Softwars Aty

Specification and Proof of
Programs with Frama-C
SAC 2013 Tutorial

Nikolai Kosmatov, Virgile Prevosto, Julien Signoles
firstname.lastname@cea.fr

CEA LIST

March 18, 2013

(long m1
(for (i=(

Motivation

Main objective:

Rigorous, mathematical proof of semantic properties of a program

» functional properties
> safety:

» all memory accesses are valid,
» no arithmetic overflow,
» no division by zero, ...

> termination

>

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 2 /63

Our goal

In this tutorial, we will see
» how to specify a C program

» how to prove it with an automatic tool
» how to understand and fix proof failures

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 3/63

Outline

Introduction
Frama-C tool
ACSL specification language
Jessie plugin
Function contracts
Pre- and postconditions

Specification with behaviors
Contracts and function calls

Programs with loops
Loop invariants
Loop termination
More exercises

My proof fails... What to do?

Conclusion

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 4 /63

Introduction

Outline

Introduction
Frama-C tool
ACSL specification language
Jessie plugin

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 5/63

Introduction Frama-C tool

A brief history

» 90's: CAVEAT, a Hoare logic-based tool for C programs
» 2000's: CAVEAT used by Airbus during certification of the A380

» 2002:
> 2006:
» 2008:
» 2009:
» 2012:

Why tool and its C front-end Caduceus

Joint project to write a successor to CAVEAT and Caduceus
First public release of Frama-C (Hydrogen)

Hoare-logic based Frama-C plugin Jessie developed at INRIA
New Hoare-logic based plugin WP developed at CEA LIST

» Frama-C today:
» Most recent release: Frama-C Oxygen
» Multiple projects around the platform
» A growing community of users

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 6 /63

Introduction Frama-C tool

Frama-C at a glance

» FRAmework for Modular Analysis of C programs

» Various plugins: CFG, value analysis (abstract interpretation), impact
analysis, dependency analysis, slicing, program proof, ...

» Developed at CEA LIST and INRIA Saclay (Proval/Toccata team)

» Released under LGPL license

» Kernel based onCIL library [Necula et al. — Berkeley]
» Includes ACSL specification language
» Extensible platform

» Adding specialized plugins is easy

» Collaboration of analyses over the same code

> Inter-plugin communication through ACSL formulas
» http://frama-c.com/

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 7 /63

http://frama-c.com/

Introduction ACSL specification language

ACSL: ANSI/ISO C Specification Language

Presentation

Based on the notion of contract, like in Eiffel

v

v

Allows the users to specify functional properties of their programs

v

Allows communication between various plugins

v

Independent from a particular analysis

v

ACSL manual at http://frama-c.com/acsl

Basic Components

v

First-order logic

v

Pure C expressions
C types + Z (integer) and R (real)
Built-ins predicates and logic functions, particularly over pointers:

\valid(p) \valid(p+0..2), \separated(p+0..2,9+0..5),
\block_length(p)

v

v

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 8 /63

http://frama-c.com/acsl

Introduction Jessie plugin
Jessie plugin

» Hoare-logic based plugin, developed at INRIA Saclay
» Proof of functional properties of the program

» Modular verification (function per function)

» Input: a program and a specification in ACSL

» Jessie generates verification conditions (VCs)

» Use of Automatic Theorem Provers to discharge the VCs
» Alt-Ergo, Simplify, Z3, Yices, CVC3, ...

» If all VCs are proved, the program respects the given specification
» Does it mean that the program is correct?

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 9 /63

Introduction Jessie plugin

Jessie plugin

Hoare-logic based plugin, developed at INRIA Saclay
Proof of functional properties of the program
Modular verification (function per function)

Input: a program and a specification in ACSL

» Jessie generates verification conditions (VCs)

» Use of Automatic Theorem Provers to discharge the VCs

» Alt-Ergo, Simplify, Z3, Yices, CVC3, ...
If all VCs are proved, the program respects the given specification
» Does it mean that the program is correct?
» If the specification is wrong, the program can be wrong
Limitations

» Casts between pointers and integers
» Limited support for union type
> Aliasing requires some care

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 9 /63

Introduction Jessie plugin

In this tutorial

In this tutorial we use
» Frama-C Carbon
> Jessie and Why 2.29
> Alt-Ergo 0.93

To run Jessie on a C program file.c

» frama-c -jessie file.c

All examples were also tested with
» Frama-C Nitrogen
> Jessie and Why 2.31
» Why3 0.73
» Alt-Ergo 0.95

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 10 / 63

Function contracts

Outline

Function contracts
Pre- and postconditions
Specification with behaviors
Contracts and function calls

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 11 / 63

Function contracts Pre- and postconditions

Contracts

» Goal: specification of imperative functions
» Approach: give assertions (i.e. properties) about the functions

» Precondition is supposed to be true on entry (ensured by callers of the
function)

» Postcondition must be true on exit (ensured by the function if it
terminates)

» Nothing is guaranteed when the precondition is not satisfied
» Termination may or may not be guaranteed (total or partial
correctness)
Primary role of contracts
» Main input of the verification process
» Must reflect the informal specification

» Should not be modified just to suit the verification tasks

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 12 / 63

Function contracts Pre- and postconditions

Example 1

Specify and prove the following program:

// returns the absolute value of x
int abs (int x) {
if (x >=0)
return x ;

return -Xx

)

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 13 / 63

Function contracts Pre- and postconditions

Example 1 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*@ ensures (x >= 0 ==>
(x < 0 ==> \result == -x);
*/
int abs (int x) {
if (x >=0)
return x
return -x

b

)

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 14 / 63

Function contracts Pre- and postconditions

Example 1 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*¥@ ensures (x >= 0 ==>
(x < 0 ==> \result == -x);
*/
int abs (int x) {
if (x >=0)
return x
return -x

b

)

» For x=INT_MIN, -x cannot be represented by an int and overflows
» Example: on 32-bit, INT_MIN= —23! while INT_MAX= 23! — 1

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 14 / 63

Function contracts Pre- and postconditions

Safety warnings: arithmetic overflows

Absence of arithmetic overflows can be important to check
> A sad example: crash of Ariane 5 in 1996
» Jessie automatically generates VCs to check absence of overflows

» They ensure that arithmetic operations do not overflow

v

If not proved, an overflow may occur. Is it intended?

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 15 / 63

Function contracts Pre- and postconditions

Example 1 (Continued) - Solution

This is the completely specified program:

#include<limits.h>
/*@ requires x > INT_MIN;
ensures (x >= 0 ==> \result == x) &&
(x < 0 ==> \result == -x);
assigns \nothing;
*/
int abs (int x) {
if (x >=0)
return x ;

return -Xx

b

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 16 / 63

Function contracts Pre- and postconditions

Example 2

Specify and prove the following program:

// returns the maximum of x and y
int max (int x, int y) {
if (x >=y)
return x ;
return y ;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 17 / 63

Function contracts Pre- and postconditions

Example 2 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ ensures \result >= x && \result >= y;
*/
int max (int x, int y) {
if (x >=y)
return Xx
return y

I

3

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 18 / 63

Function contracts Pre- and postconditions

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include<limits.h>
/*@ ensures \result >= x && \result >= y;

*/
int max (int x, int y) {
return INT_MAX ;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 19 / 63

Function contracts Pre- and postconditions

Example 2 (Continued) - a wrong version

This is a wrong implementation that is also proved. Why?

#include<limits.h>
/*@ ensures \result >= x && \result >= y;
*/
int max (int x, int y) {
return INT_MAX

b

}

» Our specification is incomplete

» Should say that the returned value is one of the arguments

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 19 / 63

Function contracts

Example 2 (Continued) - Solution

This is the completely specified program:

/*@ ensures \result >=
ensures \result == x || \result

assigns \nothing;

*/
int max (int x,
if (x >=y)
return x ;
return y ;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST)

int y) {

Proof of Programs with Frama-C

Pre- and postconditions

X && \result

March 18, 2013

20 / 63

Function contracts Pre- and postconditions

Example 3

Specify and prove the following program:

// returns the maximum of *p and *q
int max_ptr (int *p, int *q) {
if (*xp >= *xq)
return *p
return *q

I

)

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 21 /63

Function contracts Pre- and postconditions

Example 3 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*@ ensures \result >= *p && \result
ensures \result == *p || \result == xq;
* /
int max_ptr (int *p, int *q) {
if (xp >= *q)
return *p
return *q

3

)

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 22 /63

Function contracts Pre- and postconditions

Example 3 (Continued) - Explain the proof failure

Explain the proof failure for the following program:

/*@ ensures \result >= *p && \result >= *q;
ensures \result == *p || \result == xq;
*/
int max_ptr (int *p, int *q) {
if (*p >= *q)
return *p
return *q

3

}

» Nothing ensures that pointers p, q are valid

» It must be ensured either by the function, or by its precondition

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 22 /63

Function contracts Pre- and postconditions

Safety warnings: invalid memory accesses

An invalid pointer or array access may result in a segmentation fault or
memory corruption.

> Jessie automatically generates VCs to check memory access validity

» They ensure that each pointer (array) access has a valid offset (index)

» If the function assumes that an input pointer is valid, it must be
stated in its precondition, e.g.

» \valid(p) for one pointer p
» \valid(p+0..2) for a range of offsets p, p+1, p+2

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 23 /63

Function contracts Pre- and postconditions

Example 3 (Continued) - Find the error

The following program is proved. Do you see any error?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *xp && \result >= *q;
ensures \result == *p || \result == *q;

*/

int max_ptr (int *p, int *q) {

if (*p >= *q)
return *p ;
return *q ;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 24 /63

Function contracts Pre- and postconditions

Example 3 (Continued) - a wrong version
This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *p && \result >=

*q;
ensures \result == *p || \result == xq;
*/
int max_ptr (int *p, int *q) {
*p = 0;
*q = 05

return O

J

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 25 /63

Function contracts Pre- and postconditions

Example 3 (Continued) - a wrong version
This is a wrong implementation that is also proved. Why?

/*@ requires \valid(p) && \valid(q);
ensures \result >= *p && \result >=

*q;
ensures \result == *p || \result == xq;
*/
int max_ptr (int *p, int *q) {
*p = 0;
*q = 0;
return 0O ;
}
» Our specification is incomplete
» Should say that the function cannot modify *p and *q
N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST)

Proof of Programs with Frama-C March 18, 2013

25 / 63

Function contracts Pre- and postconditions

Frame rule

The clause assigns vi1, v2, ... , vN;
» Part of the postcondition
» Specifies which (non local) variables can be modified by the function

» No need to specify local variable modifications in the postcondition

» a function is allowed to change local variables
» a postcondition cannot talk about them anyway, they do not exist after
the function call

» Avoids to state that for any unchanged global variable v, we have
ensures \old(v) == v

» Avoids to forget one of them: explicit permission is required

» If nothing can be modified, specify assigns \nothing

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 26 / 63

Function contracts Pre- and postconditions

Example 3 (Continued) - Solution

This is the completely specified program:

/*@ requires \valid (p) && \valid(q);
ensures \result >= xp && \result
ensures \result == *p || \result
assigns \nothing;

* /

int max_ptr (int *p, int *q) {

if (*p >= xq)
return *p ;
return *q ;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C

March 18, 2013

27 / 63

Function contracts Specification with behaviors

Behaviors

Specification by cases
» Global precondition (requires) applies to all cases

» Global postcondition (ensures, assigns) applies to all cases

v

Behaviors define contracts (refine global contract) in particular cases

v

For each case (each behavior)

» the subdomain is defined by assumes clause
» the behavior’s precondition is defined by requires clauses

> it is supposed to be true whenever assumes condition is true
> the behavior’'s postcondition is defined by ensures, assigns clauses

> it must be ensured whenever assumes condition is true

v

complete behaviors states that given behaviors cover all cases

v

disjoint behaviors states that given behaviors do not overlap

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 28 / 63

Function contracts Specification with behaviors

Example 4

Specify using behaviors and prove the function abs:

// returns the absolute value of x
int abs (int x) {
if (x >=0)
return x ;

return -X

)

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 29 / 63

Function contracts Specification with behaviors

Example 4 (Continued) - Explain the proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x > 0;
ensures \result =— x;
behavior neg:
assumes x < 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs (int x) {
if ((x>=0)
return x ;
return —x ;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 30/ 63

Function contracts Specification with behaviors

Example 4 (Continued) - Explain the proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x > 0;
ensures \result =— x;
behavior neg:
assumes x < 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs (int x) {
if ((x>=0)
return x ;
return —x ;

» The behaviors are not complete
» The case x==0 is missing. A wrong value could be returned.

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 30/ 63

Function contracts Specification with behaviors

Example 4 (Continued) - Explain another proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result =— x;
behavior neg:
assumes x <= 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs (int x) {
if ((x>=0)
return x ;
return —x ;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 31/63

Function contracts Specification with behaviors

Example 4 (Continued) - Explain another proof failure for

#include<limits .h>
/%@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result =— x;
behavior neg:
assumes x <= 0;
ensures \result =— —x;
complete behaviors;
disjoint behaviors;
*/
int abs (int x) {
if ((x>=0)
return x ;
return —x

» The behaviors are not disjoint
» The case x==0 is covered by both behaviors. Is it intended?

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

31/ 63

Function contracts Specification with behaviors

Example 4 (Continued) - Solution

#include<limits.h>
/*@ requires x > INT_MIN;
assigns \nothing;
behavior pos:
assumes x >= 0;
ensures \result == x;
behavior neg:
assumes x < 0;
ensures \result == -x;
complete behaviors;
disjoint behaviors;
*/
int abs (int x) {
if (x >=0)
return x ;
return -x ;

N,K;tmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 32/63

Function contracts Contracts and function calls

Contracts and function calls

Function calls are handled as follows:
» Suppose function g contains a call to a function £
» Suppose we try to prove the caller g
» Before the call to f in g, the precondition of £ must be ensured by g
» VCs is generated to prove that the precondition of f is respected
> After the call to £ in g, the postcondition of £ is supposed to be true
» the postcondition of £ is assumed in the proof below

» modular verification: the code of f is not checked at this point
» only a contract and a declaration of the callee f are required
Pre/post of the caller and of the callee have dual roles in the caller's proof
> Pre of the caller is supposed, Post of the caller must be ensured

» Pre of the callee must be ensured, Post of the callee is supposed

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 33 /63

Function contracts Contracts and function calls

Example 5

Specify and prove the function max_abs

int abs (int x);
int max (int x, int y);

// returns maximum of absolute values of x and y
int max_abs(int x, int y) {

x=abs (x) ;

y=abs (y);

return max(x,y);

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 34 /63

Function contracts Contracts and function calls

Example 5 (Continued) - Explain the proof failure for

#include<limits .h>
/@ requires x > INT_MIN;
ensures (x >= 0 => \result — x) &&
(x < 0 = \result = —x);
assigns \nothing; x/
int abs (int x);

/%@ ensures \result >= x && \result >= y;
ensures \result =— x || \result = y;
assigns \nothing; x/

int max (int x, int y);

/*@ ensures \result >= x && \result >= —x &&
\result >=y & & \result >= —y;
ensures \result = x || \result = —x ||
\result — y || \result — —y;
assigns \nothing; x/
int max_abs(int x, int y) {
x=abs(x);
y=abs(y);
return max(x,y);

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 35 /63

Function contracts Contracts and function calls

Example 5 (Continued) - Explain the proof failure for

#include<limits .h>
/*@ requires x > INT_MIN;
ensures (x >= 0 => \result = x) &&
(x < 0 = \result = —x);
assigns \nothing; x/
int abs (int x);

/%@ ensures \result >= x && \result >= y;
assigns \nothing; x/
int max (int x, int y);

/@ requires x > INT_MIN;
requires y > INT_MIN;
ensures \result >= x && \result >= —x &&
\result >=y && \result >= —y;
ensures \result =— x || \result = —x ||
\result = vy || \result = —y;
assigns \nothing; x/
int max.abs(int x, int y) {
x=abs(x);
y=abs(y);
return max(x,y);

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

36 / 63

Function contracts

Example 5 (Continued) - Solution

#include<limits .h>
/*@ requires x > INT_MIN;

ensures (x >= 0 => \result =
(x < 0 = \result = —x);
assigns \nothing; x/

int abs (int x);

/*@ ensures \result >= x && \result >=
ensures \result =— x || \result =—
assigns \nothing; x/

int max (int x, int y);

/*@ requires x > INT_MIN;

requires y > INT_MIN;
ensures \result >= x && \result >=
\result >=y && \result >= —y;

ensures \result = x || \result =
\result =y || \result = —y;
assigns \nothing; x/
int max_abs(int x, int y) {
x=abs(x);
y=abs(y);

return max(x,y);

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST)

Proof of Programs with Frama-C

Contracts and function calls

x) &&

Yy
Yy,

—x &&

—x [

March 18, 2013

37 /63

Programs with loops

Outline

Programs with loops
Loop invariants
Loop termination
More exercises

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 38 /63

Programs with loops Loop invariants

Loops and automatic proof

v

What is the issue with loops? Unknown, variable number of iterations

v

The only possible way to handle loops: proof by induction

v

Induction needs a suitable inductive property, that is proved to be

» satisfied just before the loop, and
» satisfied after k + 1 iterations whenever it is satisfied after k > 0
iterations

\4

Such inductive property is called loop invariant

v

The verification conditions for a loop invariant include two parts

» loop invariant initially holds
> loop invariant is preserved by any iteration

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 39 /63

Programs with loops Loop invariants

Loop invariants - some hints

How to find a suitable loop invariant? Consider two aspects:
> identify variables modified in the loop

> variable number of iterations prevents from deducing their values
(relationships with other variables)

» define their possible value intervals (relationships) after k iterations

» use loop assigns clause to list variables that (might) have been
assigned so far after k iterations

» identify realized actions, or properties already ensured by the loop

» what part of the job already realized after k iterations?

» what part of the expected loop results already ensured after k
iterations?

» why the next iteration can proceed as it does? ...

A stronger property on each iteration may be required to prove the final
result of the loop

Some experience may be necessary to find appropriate loop invariants

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 40 / 63

Programs with loops Loop invariants

Loop invariants - more hints

Remember: a loop invariant must be true
> before (the first iteration of) the loop, even if no iteration is possible
» after any complete iteration even if no more iterations are possible
» in other words, any time before the loop condition check

In particular, a for loop

for(i=0; i<n; i++) { /% body %/ }

should be seen as

i=0; // action before the first iteration
while(i<n) // an iteration starts by the condition check

/* body x/
i+ // last action in an iteration

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 41 /63

Programs with loops Loop invariants

Example 6

Specify and prove the function find_min:

// returns the index of the minimal element
// of the given array a of size length
int find_min(int* a, int length) {

int min, min_idx;

min_idx = 0;

min = a[0];

for (int i = 1; i<length; i++) {

if (alil < min) {

min_idx = i;
min = al[il;
return min_idx;
N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

42 / 63

Programs with loops Loop termination

Loop termination

v

Program termination is undecidable

A tool cannot deduce neither the exact number of iterations, nor even
an upper bound

v

v

If an upper bound is given, a tool can check it by induction

An upper bound on the number of remaining loop iterations is the key
idea behind the loop variant

v

Terminology
» Partial correctness: if the function terminates, it respects its
specification
» Total correctness: the function terminates, and it respects its
specification

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 43 /63

Programs with loops Loop termination

Loop variants - some hints

» Unlike an invariant, a loop variant is an integer expression, not a
predicate
» Loop variant is not unique: if V works, V + 1 works as well
» No need to find a precise bound, any working loop variant is OK
» To find a variant, look at the loop condition
> For the loop while(expl > exp2), try loop variant expl-exp2;

» In more complex cases: ask yourself why the loop terminates, and try
to give an integer upper bound on the number of remaining loop
iterations

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 44 / 63

Programs with loops Loop termination

Example 6 (Continued) - Solution

/*@ requires length > 0 && \valid(a+(0..length —1));
assigns \nothing;
ensures O<=\result<length &&
(\forall integer j; O<=j<length ==> a[\result]l<=a[]]);*/
int find_min(int* a, int length) {
int min, min_idx;

min_idx = 0;
min = a[0];
/*@ loop invariant O<=i<=length && O<=min_idx<length;
loop invariant \forall integer j; O<=j<i => min<=a[j];

loop invariant a[min_idx]==min;
loop assigns min, min_idx, i;

loop variant length — i; x/
for (int i = 1; i<length; i++) {
if (a[i] < min) {
min_idx = i;
min = a[i];

}
}
return min_idx;

N.Kdsmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 45 / 63

Programs with loops More exercises

Example 7

Specify and prove the function all_zeros:

// returns a non-zero value iff all elements

// in a given array t of n integers are zeros
int all_zeros(int t[], int n) {

int k;
for(k = 0; k < n; k++)
if (t[k] '= 0)

return O;
return 1;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 46 / 63

Programs with loops More exercises

Example 7 (Continued) - Find the errors

/+*@ requires n>=0 && \valid(t+(0..n—1));

ensures \result != 0 <—>
(\forall integer j; 0 <= j < n=>t[]j] = 0);
/
int all_zeros(int t[], int n) {
int k;

/%@ loop invariant 0 <= k < n;
loop variant n—k;

*/
for(k = 0; k < n; k++)
if (t[k] !'= 0)
return O0;
return 1;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

47 / 63

Programs with loops More exercises

Example 7 (Continued) - Solution

/*@ requires n>=0 && \valid(t+(0..n—1));
assigns \nothing;

ensures \result != 0 <=—>
(\forall integer j; 0 <=j <n=>t[j] = 0);
/
int all_zeros(int t[], int n) {
int k;

/*@ loop invariant 0 <= k <= n;
loop invariant \forall integer j; O<=j<k = t[j]==0;
loop variant n—k;

o/

for(k = 0; k < n;

if (t[k] !'= 0)

return 0;

return 1;

k++)

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 48 / 63

Programs with loops More exercises

\forall and \exists - hints and examples

» Do not confuse && and ==> inside \forall and \exists

» Some common patterns:
» \forall integer j; 0 <= j&& j < n ==>t[j] == 0;
» \exists integer j; 0 <= j&& j <n && t[j]l !'= 0;
» Each one here is negation of the other

» A shorter form:
» \forall integer j; 0 <=
» \exists integer j; 0 <=

==>t[j] == 0;
&& t[31 '= 0;

AN A
B B

[S S

» With several variables:
» \forall integer i,j; 0 <= i <= j < length ==>alil<=al[j];
> \exists integer i,j; 0 <= i <= j < length && al[i]l>al[j]

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 49 / 63

Programs with loops More exercises

Example 8

Specify and prove the function binary_search:

/* takes as input a sorted array a, its length,
and a value key to search,
returns the index of a cell which contains key,
returns -1 iff key is not present in the array
*/
int binary_search(int* a, int length, int key) {
int low = 0, high = length - 1;
while (low<=high) {
int mid = (low+high)/2;
if (almid] == key) return mid;
if (al[mid] < key) { low = mid+1; }
else { high = mid - 1; }
3
return -1;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 50 / 63

Programs with loops More exercises

Example 8 (Continued) - Solution (1/2)
/*@ predicate sorted{L}(intx a, int length) =
\forall integer i,j; O<=i<=j<length = alil<=alj];
*/
/%@ requires \valid(a+(0..length —1));
requires sorted(a,length);
requires length >=0;

assigns \nothing;

behavior exists:

assumes \exists integer i; O<=i<length && a[i] = key;

ensures O0<=\result<length && a[\result] = key;
behavior not_exists:

assumes \forall integer i; O<=i<length ==> a[i] != key;

ensures \result =— —1;

complete behaviors;
disjoint behaviors;

*/

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

51/ 63

Programs with loops More exercises

Example 8 (Continued) - Solution (2/2)

int binary_search(intx a, int length, int key) {
int low = 0, high = length — 1;
/+*@ loop invariant O<=low<=high+1;
loop invariant high<length;
loop assigns low, high;
loop invariant \forall integer k; O<=k<low => a[k] < key;
loop invariant \forall integer k; high<k<length =—> a[k] > key;
loop variant high—low;
*
while (low<=high) {
int mid = low+(high—low)/2;
if (a[mid] = key) return mid;
if (a[mid] < key) { low = mid+1; }
else { high = mid — 1; }
}

return —1;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 52 /63

Programs with loops More exercises

Example 9
Specify and prove the function sort:

// sorts given array a of size length > 0
void sort (intx a, int length) {
int current;
for (current = 0; current < length — 1; current++4) {

int min_idx = current;
int min = afcurrent];
for (int i = current + 1; i < length; i++4) {
if (a[i] < min) {
min = a[i];
min_idx = i;

}

}

if (min_idx != current){
L: a[min_idx]=a[current];
al[current]=min;

}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

53 / 63

Programs with loops More exercises

Referring to another state

\4

Specification may require values at differents program points

v

Use \at (e,L) to refer to the value of expression e at label L

v

Some predefined labels:

» \at(e,Here) refers to the current state
» \at(e,01d) refers to the pre-state
» \at(e,Post) refers to the post-state

\old(e) is equivalent to \at (e,01d)

v

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 54 / 63

Programs with loops More exercises

Example 9 (Continued) - Solution (1/3)

/+*@ predicate sorted{L}(intx a, integer length) =
\forall integer i,j; O<=i<=j<length ==> a[i]<=a[j];

*
/
/@ predicate swap{L1l,L2}(int*x a,integer i,integer j,integer length)=
O<=i<j<length
&& \at(a[i],L1l) = \at(a[j].L2)
&& \at(a[i],L2) = \at(a[j],L1)
&& \forall integer k; O<=k<length && kl=i && k=] —>
\at(a[k],L1) = \at(a[k],L2);
*
/
/@ inductive same_elements{L1l,L2}(int*a , integer length) {
case refl{L}:
\forall intxa, integer length; same_elements{L,L}(a,length);
case swap{L1,L2}: \forall intxa, integer i,j,length;
swap{L1,L2}(a,i,j,length) => same_elements{L1,L2}(a,length);
case trans{L1,L2,L3}: \forall intxa, integer length;
same_elements{L1,L2}(a,length)
==> same_elements{L2,L3}(a,length)
==> same_elements{L1,L3}(a,length);
}
*/

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 55 /63

Programs with loops More exercises

Example 9 (Continued) - Solution (2/3)

/*@ requires \valid(a+(0..length —1));
requires length > 0;
assigns a[0..length —1];
behavior sorted:
ensures sorted(a,length);
behavior same_elements:
ensures same_elements{Pre,Here}(a,length);
*/
void sort (int* a, int length) {
int current;
/+*@ loop invariant O<=current<length;
loop assigns a[0..length —1],current;
for sorted: loop invariant sorted(a,current);
for sorted: loop invariant
\forall integer i,j; O<=i<current<=j<length => a[i] <= a[j];
for same_elements: loop invariant
same_elements{Pre,Here}(a,length);
loop variant length—current;

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 56 / 63

Programs with loops More exercises

Example 9 (Continued) - Solution (3/3)

for (current = 0; current < length — 1; current++) {

int min_idx = current;
int min = a[current];
/+@ loop invariant current+l<=i<=length;
loop assigns i,min, min_idx;
loop invariant current<=min_idx<i;
loop invariant a[min_idx] = min;
for sorted: loop invariant
\forall integer j; current<=j<i => min <= al[j];
loop variant length —i;
*/
for (int i = current + 1; i < length; i++4) {

if (a[i] < min) {
min = ali];
min_idx = i;
}
}

if(min_idx != current) {
L: a[min_idx]=a[current];
alcurrent]=min;
/*@for same_elements:assert swap{L,Here}(a,current,min_idx,length);x/

}
}

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 57 /63

My proof fails... What to do?

Outline

My proof fails... What to do?

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 58 / 63

My proof fails... What to do?

Proof failures

A proof of a VC for some annotation can fail for various reasons:

> incorrect implementation (— check your code)
» incorrect annotation (— check your spec)
> missing or erroneous (previous) annotation (— check your spec)
» insufficient timeout (— try longer timeout)

» complex property that automatic provers cannot handle.

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 59 / 63

My proof fails... What to do?

Analysis of proof failures

When a proof failure is due to the specification, the erroneous annotation
may be not obvious to find. For example:

» proof of a “loop invariant preserved”’ may fail in case of

>
>
>
>

incorrect loop invariant

incorrect loop invariant in a previous, or inner, or outer loop
missing assumes or loop assumes clause

too weak precondition

» proof of a postcondition may fail in case of

» incorrect loop invariant (too weak, too strong, or inappropriate)
> missing assumes or loop assumes clause
> inappropriate postcondition in a called function
> too weak precondition
>
N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013

60 / 63

My proof fails... What to do?

Analysis of proof failures (Continued)

» Additional statements (assert, lemma, ...) may help the prover

» They can be provable by the same (or another) prover or checked
elsewhere

» Separating independent properties (e.g. in separate, non disjoint
behaviors) may help

» The prover may get lost with a bigger set of hypotheses (some of
which are irrelevant)

When nothing else helps to finish the proof:
> an interactive proof assistant can be used

» Coq, Isabelle, PVS, are not that scary: we may need only a small
portion of the underlying theory

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 61 /63

Conclusion

Outline

Conclusion

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 62 /63

Conclusion

Conclusion

» We learned how to specify and prove a C program with Frama-C

» Hoare-logic based tools provide a powerful way to formally verify
programs

» The program is proved with respect to the given specification, so

» Absence of proof failures is not sufficient
» The specification must be correct

» The proof is automatic, but analysis of proof failures is manual
» Proof failures help to complete the specification or find bugs

» Interactive proof tools may be necessary to finish the proof for
complex properties that cannot be proved automatically

N.Kosmatov, V.Prevosto, J.Signoles (CEA LIST) Proof of Programs with Frama-C March 18, 2013 63 / 63

