on generated
C expression

Instrumented C
Code preventing

RTEs E-ACSL plug-in on
each new annotation

Example 6: is_dividable

dividability of elements of arrays
no need of writing assertions since RTE generates them

/*@ requires \forall integer i; 0 <= i < len ==>
\valid(num+i) && \valid(denum+i)
&& \valid(result+i);

@ ensures \forall integer i; 0 <= i < len ==>
result[i] == (num[i] % denum[i] == 0 ? 1 : 0);

@*/
void is_dividable
(int *num, int *denum, int *result, int len) {
for(int i = 0; i < len; i++)
if (num[i] % denum[i] == 0) result[i] = 1;
else result[i] = 0;

}

Mixing E-ACSL and PathCrawler

Runtime assertion checking e.g. E-ACSL
+ provides a powerful tool to detect various kinds of errors
+ supports expressive specifications and provides an

unambiguous verdict
− requires (representative) test inputs to run the code with

Structural test generation e.g. PathCrawler
− may have restricted support of errors and specification

features (due to symbolic execution, its memory model, . . .)
− cannot always provide a verdict automatically
+ can generate a test suite with a rigorous coverage

Combine E-ACSL and PathCrawler to check the specification at
runtime on a test suite with a rigorous coverage

Verifying Annotations Statically

I Frama-C comes with various static analyzers

I some aim at statically verifying a program
I may guarantee the absence of runtime error
I may ensure that a program satisfies its ACSL specification

I usually require extra work by the user
I adding extra annotations (assertions, loop invariants, etc)
I parameterizing the tool
I writing stubs

I what to do when all the code is not statically verified?

may also use E-ACSL on such cases

Proof of Programs

Plug-in Wp

I based on Dijkstra’s weakest preconditon calculus

I generates theorems (proof obligations) to ensure that a code
satisfies its ACSL specification

I uses automatic/interactive theorem provers to verify these
theorems

I is able to verify complex specifications

I requires to manually add extra annotations (e.g. loop
invariants)

Mixing E-ACSL and Wp
Main ideas

I idea 1: dynamically check with E-ACSL the properties which
are not statically proved with Wp.

I idea 2: use E-ACSL to test your specification before trying to
prove it with Wp

I use pre-existing test suites
I write test cases manually
I generate test cases with an automatic test generation tool

like the PathCrawler plug-in of Frama-C

I the annotations proved by Wp are not converted by E-ACSL
and so not checked at runtime (except if the option
-e-acsl-valid is set)

Mixing E-ACSL and WP
Example

goal: formally specify binary_search according to its informal
specification

/* Takes as input a sorted array, its length,
and an int to search for.
Returns the index of a cell which contains
the searched value.
Returns -1 if the key is not present in the
array. */

int binary_search(int *a, int length, int key);

Value Analysis

Plugin Value

I based on Cousot’s abstract interpretation

I computes over-approximations of possible values of variables
at each program point

I evaluates simple E-ACSL annotations

I is able to statically ensure the absence of RTE

I generates extra E-ACSL annotations when it cannot
guarantee the absence of RTE

Mixing altogether

I possible to combine Value, WP + E-ACSL

I even possible to send E-ACSL results back into Frama-C

Time for the final demo!

Conclusion

We have seen:

I how to specify a C program with the E-ACSL specification
language

I how to detect errors at runtime with the E-ACSL plug-in of
Frama-C

I how to combine E-ACSL with other analyses
I RTE
I WP
I Value
I PathCrawler

Bibliography

I M. Delahaye, N. Kosmatov, and J. Signoles.
Common specification language for static and dynamic analysis of
C programs.
Symposium on Applied Computing 2013 (SAC’13).

I N. Kosmatov, G. Petiot, and J. Signoles.
An optimized memory monitoring for runtime assertion checking of
C programs.
Runtime Verification 2013 (RV’13).

I P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski.
Frama-c: a Software Analysis Perspective.
Software Engineering and Formal Methods 2012 (SEFM’12).

I L. Correnson and J. Signoles.
Combining Analyses for C Program Verification.
Formal Methods for Industrial Case Studies (FMICS’12).

	Presentation of Frama-C
	Frama-C Overview
	E-ACSL

	Runtime Verification
	Assertions
	Function Contracts
	Integers
	Memory-Related Annotations

	Combinations with Other Analyzers
	Runtime Errors
	Tests Generation and RAC
	Deductive Method and RAC
	Abstract Interpretation and RAC

