
PathCrawler

…….
1

Automated Structural Testing
with PathCrawler

Tutorial for QSIC 2012

Nicky.WILLIAMS@cea.fr, Nikolai.KOSMATOV@cea.fr,
CEA, LIST, Software Safety Lab

 Saclay (Paris), France

Xi’an, 27th August, 2012

PathCrawler

…….
2

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing

7. Bypassing the limits

PathCrawler

…….
3

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing

7. Bypassing the limits

PathCrawler

…….
4

Structural vs. functional testing

Specification

Implementation

Analysis

functional tests activate

specified behaviour
Oracle

test results
verdict

specified properties

Specification

Oracle

test results
verdict

specified properties

Analysis

structural tests activate

implemented behaviour

Implementation

Functional:

Structural:

PathCrawler

…….
5

Unit structural testing is useful

Manually created functional test cases do not cover all the code

• Certain « functional » test cases can be missed

• Certain parts of code can depend on implementation choices and
cannot be properly covered by the specification

Evaluation of structural coverage

Adding test cases to complete structural coverage

PathCrawler

…….
6

Unit structural testing can be mandatory

Development, evaluation and certification standards

• Common Criteria for IT Security Evaluation

• DO-178B (avionics)

• ECCS-E-ST-40C (space)

• IEC/EN 61508 (Electronic Safety-related Systems) & derived standards:

 ISO 26262 (automotive)

 IEC/EN 50128 (rail)

 IEC/EN 60601 (medical)

 EC/EN 61513 (nuclear)

 IEC/EN 60880 (nuclear safety-critical)

 IEC/EN 61511 (process e.g. petrochemical, pharmaceutical)

PathCrawler

…….
7

CFG and code coverage by example

 +

 +

control-flow graph (CFG) C code

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

all-path coverage branch coverage

 statement coverage

x = x + 1

x < 0 ?

x < 0

x == 1

infeasible path

-

-

x < 0

x != 1
x != 1 ?

x = 2*x

x = x + 1

x = x + 1

PathCrawler

…….
8

x0 >= 0 /\ x0 = 1

x0 < 0 /\ x0 + 1 = 1

Path predicate (path condition) by example

 path predicate

x0< 0 /\ x0 + 1 ≠ 1

infeasible path


unsatisfiable path

predicate

 +

 +

x = x + 1

x < 0 ?

-

-

x != 1 ?

x = 2*x

control-flow graph (CFG) C code

 +

 +

 +

-

-

-

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

PathCrawler

…….
9

Automated structural testing… Why?

Achieving desired test coverage manually is costly

Must be done again after any code modification

Infeasibility of a test objective can be difficult to show manually

Automated structural testing tools can be used

• to reach the uncovered objectives,

• to determine that some of them are unreachable,

• with a low cost overhead

PathCrawler

…….
10

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Strengths and limits of structural testing

6. Structural test for other properties/purposes

7. Bypassing the limits

PathCrawler

…….
11

PathCrawler tool

• Concolic testing tool for C developed at CEA LIST

• Input: a complete compilable source code

• Automatically creates test cases to cover program paths
(explored in depth-first search)

• Uses code instrumentation, concrete and symbolic execution,
constraint solving

• Exact semantics: don’t rely on concrete values to approximate
the path predicate

• Similar to PEX, DART/CUTE, KLEE, SAGE etc.

PathCrawler

…….
12

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1
x1 = x0 + 1

+2 +4

depth-first search with non-deterministic choice of suffix

test1: x = -5
x2 = 2x1

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

PathCrawler

…….
13

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1
x1 = x0 + 1

+2 +4 test1: x = -5
x2 = 2x1

depth-first search with non-deterministic choice of suffix

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

x0 < 0 /\ (x0 + 1) ≠ 1

PathCrawler

…….
14

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1
x1 = x0 + 1

+2

-4

+4

x0 < 0 /\ (x0 + 1) = 1 infeas.

test1: x = -5
x2 = 2x1

depth-first search with non-deterministic choice of suffix

x0 < 0 /\ (x0 + 1) ≠ 1

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

PathCrawler

…….
15

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1
x1 = x0 + 1

+2

-4

+4

-2

test1: x = -5
x2 = 2x1

depth-first search with non-deterministic choice of suffix

x0 < 0 /\ (x0 + 1) ≠ 1

x0 < 0 /\ (x0 + 1) = 1 infeas.

x0 ≥ 0

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

PathCrawler

…….
16

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1

x0 ≠ 1

x1 = x0 + 1

+2

-4

+4

+4

-2

test1: x = -5

test2: x = 25
x1 = 2x0

x2 = 2x1

depth-first search with non-deterministic choice of suffix

x0 < 0 /\ (x0 + 1) ≠ 1

x0 < 0 /\ (x0 + 1) = 1 infeas.

x0 ≥ 0 /\ x0 ≠ 1

1 int f(int x){

2 if(x < 0)

3 x = x + 1;

4 if(x != 1)

5 x = 2*x;

6 return x; }

PathCrawler

…….
17

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1

x0 ≠ 1

x1 = x0 + 1

+2

-4

-4

+4

+4

-2

test1: x = -5

test2: x = 25
x1 = 2x0

x2 = 2x1

depth-first search with non-deterministic choice of suffix

x0 < 0 /\ (x0 + 1) ≠ 1

x0 < 0 /\ (x0 + 1) = 1 infeas.

x0 ≥ 0 /\ x0 = 1

x0 ≥ 0 /\ x0 ≠ 1

PathCrawler

…….
18

PathCrawler explores the tree of feasible paths

x0 < 0 x1 ≠ 1

x0 ≠ 1

x1 = x0 + 1

x1 = 2x0

+2

-4

-4

+4

+4

-2 x0 ≥ 0 /\ x0 ≠ 1

x0 ≥ 0 /\ x0 = 1

test1: x = -5

test2: x = 25

test3: x = 1

x2 = 2x1

depth-first search with non-deterministic choice of suffix

x0 < 0 /\ (x0 + 1) ≠ 1

x0 < 0 /\ (x0 + 1) = 1 infeas.

PathCrawler

…….
19

pathcrawler-online.com

Freely available test-case generation web service

• Instead of open-source or demonstration version

• No porting, no installation, universal user interface

• Well adapted to

• Teaching

• Use by project partners

• Evaluation, understanding of Precondition and Oracle

• Limited version (contact us for unlimited access)

During the tutorial

• Browser: no cache recommended

• Do not start several test generation sessions in parallel

PathCrawler

…….
20

Example 1. Robust implementation of Tritype

Simple program Tritype

• inputs: three floating-point numbers i, j, k

• returns the type of the triangle with sides i, j, k:

3 (not a triangle), 2 (equilateral), 1 (isosceles), 0 (other)

Robust : validity of inputs is tested (“not a triangle”)

 Any test case can be interesting and useful

“Test with predefined params” on pathcrawler-online.com

Observe the number of test cases. Check the results.

PathCrawler

…….
21

PathCrawler outputs

• A suite of test cases including

 Input values (check these for Example 1)

 Concrete outputs (check these for Example 1)

 Symbolic outputs (better illustrated by Example 5)

 Path predicate (better illustrated by Example 5)

 Test driver

 Oracle verdict (better illustrated by Example 10)

• Explored program paths with

 their status (covered, infeasible, assume violated …)

 path predicate (only for covered paths in online version)

PathCrawler

…….
22

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Strengths and limits of structural testing

6. Structural test for other properties/purposes

7. Bypassing the limits

PathCrawler

…….
23

Example 2. Non robust implementation of Tritype

No validity check lines 10-13, no “not a triangle” answer

 Are the test cases still interesting?

“Test with predefined params” on pathcrawler-online.com

Observe the number of test cases. Check the results.

Where is the problem?

Do we really want such input values in this case?

PathCrawler

…….
24

Exercise 3. Customize test parameters for Tritype

How to generate appropriate test cases only ?

 define a precondition!

Exercise. Start from Example 2. “Customize test parameters”

- Restrict the domains of inputs i, j, k to non negative values:

[0 .. 1.7976931348623157e+308]

- Add 3 unquantified preconditions:

i + j > k

j + k > i

i + k > j

- Confirm parameters and check the results.

PathCrawler

…….
25

Example 4. C Precondition for Tritype

Another way to define a precondition

 in a C function

Tritype_precond returns 1 iff the precondition is verified

“Customize test parameters” on pathcrawler-online.com

to check that Pathcrawler has activated the C precondition.

Confirm & observe the number of test cases & results.

PathCrawler

…….
26

Test parameters

• Define admissible inputs (precondition)

 Domains of input variables

 Relations between variables…

• Wrong test parameters may

 Indicate inexistent bugs (the bug is in the input)

 Provoke runtime errors

PathCrawler

…….
27

Example 5. Merge with default parameters

Merge of two sorted arrays t1, t2 into a sorted array t3

• inputs: arrays t1[3], t2[3], t3[6] of fixed size

“Test with predefined params” on pathcrawler-online.com

Check the concrete outputs.

What is wrong with the concrete outputs?

This example also illustrates well the information on array inputs,

symbolic outputs and path predicate included in a test-case

PathCrawler

…….
28

Exercise 6. Quantified precondition for Merge

If the input arrays t1 and t2 are not ordered, Merge does not work!

Exercise. Start from Example 5. “Customize test parameters”

- Add two quantified preconditions (INDEX is a reserved word):
for all INDEX
 such that INDEX < 2
 we have t1[INDEX]<= t1[INDEX+1]
for all INDEX
 such that INDEX < 2
 we have t2[INDEX]<= t2[INDEX+1]

- Confirm parameters and check the results.

Are the input arrays t1 and t2 sorted now? Is t3 sorted?

PathCrawler

…….
29

Example 7. Merge with pointer inputs

Merge of two sorted arrays t1, t2 into a sorted array t3

• inputs: arrays t1[], t2[], t3[] of variable size,

l1 the size of t1, l2 the size of t2, l1+l2 the size of t3

• precondition t1, t2 ordered arrays predefined

• reduced domains of elements [-100,100] predefined

“Test with predefined params” on pathcrawler-online.com

Check the results.

Why are there errors?

PathCrawler

…….
30

Exercise 8. Input arrays (pointers) size

t1, t2, t3 should contain resp. l1, l2, l1+l2 allocated elements.

Wrong input array size => Runtime errors while executing tests!

Exercise. Start from Example 7. “Customize test parameters”

- Specify domains for dim(t1), dim(t2) , dim(t3)

0 <= dim(t3) <= 6

0 <= dim(t2) <= 3

0 <= dim(t1) <= 3

- Add three unquantified preconditions:

dim(t1) == l1

dim(t2) == l1

dim(t3) == l1 + l2

- Confirm parameters and check the results.

Are there errors? Why? How many test cases are generated?

PathCrawler

…….
31

Partial test coverage : k-path criterion

• In presence of loops, all-path criterion
may generate too many test cases

• The user may want to limit their number

• k-path coverage restricts the all-path
criterion to paths with at most k
consecutive iterations of each loop
(k=0,1,2…)

PathCrawler

…….
32

Exercise 9. Merge with partial test coverage: k-path

To reduce the number of test cases, modify test criterion.

Exercise. Continue Exercise 8 with the same test

parameters you defined. “Customize test parameters”

- Set “Path selection strategy” to 2 (for k-path with k=2)

- Confirm parameters and check the results.

How many test cases are generated now?

PathCrawler

…….
33

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Strengths and limits of structural testing

6. Structural test for other properties/purposes

7. Bypassing the limits

PathCrawler

…….
34

Oracle

Role of an oracle:

• examines the inputs and outputs of each test

• decides whether the implementation has given the expected
results

• provides a verdict (success, failure)

An oracle can be provided by

• another, or previous implementation

• checking the results without implementing the algorithm

PathCrawler

…….
35

Exercise 10a. Oracle and debugging

Start from Example 10a, “Customize test parameters” to

see an example of an oracle

Is this oracle complete ?

PathCrawler

…….
36

Exercise 10b. Oracle and debugging

Start from Example 10b, “Customize test parameters” to

see another example of an oracle

Is this oracle complete ?

PathCrawler

…….
37

Exercise 10c. Oracle and debugging

Start from Example 10a, “Customize test parameters” to

see the predefined oracle

Exercise. Confirm parameters and check the results.

Can you find an error in the implementation?

Hint: The paths of failed test cases have a common part…

PathCrawler

…….
38

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing

7. Bypassing the limits

PathCrawler

…….
39

Structural test for other properties or purposes

PathCrawler explores the implementation and can also be used to check:

• for runtime errors during program execution (seen in Ex.7)

• for anomalies detected during analysis of the covered paths:

• uninitialised variables

• buffer overflow

• integer overflow

• …

• whether the implementation performs unnecessary computation

• the effective execution time of each path (at least for one set of inputs),
by running the generated tests on a platform which can measure
execution time

• for unreachable or “dead” code: check infeasible partial paths.

 If all paths leading to the code are infeasible then the code is
unreachable (for the given precondition): is this intentional ?

PathCrawler

…….
40

Runtime error or anomaly: search space is pruned

TC_2

TC_3

TC_1

TC_2

TC_4

TC_1

incomplete coverage
error during test execution or

anomaly detected by analysis

TC_3

PathCrawler

…….
41

In this example, the local variables are not always initialised

before their value is read. This is a typical “anomaly”:

probably a bug but does not cause a run-time error.

“Test with predefined parameters” and check the results.

Are there any errors or warnings? Why?

Are all feasible paths covered?

Example Uninit. Uninitialised variable

PathCrawler

…….
42

Bsearch is an implementation of dichotomic search

for value x in sorted array A.

“Customize test parameters” to see the predefined oracle

 and parameters. Confirm them and check the results.

Examine the predicates and input values of the cases where

x is present. Is this an efficient implementation?

Example UC. Unnecessary computation

PathCrawler

…….
43

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing

7. Bypassing the limits

PathCrawler

…….
44

Dichotomic search: structural vs. other strategies

Example: dichotomic search for a value int x in a sorted array int A[10].

Random testing: Unlikely to construct cases in which x equals one of the

elements of A and to detect false negatives (x not detected when present)

Functional testing: Constructs

• many cases in which x is present (probably from 1 to 10?) and

• fewer cases in which x is absent (1 or 2 ?)

Structural testing: Constructs a case

• for each position in A for which x can be detected and

• for each relation to elements of A for which absence of x is detected.

Structural test. constructs more presence cases than random, more absence

cases than functional, rarely constructs cases where x is present by chance.

PathCrawler

…….
45

Example Chance. Failures by chance?

Bsearch is another implementation of dichotomic search

for value x in sorted array A. It contains a bug which

can result in false positives (x present but not detected).

The parameters are the same as in the previous example.

Confirm them and check the results.

Is the presence or absence of x in A

always determined by the path predicate?

Hint: look at failing cases or those where x is present.

PathCrawler

…….
46

Bsearch is another erroneous implementation of

dichotomic search for value x in sorted array A.

The parameters are the same as in the previous example.

Confirm them and check the results.

Are there any failures?

Example 11. Limitations of structural testing

PathCrawler

…….
47

Limitations of structural testing

Structural testing is

• effective when a bug is always revealed by a path,

• less so when only some of the values which activate
the path cause the bug to be revealed

PathCrawler chooses arbitrary values to test each path

They may not be the values which will reveal a bug

We can make PathCrawler go looking for bugs

by sub-dividing the paths

PathCrawler

…….
48

Outline

1. Structural testing: a brief introduction

2. PathCrawler tool

3. Test parameters

4. Oracle and program debugging

5. Structural test for other properties/purposes

6. Strengths and limits of structural testing

7. Bypassing the limits

PathCrawler

…….
49

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

int f(int x){

 if(x < 0)

 x = x + 1;

 if(x != 1)

 x = 2*x;

 return x; }

implementation

PathCrawler

…….
50

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

int f(int x){

 if(x < 0)

 x = x + 1;

 if(x != 1)

 x = 2*x;

 return x; }

implementation specification

If x is less than 1 then

the result should be 2(x + 1)

else the result should be 2x

PathCrawler

…….
51

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+

implementation specification

int f(int x){

 if(x < 0)

 x = x + 1;

 if(x != 1)

 x = 2*x;

 return x; }

int spec_f(int x){

 if(x < 1)

 x = 2*(x + 1);

 else

 x = 2*x;

 return x; }

PathCrawler

…….
52

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+

implementation specification

int f(int x){

 if(x < 0)

 x = x + 1;

 if(x != 1)

 x = 2*x;

 return x; }

int spec_f(int x){

 if(x < 1)

 x = 2*(x + 1);

 else

 x = 2*x;

 return x; }

imp=spec

-

+ OK

BUG

comparison

int cross_f(int x){

 int imp = f(x);

 int spec=spec_f(x);

 if(imp!=spec)

 return 0;

 else return 1; }

PathCrawler

…….
53

Cross-checking conformity with a specification

x0<0 x1≠1
x1 = x0+1 imp = 2x1

+ x0<1
spec = 2(x0+1)

+ +

spec = 2x0

-

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

int cross_f(int x){

 int imp = f(x);

 int spec=spec_f(x);

 if(imp!=spec)

 return 0;

 else return 1; }

PathCrawler

…….
54

Cross-checking conformity with a specification

x0<0 x1≠1
x1 = x0+1 imp = 2x1

+ x0<1
spec = 2(x0+1)

+ +
x0 < 0 /\ (x0+ 1) ≠ 1 /\ x0 < 1 → x0 < 0

x0 < 0 /\ (x0+ 1) ≠ 1 /\ x0 ≥ 1

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

int cross_f(int x){

 int imp = f(x);

 int spec=spec_f(x);

 if(imp!=spec)

 return 0;

 else return 1; }

PathCrawler

…….
55

Cross-checking conformity with a specification

x0<0 x1≠1
x1 = x0+1 imp = 2x1

+ x0<1
spec = 2(x0+1)

+ imp=spec + OK

BUG

+

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

int cross_f(int x){

 int imp = f(x);

 int spec=spec_f(x);

 if(imp!=spec)

 return 0;

 else return 1; }

PathCrawler

…….
56

Cross-checking conformity with a specification

x0<0 x1≠1
x1 = x0+1 imp = 2x1

+ x0<1
spec = 2(x0+1)

+ imp=spec + OK

BUG

+ x0 < 0 /\ 2(x0+1) = 2(x0+1)

x0 < 0 /\ 2(x0+1) ≠ 2(x0+1)

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

PathCrawler

…….
57

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

+

+

- x0<1
spec = 2(x0+1)

-

+

x0<1
spec = 2(x0+1)

+ imp=spec + OK

BUG

spec = 2x0

+
x0 < 0

x0 ≥ 0 /\ x0 ≠ 1 /\ x0 < 1 → x0 = 0

x0 ≥ 0 /\ x0 ≠ 1 /\ x0 ≥ 1 → x0 > 1

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

PathCrawler

…….
58

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

+

+

- x0<1
spec = 2(x0+1)

-

+ imp=spec OK

BUG

imp=spec + OK

BUG

-

x0<1
spec = 2(x0+1)

+ imp=spec + OK

BUG

spec = 2x0

+

x0 = 0 /\ 2x0 = 2(x0+1)

x0 = 0 /\ 2x0 ≠ 2(x0+1)

x0 > 1 /\ 2x0 = 2x0

x0 > 1 /\ 2x0 ≠ 2x0

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

PathCrawler

…….
59

Cross-checking conformity with a specification

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

-

+

+

- x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec OK

BUG

imp=spec + OK

BUG

-

x0<1

- imp=spec

-

OK

BUG

x0<1
spec = 2(x0+1)

+ imp=spec + OK

BUG

spec = 2x0

+
x0 < 0

x0 = 0

x0 > 1

x0 = 1

x0<0 x1≠1

x0≠1

x1 = x0+1 imp = 2x1

imp = 2x0

imp = x0

+

-

+

+

-

x0<1
spec = 2(x0+1)

spec = 2x0

-

+ imp=spec

-

+ OK

BUG

PathCrawler

…….
60

Example 12. Testing conformity with a specification

Spec_Bsearch is a specification for Bsearch, similar to

the oracle. Test function CompareBsearchSpec that

• stores inputs, calls Bsearch,

• calls Spec_Bsearch to provide a verdict.

All-path testing will try cover all combinations of paths in

Bsearch and Spec_Bsearch.

“Customize test parameters” to see the predefined oracle

and parameters. Confirm them and check the results.

Why are failures reported this time? Can you find the bug?

PathCrawler

…….
61

Assume/assert instead of precondition/oracle

Preconditions filter out cases with bad values of inputs

Oracles check outputs

We can also check values at any point in the source code:

 pathcrawler_assume(cond)

 to filter out cases where cond is not satisfied

 pathcrawler_assert(cond)

 to check if cond is always satisfied,

 to force search for a counter-example by creating a

new branch to explore

PathCrawler

…….
62

Searching for run-time errors or anomalies

One way to detect run-time errors and anomalies

“add a branch” using pathcrawler_assert

to the source code at each use of any partial operation

(e.g. pointer de-referencing, division,…) and then

do structural testing to cover these branches

May require a lot of tests!

Better to restrict structural testing to

unconfirmed threats revealed by static analysis…

PathCrawler

…….
63

The SANTE method: Static ANalysis and TEsting

SANTE calls

• static value analysis to prove some of threats safe and

generate alarms for potential errors,

• structural testing only on reported alarms

[Chebaro et al., TAP 2010, TAP 2011, SAC 2012]

PathCrawler

…….
64

Example 13. Confirming / invalidating threats in SANTE

Study Example 13.

“Test with predefined params” on pathcrawler-online.com

Check the results.

Is there any failure?

PathCrawler

…….
65

Example 14. Confirming / invalidating threats in SANTE

Study Example 14.

“Test with predefined params” on pathcrawler-online.com

Check the results.

Is there any failure?

PathCrawler

…….
66

Conclusion

Structural testing can be very useful to evaluate and
complete test coverage

It also has many other uses

Test generation is automatic but the user must define the
test parameters

This tutorial showed

- how to define a precondition, an oracle, an assertion

- test coverage criteria

- how to test conformity with a specification

- combined uses with static analysis

PathCrawler

…….
67

Exercises

• Exercise 15. Are there errors? Complete test parameters. Check and

explain the results.

• Ex. 16. Test with the predefined oracle. Find the bug.

• Ex. 17. Test with the predefined oracle. Find the bug.

• Ex. 18. Implement and test set operations XUY, X∩Y, X-Y:

int union(int X[], int Nx, int Y[], int Ny, int R[]); // R=X U Y

int intersection(int X[], int Nx, int Y[], int Ny, int R[]);// R=X ∩ Y

int complement(int X[], int Nx, int Y[], int Ny, int R[]); // R=X – Y

 All sets will be represented by sorted arrays of integers. Suppose X

and Y are of size ≤5. Given sets X, Y with Nx, Ny elements resp. and

an array R of sufficient size, each function writes the resulting set

into R and returns the number of elements in R. Write oracles.

• Ex. 19. Use cross-checking for Ex18. Show its interest. (cf Ex.11,12)

