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Motivation

Main objective:

Rigorous, mathematical proof of semantic properties of a program

» functional properties
> safety:

» all memory accesses are valid,
» no arithmetic overflow,
» no division by zero, ...

> termination

>
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Our goal

In this tutorial, we will see
» how to specify a C program

» how to prove it with an automatic tool
» how to understand and fix proof failures
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Introduction Frama-C tool

A brief history

» 90's: CAVEAT, a Hoare logic-based tool for C programs
» 2000's: CAVEAT used by Airbus during certification of the A380

» 2002:
> 2006:
» 2008:
» 2009:
» 2012:

Why tool and its C front-end Caduceus

Joint project to write a successor to CAVEAT and Caduceus
First public release of Frama-C (Hydrogen)

Hoare-logic based Frama-C plugin Jessie developed at INRIA
New Hoare-logic based plugin WP developed at CEA LIST

» Frama-C today:
» Most recent release: Frama-C Oxygen
» Multiple projects around the platform
» A growing community of users
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Introduction Frama-C tool

Frama-C at a glance

» FRAmework for Modular Analysis of C programs

» Various plugins: CFG, value analysis (abstract interpretation), impact
analysis, dependency analysis, slicing, program proof, ...

» Developed at CEA LIST and INRIA Saclay (Proval/Toccata team)

» Released under LGPL license

» Kernel based onCIL library [Necula et al. — Berkeley]
» Includes ACSL specification language
» Extensible platform

» Adding specialized plugins is easy

» Collaboration of analyses over the same code

> Inter-plugin communication through ACSL formulas
» http://frama-c.com/
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Introduction ACSL specification language

ACSL: ANSI/ISO C Specification Language

Presentation

Based on the notion of contract, like in Eiffel

v

v

Allows the users to specify functional properties of their programs

v

Allows communication between various plugins

v

Independent from a particular analysis

v

ACSL manual at http://frama-c.com/acsl

Basic Components

v

First-order logic

v

Pure C expressions
C types + Z (integer) and R (real)
Built-ins predicates and logic functions, particularly over pointers:

\valid(p) \valid(p+0..2), \separated(p+0..2,9+0..5),
\block_length(p)

v

v
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Introduction Jessie plugin
Jessie plugin

» Hoare-logic based plugin, developed at INRIA Saclay
» Proof of functional properties of the program

» Modular verification (function per function)

» Input: a program and a specification in ACSL

» Jessie generates verification conditions (VCs)

» Use of Automatic Theorem Provers to discharge the VCs
» Alt-Ergo, Simplify, Z3, Yices, CVC3, ...

» If all VCs are proved, the program respects the given specification
» Does it mean that the program is correct?
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Introduction Jessie plugin

Jessie plugin

Hoare-logic based plugin, developed at INRIA Saclay
Proof of functional properties of the program
Modular verification (function per function)

Input: a program and a specification in ACSL

» Jessie generates verification conditions (VCs)

» Use of Automatic Theorem Provers to discharge the VCs

» Alt-Ergo, Simplify, Z3, Yices, CVC3, ...
If all VCs are proved, the program respects the given specification
» Does it mean that the program is correct?
» If the specification is wrong, the program can be wrong
Limitations

» Casts between pointers and integers
» Limited support for union type
> Aliasing requires some care
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Introduction Jessie plugin

In this tutorial

In this tutorial we use
» Frama-C Carbon
> Jessie and Why 2.29
> Alt-Ergo 0.93

To run Jessie on a C program file.c

» frama-c -jessie file.c

All examples were also tested with
» Frama-C Nitrogen
> Jessie and Why 2.31
» Why3 0.73
» Alt-Ergo 0.95
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Function contracts Pre- and postconditions

Contracts

» Goal: specification of imperative functions
» Approach: give assertions (i.e. properties) about the functions

» Precondition is supposed to be true on entry (ensured by callers of the
function)

» Postcondition must be true on exit (ensured by the function if it
terminates)

» Nothing is guaranteed when the precondition is not satisfied
» Termination may or may not be guaranteed (total or partial
correctness)
Primary role of contracts
» Main input of the verification process
» Must reflect the informal specification

» Should not be modified just to suit the verification tasks
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Function contracts Pre- and postconditions

Example 1

Specify and prove the following program:

// returns the absolute value of x
int abs ( int x ) {
if ( x >=0 )
return x ;

return -Xx

)
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Function contracts Pre- and postconditions

Example 1 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*@ ensures (x >= 0 ==>
(x < 0 ==> \result == -x);
*/
int abs ( int x ) {
if ( x >=0 )
return x
return -x

b

)
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Function contracts Pre- and postconditions

Example 1 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*¥@ ensures (x >= 0 ==>
(x < 0 ==> \result == -x);
*/
int abs ( int x ) {
if ( x >=0 )
return x
return -x

b

)

» For x=INT_MIN, -x cannot be represented by an int and overflows
» Example: on 32-bit, INT_MIN= —23! while INT_MAX= 23! — 1
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Function contracts Pre- and postconditions

Safety warnings: arithmetic overflows

Absence of arithmetic overflows can be important to check
> A sad example: crash of Ariane 5 in 1996
» Jessie automatically generates VCs to check absence of overflows

» They ensure that arithmetic operations do not overflow

v

If not proved, an overflow may occur. Is it intended?
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Function contracts Pre- and postconditions

Example 1 (Continued) - Solution

This is the completely specified program:

#include<limits.h>
/*@ requires x > INT_MIN;
ensures (x >= 0 ==> \result == x) &&
(x < 0 ==> \result == -x);
assigns \nothing;
*/
int abs ( int x ) {
if ( x >=0 )
return x ;

return -Xx

b
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Function contracts Pre- and postconditions

Example 2

Specify and prove the following program:

// returns the maximum of x and y
int max ( int x, int y ) {
if ( x >=y )
return x ;
return y ;

}
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Function contracts Pre- and postconditions

Example 2 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ ensures \result >= x && \result >= y;
*/
int max ( int x, int y ) {
if ( x >=y )
return Xx
return y

I

3

}
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Function contracts Pre- and postconditions

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include<limits.h>
/*@ ensures \result >= x && \result >= y;

*/
int max ( int x, int y ) {
return INT_MAX ;

}
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Function contracts Pre- and postconditions

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include<limits.h>
/*@ ensures \result >= x && \result >= y;
*/
int max ( int x, int y ) {
return INT_MAX

b

}

» Our specification is incomplete

» Should say that the returned value is one of the arguments
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Function contracts

Example 2 (Continued) - Solution

This is the completely specified program:

/*@ ensures \result >=
ensures \result == x || \result

assigns \nothing;

*/
int max ( int x,
if ( x >=y )
return x ;
return y ;

}
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Function contracts Pre- and postconditions

Example 3

Specify and prove the following program:

// returns the maximum of *p and *q
int max_ptr ( int *p, int *q ) {
if ( *xp >= *xq )
return *p
return *q

I

)

}
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Function contracts Pre- and postconditions

Example 3 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*@ ensures \result >= *p && \result
ensures \result == *p || \result == xq;
* /
int max_ptr ( int *p, int *q ) {
if ( xp >= *q )
return *p
return *q

3

)

}
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Function contracts Pre- and postconditions

Example 3 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*@ ensures \result >= *p && \result >= *q;
ensures \result == *p || \result == xq;
*/
int max_ptr ( int *p, int *q ) {
if ( *p >= *q )
return *p
return *q

3

}

» Nothing ensures that pointers p, q are valid

» It must be ensured either by the function, or by its precondition
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Function contracts Pre- and postconditions

Safety warnings: invalid memory accesses

An invalid pointer or array access may result in a segmentation fault or
memory corruption.

> Jessie automatically generates VCs to check memory access validity

» They ensure that each pointer (array) access has a valid offset (index)

» If the function assumes that an input pointer is valid, it must be
stated in its precondition, e.g.

» \valid(p) for one pointer p
» \valid(p+0..2) for a range of offsets p, p+1, p+2
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Function contracts Pre- and postconditions

Example 3 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *xp && \result >= *q;
ensures \result == *p || \result == *q;

*/

int max_ptr ( int *p, int *q ) {

if ( *p >= *q )
return *p ;
return *q ;

}
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Function contracts Pre- and postconditions

Example 3 (Continued) - a wrong version
This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *p && \result >=

*q;
ensures \result == *p || \result == xq;
*/
int max_ptr ( int *p, int *q ) {
*p = 0;
*q = 05

return O

J
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Function contracts Pre- and postconditions

Example 3 (Continued) - a wrong version
This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *p && \result >=

*q;
ensures \result == *p || \result == xq;
*/
int max_ptr ( int *p, int *q ) {
*p = 0;
*q = 0;
return 0O ;
}
» Our specification is incomplete
» Should say that the function cannot modify *p and *q
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Function contracts Pre- and postconditions

Frame rule

The clause assigns vi1, v2, ... , vN;
» Part of the postcondition
» Specifies which (non local) variables can be modified by the function

» No need to specify local variable modifications in the postcondition

» a function is allowed to change local variables
» a postcondition cannot talk about them anyway, they do not exist after
the function call

» Avoids to state that for any unchanged global variable v, we have
ensures \old(v) == v

» Avoids to forget one of them: explicit permission is required

» If nothing can be modified, specify assigns \nothing
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Function contracts Pre- and postconditions

Example 3 (Continued) - Solution

This is the completely specified program:

/*@ requires \valid (p) && \valid(q);
ensures \result >= xp && \result
ensures \result == *p || \result
assigns \nothing;

* /

int max_ptr ( int *p, int *q ) {

if ( *p >= xq )
return *p ;
return *q ;

}
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Function contracts  Specification with behaviors

Behaviors

Specification by cases
» Global precondition (requires) applies to all cases

» Global postcondition (ensures, assigns) applies to all cases

v

Behaviors define contracts (refine global contract) in particular cases

v

For each case (each behavior)

» the subdomain is defined by assumes clause
» the behavior’s precondition is defined by requires clauses

> it is supposed to be true whenever assumes condition is true
> the behavior’'s postcondition is defined by ensures, assigns clauses

> it must be ensured whenever assumes condition is true

v

complete behaviors states that given behaviors cover all cases

v

disjoint behaviors states that given behaviors do not overlap
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Function contracts  Specification with behaviors

Example 4

Specify using behaviors and prove the function abs:

// returns the absolute value of x
int abs ( int x ) {
if ( x >=0 )
return x ;

return -X

)
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Function contracts  Specification with behaviors

Example 4 (Continued) - Explain the proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x > 0;
ensures \result =— x;
behavior neg:
assumes x < 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs ( int x ) {
if (( x>=0)
return x ;
return —x ;
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Function contracts  Specification with behaviors

Example 4 (Continued) - Explain the proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x > 0;
ensures \result =— x;
behavior neg:
assumes x < 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs ( int x ) {
if (( x>=0)
return x ;
return —x ;

» The behaviors are not complete
» The case x==0 is missing. A wrong value could be returned.
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Function contracts  Specification with behaviors

Example 4 (Continued) - Explain another proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result =— x;
behavior neg:
assumes x <= 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs ( int x ) {
if (( x>=0)
return x ;
return —x ;
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Function contracts  Specification with behaviors

Example 4 (Continued) - Explain another proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result =— x;
behavior neg:
assumes x <= 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs ( int x ) {
if (( x>=0)
return x ;
return —x

» The behaviors are not disjoint
» The case x==0 is covered by both behaviors. Is it intended?
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Function contracts  Specification with behaviors

Example 4 (Continued) - Solution

#include<limits.h>
/*@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result == x;
behavior neg:
assumes x < 0;
ensures \result == -x;
complete behaviors;
disjoint behaviors;
*/
int abs ( int x ) {
if ( x >=0 )
return x ;
return -x ;
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Function contracts Contracts and function calls

Contracts and function calls

Function calls are handled as follows:
» Suppose function g contains a call to a function £
» Suppose we try to prove the caller g
» Before the call to f in g, the precondition of £ must be ensured by g
» VCs is generated to prove that the precondition of f is respected
> After the call to £ in g, the postcondition of £ is supposed to be true
» the postcondition of £ is assumed in the proof below

» modular verification: the code of f is not checked at this point
» only a contract and a declaration of the callee f are required
Pre/post of the caller and of the callee have dual roles in the caller's proof
> Pre of the caller is supposed, Post of the caller must be ensured

» Pre of the callee must be ensured, Post of the callee is supposed
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Function contracts Contracts and function calls

Example 5

Specify and prove the function max_abs

int abs ( int x );
int max ( int x, int y );

// returns maximum of absolute values of x and y
int max_abs( int x, int y ) {

x=abs (x) ;

y=abs (y);

return max(x,y);

}
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Function contracts Contracts and function calls

Example 5 (Continued) - Explain the proof failure for

#include<limits .h>
/@ requires x > INT_MIN;
ensures (x >= 0 => \result — x) &&
(x < 0 = \result = —x);
assigns \nothing; x/
int abs ( int x );

/%@ ensures \result >= x && \result >= y;
ensures \result =— x || \result = y;
assigns \nothing; x/

int max ( int x, int y );

/*@ ensures \result >= x && \result >= —x &&
\result >=y & & \result >= —y;
ensures \result = x || \result = —x ||
\result — y || \result — —y;
assigns \nothing; x/
int max_abs( int x, int y ) {
x=abs(x);
y=abs(y);
return max(x,y);

}
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Function contracts Contracts and function calls

Example 5 (Continued) - Explain the proof failure for

#include<limits .h>
/*@ requires x > INT_MIN;
ensures (x >= 0 => \result = x) &&
(x < 0 = \result = —x);
assigns \nothing; x/
int abs ( int x );

/%@ ensures \result >= x && \result >= y;
assigns \nothing; x/
int max ( int x, int y );

/@ requires x > INT_MIN;
requires y > INT_MIN;
ensures \result >= x && \result >= —x &&
\result >=y && \result >= —y;
ensures \result =— x || \result = —x ||
\result = vy || \result = —y;
assigns \nothing; x/
int max.abs( int x, int y ) {
x=abs(x);
y=abs(y);
return max(x,y);

}
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Function contracts

Example 5 (Continued) - Solution

#include<limits .h>
/*@ requires x > INT_MIN;

ensures (x >= 0 => \result =
(x < 0 = \result = —x);
assigns \nothing; x/

int abs ( int x );

/*@ ensures \result >= x && \result >=
ensures \result =— x || \result =—
assigns \nothing; x/

int max ( int x, int y );

/*@ requires x > INT_MIN;

requires y > INT_MIN;
ensures \result >= x && \result >=
\result >=y && \result >= —y;

ensures \result = x || \result =
\result =y || \result = —y;
assigns \nothing; x/
int max_abs( int x, int y ) {
x=abs(x);
y=abs(y);

return max(x,y);
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Programs with loops

Outline
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Programs with loops Loop invariants

Loops and automatic proof

v

What is the issue with loops? Unknown, variable number of iterations

v

The only possible way to handle loops: proof by induction

v

Induction needs a suitable inductive property, that is proved to be

» satisfied just before the loop, and
» satisfied after k + 1 iterations whenever it is satisfied after k > 0
iterations

\4

Such inductive property is called loop invariant

v

The verification conditions for a loop invariant include two parts

» loop invariant initially holds
> loop invariant is preserved by any iteration
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Programs with loops Loop invariants

Loop invariants - some hints

How to find a suitable loop invariant? Consider two aspects:
> identify variables modified in the loop

> variable number of iterations prevents from deducing their values
(relationships with other variables)

» define their possible value intervals (relationships) after k iterations

» use loop assigns clause to list variables that (might) have been
assigned so far after k iterations

» identify realized actions, or properties already ensured by the loop

» what part of the job already realized after k iterations?

» what part of the expected loop results already ensured after k
iterations?

» why the next iteration can proceed as it does? ...

A stronger property on each iteration may be required to prove the final
result of the loop

Some experience may be necessary to find appropriate loop invariants
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Programs with loops Loop invariants

Loop invariants - more hints

Remember: a loop invariant must be true
> before (the first iteration of) the loop, even if no iteration is possible
» after any complete iteration even if no more iterations are possible
» in other words, any time before the loop condition check

In particular, a for loop

for(i=0; i<n; i++) { /% body %/ }

should be seen as

i=0; // action before the first iteration
while( i<n ) // an iteration starts by the condition check

/* body x/
i+ // last action in an iteration

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 41 /63



Programs with loops Loop invariants

Example 6

Specify and prove the function find_min:

// returns the index of the minimal element
// of the given array a of size length
int find_min(int* a, int length) {

int min, min_idx;

min_idx = 0;

min = a[0];

for (int i = 1; i<length; i++) {

if (alil < min) {

min_idx = i;
min = al[il;
return min_idx;
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Programs with loops Loop termination

Loop termination

v

Program termination is undecidable

A tool cannot deduce neither the exact number of iterations, nor even
an upper bound

v

v

If an upper bound is given, a tool can check it by induction

An upper bound on the number of remaining loop iterations is the key
idea behind the loop variant

v

Terminology
» Partial correctness: if the function terminates, it respects its
specification
» Total correctness: the function terminates, and it respects its
specification
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Programs with loops Loop termination

Loop variants - some hints

» Unlike an invariant, a loop variant is an integer expression, not a
predicate
» Loop variant is not unique: if V works, V + 1 works as well
» No need to find a precise bound, any working loop variant is OK
» To find a variant, look at the loop condition
> For the loop while(expl > exp2 ), try loop variant expl-exp2;

» In more complex cases: ask yourself why the loop terminates, and try
to give an integer upper bound on the number of remaining loop
iterations
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Programs with loops Loop termination

Example 6 (Continued) - Solution

/*@ requires length > 0 && \valid(a+(0..length —1));
assigns \nothing;
ensures O<=\result<length &&
(\forall integer j; O<=j<length ==> a[\result]l<=a[]]);*/
int find_min(int* a, int length) {
int min, min_idx;

min_idx = 0;
min = a[0];
/*@ loop invariant O<=i<=length && O<=min_idx<length;
loop invariant \forall integer j; O<=j<i => min<=a[j];

loop invariant a[min_idx]==min;
loop assigns min, min_idx, i;

loop variant length — i; x/
for (int i = 1; i<length; i++) {
if (a[i] < min) {
min_idx = i;
min = a[i];

}
}
return min_idx;
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Programs with loops More exercises

Example 7

Specify and prove the function all_zeros:

// returns a non-zero value iff all elements

// in a given array t of n integers are zeros
int all_zeros(int t[], int n) {

int k;
for(k = 0; k < n; k++)
if (t[k] '= 0)

return O;
return 1;
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Programs with loops More exercises

Example 7 (Continued) - Find the errors

/+*@ requires n>=0 && \valid(t+(0..n—1));

ensures \result != 0 <—>
(\forall integer j; 0 <= j < n=>t[]j] = 0);
/
int all_zeros(int t[], int n) {
int k;

/%@ loop invariant 0 <= k < n;
loop variant n—k;

*/
for(k = 0; k < n; k++)
if (t[k] !'= 0)
return O0;
return 1;
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Programs with loops More exercises

Example 7 (Continued) - Solution

/*@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;

ensures \result != 0 <=—>
(\forall integer j; 0 <=j <n=>t[j] = 0);
/
int all_zeros(int t[], int n) {
int k;

/*@ loop invariant 0 <= k <= n;
loop invariant \forall integer j; O<=j<k = t[j]==0;
loop variant n—k;

o/

for(k = 0; k < n;

if (t[k] !'= 0)

return 0;

return 1;

k++)
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Programs with loops More exercises

\forall and \exists - hints and examples

» Do not confuse && and ==> inside \forall and \exists

» Some common patterns:
» \forall integer j; 0 <= j&& j < n ==>t[j] == 0;
» \exists integer j; 0 <= j&& j <n && t[j]l !'= 0;
» Each one here is negation of the other

» A shorter form:
» \forall integer j; 0 <=
» \exists integer j; 0 <=

==>t[j] == 0;
&& t[31 '= 0;

AN A
B B

[ S S

» With several variables:
» \forall integer i,j; 0 <= i <= j < length ==>alil<=al[j];
> \exists integer i,j; 0 <= i <= j < length && al[i]l>al[j]
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Programs with loops More exercises

Example 8

Specify and prove the function binary_search:

/* takes as input a sorted array a, its length,
and a value key to search,
returns the index of a cell which contains key,
returns -1 iff key is not present in the array
*/
int binary_search(int* a, int length, int key) {
int low = 0, high = length - 1;
while (low<=high) {
int mid = (low+high)/2;
if (almid] == key) return mid;
if (al[mid] < key) { low = mid+1; }
else { high = mid - 1; }
3
return -1;

}
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Programs with loops More exercises

Example 8 (Continued) - Solution (1/2)
/*@ predicate sorted{L}(intx a, int length) =
\forall integer i,j; O<=i<=j<length = alil<=alj];
*/
/%@ requires \valid(a+(0..length —1));
requires sorted(a,length);
requires length >=0;

assigns \nothing;

behavior exists:

assumes \exists integer i; O<=i<length && a[i] = key;

ensures O0<=\result<length && a[\result] = key;
behavior not_exists:

assumes \forall integer i; O<=i<length ==> a[i] != key;

ensures \result =— —1;

complete behaviors;
disjoint behaviors;

*/
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Programs with loops More exercises

Example 8 (Continued) - Solution (2/2)

int binary_search(intx a, int length, int key) {
int low = 0, high = length — 1;
/+*@ loop invariant O<=low<=high+1;
loop invariant high<length;
loop assigns low, high;
loop invariant \forall integer k; O<=k<low => a[k] < key;
loop invariant \forall integer k; high<k<length =—> a[k] > key;
loop variant high—low;
*
while (low<=high) {
int mid = low+(high—low)/2;
if (a[mid] = key) return mid;
if (a[mid] < key) { low = mid+1; }
else { high = mid — 1; }
}

return —1;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 52 /63



Programs with loops More exercises

Example 9
Specify and prove the function sort:

// sorts given array a of size length > 0
void sort (intx a, int length) {
int current;
for (current = 0; current < length — 1; current++4) {

int min_idx = current;
int min = afcurrent];
for (int i = current + 1; i < length; i++4) {
if (a[i] < min) {
min = a[i];
min_idx = i;

}

}

if (min_idx != current){
L: a[min_idx]=a[current];
al[current]=min;

}
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Programs with loops More exercises

Referring to another state

\4

Specification may require values at differents program points

v

Use \at (e,L) to refer to the value of expression e at label L

v

Some predefined labels:

» \at(e,Here) refers to the current state
» \at(e,01d) refers to the pre-state
» \at(e,Post) refers to the post-state

\old(e) is equivalent to \at (e,01d)

v
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Programs with loops More exercises

Example 9 (Continued) - Solution (1/3)

/+*@ predicate sorted{L}(intx a, integer length) =
\forall integer i,j; O<=i<=j<length ==> a[i]<=a[j];

*
/
/@ predicate swap{L1l,L2}(int*x a,integer i,integer j,integer length)=
O<=i<j<length
&& \at(a[i],L1l) = \at(a[j].L2)
&& \at(a[i],L2) = \at(a[j],L1)
&& \forall integer k; O<=k<length && kl=i && k=] —>
\at(a[k],L1) = \at(a[k],L2);
*
/
/@ inductive same_elements{L1l,L2}(int*a , integer length) {
case refl{L}:
\forall intxa, integer length; same_elements{L,L}(a,length);
case swap{L1,L2}: \forall intxa, integer i,j,length;
swap{L1,L2}(a,i,j,length) => same_elements{L1,L2}(a,length);
case trans{L1,L2,L3}: \forall intxa, integer length;
same_elements{L1,L2}(a,length)
==> same_elements{L2,L3}(a,length)
==> same_elements{L1,L3}(a,length);
}
*/
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Programs with loops More exercises

Example 9 (Continued) - Solution (2/3)

/*@ requires \valid(a+(0..length —1));
requires length > 0;
assigns a[0..length —1];
behavior sorted:
ensures sorted(a,length);
behavior same_elements:
ensures same_elements{Pre,Here}(a,length);
*/
void sort (int* a, int length) {
int current;
/+*@ loop invariant O<=current<length;
loop assigns a[0..length —1],current;
for sorted: loop invariant sorted(a,current);
for sorted: loop invariant
\forall integer i,j; O<=i<current<=j<length => a[i] <= a[j];
for same_elements: loop invariant
same_elements{Pre,Here}(a,length);
loop variant length—current;
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Programs with loops More exercises

Example 9 (Continued) - Solution (3/3)

for (current = 0; current < length — 1; current++) {

int min_idx = current;
int min = a[current];
/+@ loop invariant current+l<=i<=length;
loop assigns i,min, min_idx;
loop invariant current<=min_idx<i;
loop invariant a[min_idx] = min;
for sorted: loop invariant
\forall integer j; current<=j<i => min <= al[j];
loop variant length —i;
*/
for (int i = current + 1; i < length; i++4) {

if (a[i] < min) {
min = ali];
min_idx = i;
}
}

if(min_idx != current) {
L: a[min_idx]=a[current];
alcurrent]=min;
/*@for same_elements:assert swap{L,Here}(a,current,min_idx,length);x/

}
}
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Outline

My proof fails... What to do?
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My proof fails... What to do?

Proof failures

A proof of a VC for some annotation can fail for various reasons:

> incorrect implementation (— check your code)
» incorrect annotation (— check your spec)
> missing or erroneous (previous) annotation (— check your spec)
» insufficient timeout (— try longer timeout)

» complex property that automatic provers cannot handle.
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My proof fails... What to do?

Analysis of proof failures

When a proof failure is due to the specification, the erroneous annotation
may be not obvious to find. For example:

» proof of a “loop invariant preserved”’ may fail in case of

>
>
>
>

incorrect loop invariant

incorrect loop invariant in a previous, or inner, or outer loop
missing assumes or loop assumes clause

too weak precondition

» proof of a postcondition may fail in case of

» incorrect loop invariant (too weak, too strong, or inappropriate)
> missing assumes or loop assumes clause
> inappropriate postcondition in a called function
> too weak precondition
>
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My proof fails... What to do?

Analysis of proof failures (Continued)

» Additional statements (assert, lemma, ...) may help the prover

» They can be provable by the same (or another) prover or checked
elsewhere

» Separating independent properties (e.g. in separate, non disjoint
behaviors) may help

» The prover may get lost with a bigger set of hypotheses (some of
which are irrelevant)

When nothing else helps to finish the proof:
> an interactive proof assistant can be used

» Coq, Isabelle, PVS, are not that scary: we may need only a small
portion of the underlying theory
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Conclusion

Conclusion

» We learned how to specify and prove a C program with Frama-C

» Hoare-logic based tools provide a powerful way to formally verify
programs

» The program is proved with respect to the given specification, so

» Absence of proof failures is not sufficient
» The specification must be correct

» The proof is automatic, but analysis of proof failures is manual
» Proof failures help to complete the specification or find bugs

» Interactive proof tools may be necessary to finish the proof for
complex properties that cannot be proved automatically
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