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The Trusted Platform Module (TPM) is a cryptoprocessor designed to protect integrity and security of modern
computers. Communications with the TPM go through the TPM Software Stack (TSS). The open-source library
tpm2-tss is a popular implementation of the TSS. Vulnerabilities in its code could allow attackers to recover
sensitive information and take control of the system. This paper presents a case study on formal verification of
tpm2-tss using the Frama-C verification platform. Heavily based on linked lists and complex data structures,
the library code appears to be highly challenging for the verification tool. We present several difficulties
and tool limitations we faced, illustrate them with examples and describe solutions that allowed us to verify
functional properties and the absence of runtime errors for a representative subset of functions. In particular,
their verification required several lemmas proved in the interactive proof assistant Coq. We describe our
verification results and desired tool improvements necessary to achieve a full formal verification of the target
code.
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1 Introduction

The Trusted PlatformModule (TPM) [54] has become a key security component inmodern computers.
The TPM is a cryptoprocessor designed to protect integrity of the architecture and ensure security
of encryption keys stored in it. The operating system and applications communicate with the TPM
through a set of APIs called TPM Software Stack (TSS). A popular implementation of the TSS is the
open-source library tpm2-tss

1. It is highly critical: vulnerabilities in its code could allow attackers
to recover sensitive information and take control of the system. Hence, it is important to formally
verify that the library respects its specification and does not contain runtime errors, often leading
to security vulnerabilities, for instance, exploiting buffer overflows or invalid pointer accesses.

1https://github.com/tpm2-software/tpm2-tss.
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Formal verification of this library is the main motivation of this work. This target is new and
highly ambitious for deductive verification: the library code is very large for a formal verification
project (over 120,000 lines of C code). It is also highly complex, heavily based on complex data
structures (with multiple levels of nested structures and unions), low-level code, calls to external
(e.g. cryptography) libraries, linked lists and dynamic memory allocation.

In this paper we present a first case study on formal verification of tpm2-tss using the Frama-C
verification platform [34]. We focus on a subset of functions involved in storing an encryption
key in the TPM, one of the most critical features of the TSS. This subset is relatively small (with
1k lines of executable code and 10k lines of interface) but handles important internal operations
of the library. We verify both functional properties and the absence of runtime errors, such as
invalid pointers and buffer overflows, often leading to security vulnerabalities. The functions are
annotated in the acsl specification language [5]. Their verification with Frama-C currently faces
several limitations of the tool, such as its capacity to reason about complex data structures, dynamic
memory allocation, linked lists and their separation from other data. We have managed to overcome
these limitations after minor simplifications and adaptations of the code. In particular, we replace
dynamic allocation with calloc by another allocator (attributing preallocated memory cells) that
we implement, specify and verify. We adapt a recent work on verification of linked lists [8] to our
case study, add new lemmas and prove them in the Coq proof assistant [53]. We identify some
deficiencies in the new Frama-C–Coq extraction for lists (modified since [8]), adapt it for the proof
and suggest improvements. We illustrate all issues and solutions on a simple illustrative example
while the (slightly adapted) real-life functions annotated in acsl and fully proved in Frama-C are
available online as a companion artifact2. Finally, we identify desired extensions and improvements
of the verification tool.

Contributions. The main contributions of this work include the following:
• specification and formal verification in Frama-C of a representative subset of functions of
the tpm2-tss library (slightly adapted for verification);

• presentation of main issues we faced during their verification with an illustrative example,
and description of solutions and workarounds we found;

• proof in Coq of all necessary lemmas (including some new ones) and assertions related to
linked lists, realized for the new version of Frama-C–Coq extraction;

• a list of necessary enhancements of Frama-C to achieve a complete formal verification of
the tpm2-tss library.

This journal paper has been extended with respect to the earlier conference paper [57] by additional
explanations, illustrations and examples, as detailed in the Publication History paragraph below.

Outline. The paper is organized as follows. Section 2 presents Frama-C. Section 3 introduces
the TPM, its software stack and the tpm2-tss library. Sections 4 and 5 present issues and solutions
related, resp., to memory allocation and memory management. Interactive proofs of necessary
lemmas and assertions are discussed in Sect. 6. Section 7 describes our verification results. Finally,
Sects. 8 and 9 present related work and a conclusion with necessary tool improvements.

Publication History. This article is an extended version of the earlier conference paper [57]
presented at iFM 2023. Major extensions include the following. Section 4 has been extended by
a more detailed presentation of the linked list representation with logic lists using Fig. 2, by a
discussion about handling separation using frame conditions and by Fig. 5. Section 5 has been
extended by a detailed presentation of proof-guiding annotations for separation propagation and by
adding Fig. 9. Section 6 has been enriched by a deeper discussion of necessary interactive proofs for
2Available (with the illustrative example, all necessary lemmas and their proofs) on https://doi.org/10.5281/zenodo.13693011.
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lemmas and assertions, illustrated by additional Figs. 12, 13 and 14. Additional files illustrating these
aspects have also been added into the companion artifact whose new version has been published
online. Finally, related work in Sect. 8 has been extended as well.

2 Frama-C Verification Platform

Frama-C [34] is an open-source verification platform for C code, which contains various plugins
built around a kernel providing basic services for source-code analysis. It offers acsl (ANSI/ISO
C Specification Language) [5], a formal specification language for C, that allows users to specify
functional properties of programs in the form of annotations, such as assertions or function contracts.
A function contract basically consists of pre- and postconditions (stated, resp., by requires and
ensures clauses) expressing properties that must hold, resp., before and after a call to the function.
It also includes an assigns clause listing (non-local) variables and memory locations that can
be modified by the function. While useful built-in predicates and logic functions are provided to
handle properties such as pointer validity or memory separation for example, acsl also supplies
the user with different ways to define predicates and logic functions.
Frama-C offers Wp, a plugin for deductive verification. Given a C program annotated in acsl,

Wp generates the corresponding proof obligations (also called verification conditions) that can
be proved either by Wp or, via the Why3 platform [28], by SMT solvers or an interactive proof
assistant like Coq [53]. To ensure the absence of runtime errors (RTE) (such as invalid pointer
accesses, arithmetic or buffer overflows), Wp can automatically add necessary assertions via a
dedicated option, and try to prove them as well.

Our choice to use Frama-C/Wp is due to its capacity to perform deductive verification of industrial
C code with successful verification case studies [22] and the fact that it is currently the only tool for
C source code verification recognized by ANSSI, the French Common Criteria certification body, as
an acceptable formal verification technique for the highest certification levels EAL6–EAL7 [23].

3 The TPM Software Stack and the tpm2-tss Library

This section briefly presents the Trusted Platform Module (TPM), its software stack and the imple-
mentation we chose to study: the tpm2-tss library. Readers can refer to the TPM specification [54]
and reference books as [3] for more detail.

TPM Software Stack. The TPM is a standard conceived by the Trusted Computing Group (TCG)3
for a passive secure cryptoprocessor designed to protect secure hardware from software-based
threats. At its base, a TPM is implemented as a discrete cryptoprocessor chip, attached to the
main processor chip and designed to perform cryptographic operations. However, it can also be
implemented as part of the firmware of a regular processor or a software component.

Nowadays, the TPM is well known for its usage in regular PCs to ensure integrity and to provide
a secure storage for the keys used to encrypt the disk with Bitlocker

4 and dm-crypt
5. However,

it can be (and actually is) used to provide other cryptographic services to the Operating System
(OS) or applications. For that purpose, the TCG defines the TPM Software Stack (TSS), a set of
specifications to provide standard APIs to access the functionalities and commands of the TPM,
regardless of the hardware, OS, or environment used.

The TSS APIs provide different levels of complexity, from the Feature API (FAPI) for simple and
common cryptographic services to the System API (SAPI) for a one-to-one mapping to the TPM
services and commands providing greater flexibility but complexifying its usage. In between lies

3https://trustedcomputinggroup.org/
4https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/
5https://docs.kernel.org/admin-guide/device-mapper/dm-crypt.html
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the Enhanced System API (ESAPI) providing SAPI-like functionalities but with slightly limited
flexibility. Other TSS APIs complete the previous ones for common operations like data formatting
and connection with the software or hardware TPM.

The TSS APIs and their implementations, as any software component or the TPM itself, can have
vulnerabilities6 that attackers can exploit to recover sensitive data communicated with the TPM
or take control of the system. We study the verification of one of the implementations of the TSS,
tpm2-tss, starting more precisely with its implementation of the ESAPI.

ESAPI Layer of tpm2-tss. The ESAPI layer provides functions for decryption and encryption,
managing session data and policies, thus playing an essential role in the TSS. It is very large
(over 50,000 lines of C) and is mainly split into two parts: the API part containing functions in
a one-to-one correspondence with TPM commands (for instance, the Esys_Create function of
the TSS corresponds to — and calls — the TPM2_Create command of the TPM), and the back-end
containing the core of that layer’s functionalities. Each API function calls several functions of the
back-end to carry out various operations on command parameters, before invoking the lower layers
and finally the TPM.
The ESAPI layer relies on a notion of context (ESYS_CONTEXT) containing all data the layer

needs to store between calls, so it does not need to maintain a global state. Defined for external
applications as an opaque structure, the context includes, according to the documentation, data
needed to communicate to the TPM, metadata for each TPM resource, and state information. The
specification, however, does not impose any precise data structure: it is up to the developer to
provide a suitable definition. The target implementation uses complex data structures (such as
structures with several nested levels of unions and sub-structures) and linked lists.

4 Dynamic Memory Allocation

Example Overview. We illustrate our verification case study with a simplified version of some
library functions manipulating linked lists. The illustrative example is split into Figs. 1–10 that
will be explained below step-by-step. Its full code being available in the companion artifact, we
omit in this paper some less significant definitions and assertions which are not mandatory to
understand the paper (but we preserve line numbering of the full example for convenience of
the reader). This example is heavily simplified to fit the paper, yet it is representative for most
issues we faced (except the complexity of data structures). It contains a main list manipulation
function, getNode (esys_GetResourceObject in the real code), used to search for a resource in the
list of resources and return it if it is found, or to create and add it using the createNode function
(esys_CreateResourceObject in the real code) if not.

Figure 1 provides the linked list structure as well as logic definitions used to handle logic lists
in specifications. Our custom allocator (used by createNode) is defined in Fig. 3. Figure 4 defines
a (simplified) context and additional logic definitions to handle pointer separation and memory
freshness. The node creation function is defined in Fig. 5. The search function is shown in Figs. 6, 7
and 8. As it is often done, some acsl notation (e.g. \forall, integer, ==>, <=, !=) is pretty-printed
(resp., as ∀, Z, ⇒, ≤, ≠). In this section, we detail Figs. 1–4 and some parts of Fig. 5. Some parts of
the specification will be presented in later sections.

Lists of Resources. Lines 11–15 of Fig. 1 show a simplified definition of the linked list of resources
used in the ESAPI layer of the library. Each node of the list consists of a structure containing a
handle used as a reference for this node, a resource to be stored inside, and a pointer to the next

6Like CVE-2023-22745 and CVE-2020-24455, documented on www.cve.org.

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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. . .
11 typedef struct NODE_T {

12 uint32_t handle; // the handle used as reference

13 RESOURCE rsrc; // the metadata for this rsrc

14 struct NODE_T * next; // next node in the list

15 } NODE_T; // linked list of resource

. . .
25 /*@

26 predicate ptr_sep_from_list{L}( NODE_T* e, \list<NODE_T*> ll) =

27 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));

28 predicate dptr_sep_from_list{L}( NODE_T ** e, \list<NODE_T*> ll) =

29 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));

30 predicate in_list{L}( NODE_T* e, \list<NODE_T*> ll) =

31 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll, n) == e;

32 predicate in_list_handle{L}( uint32_t out_handle , \list<NODE_T*> ll) =

33 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll, n)->handle == out_handle;

34 inductive linked_ll{L}( NODE_T *bl, NODE_T *el, \list<NODE_T*> ll) {

35 case linked_ll_nil{L}: ∀ NODE_T *el; linked_ll{L}(el, el, \Nil);

36 case linked_ll_cons{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> tail;

37 (\separated(bl, el) ∧ \valid(bl) ∧ linked_ll{L}(bl->next , el, tail) ∧
38 ptr_sep_from_list(bl, tail)) ⇒
39 linked_ll{L}(bl, el, \Cons(bl, tail ));

40 }

41 predicate unchanged_ll{L1, L2}(\list<NODE_T*> ll) =

42 ∀ Z n; 0 ≤ n < \length(ll) ⇒
43 \valid{L1}(\nth(ll,n)) ∧ \valid{L2}(\nth(ll,n)) ∧
44 \at((\nth(ll,n))->next , L1) == \at((\nth(ll,n))->next , L2);

. . .
48 axiomatic Node_To_ll {

49 logic \list<NODE_T*> to_ll{L}( NODE_T* beg , NODE_T* end)

50 reads {node ->next | NODE_T* node; \valid(node) ∧
51 in_list(node , to_ll(beg , end ))};

52 axiom to_ll_nil{L}: ∀ NODE_T *node; to_ll{L}(node , node) == \Nil;

53 axiom to_ll_cons{L}: ∀ NODE_T *beg , *end;

54 (\separated(beg , end) ∧ \valid{L}(beg) ∧
55 ptr_sep_from_list{L}(beg , to_ll{L}(beg ->next , end))) ⇒
56 to_ll{L}(beg , end) == \Cons(beg , to_ll{L}(beg ->next , end));

57 }

58 */

59

60 #include "lemmas_node_t.h"

Fig. 1. Linked list and logic definitions.

element. The handle is supposed to be unique7. In our example, a resource structure (omitted in
Fig. 1) is assumed to contain only a few fields of relatively simple types. The real code uses a more
extensive and complex definition (with several levels of nested structures and unions), covering all
possible types of TPM resources. While it does add some complexity to prove certain properties (as
some of them may require to completely unfold all resource substructures), it does not introduce
7This uniqueness is currently not yet specified in the acsl contracts.

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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new pointers that may affect memory separation properties, so our example remains representative
of the real code regarding linked lists and separation properties.
In particular, we need to ensure that the resource list is well-formed — that is, it is not circular,

and does not contain any overlap between nodes — and stays that way throughout the layer. To
accomplish that, as Frama-C does not provide any form of automated reasoning over linked lists, we
use and adapt the logic definitions from [8], which rely on a companion acsl logic list to represent
a C linked lists. These definitions are given on lines 26–44, 48–57 of Fig. 1. To prove the code, we
need to manipulate linked lists and segments of linked lists. Lines 48–57 define the translating
function to_ll that translates a C list defined by a NODE_T pointer into the corresponding acsl
logic list of (pointers to) its nodes. By convention, the last element end is not included into the
resulting logic list. It can be either NULL for a full linked list, or a non-null pointer to a node for a
linked list segment which ends just before that node. For instance, the lower part of Fig. 2 shows a
well-formed linked list of head pointer &A (referring to head node A). That list contains 3 nodes,
A, B and C, with the latter having its next field being the NULL pointer. Thus, to translate that list
into its companion acsl logic list, we simply need to use to_ll(A, NULL). The resulting logic list
contains three pointers (to the three nodes of the linked list) as represented in the upper part of
Fig. 2. For convenience, we denote that logic list as ll in this example.
Lines 34–40 show the linking predicate linked_ll establishing the equivalence between a C

linked list and an acsl logic list. This inductive definition includes memory separation between
nodes, validity of access for each node, as well as the notion of reachability in linked lists. In
acsl, given two pointers p and q, \valid(p) states that *p can be safely read and written, while
\separated(p,q) states that the referred memory locations *p and *q do not overlap (i.e. the
bytes representing these memory locations are disjoint, see the Wp Memory Model paragraph
in Sect. 6 for more detail). For instance, for the linked list and the logic list considered in Fig. 2,
linked_ll (&A, NULL, ll) establishes the equivalence between the C linked list of head pointer
&A (or head node A) and the acsl logic list ll. As mentioned above, this equivalence includes the
memory separation between nodes (that is to say, A, B and C do not overlap) and validity of access
for each node (that is to say, \valid(&A), \valid(&B) and \valid(&C) are true)..

Fig. 2. Graphic representation of the translation of a C linked list into an acsl logic list, and a link between a

C linked list and its acsl representation, using the logic definitions of Fig. 1.

Lines 26–29 provide predicates to handle separation between a list pointer (or double pointer)
and a full list. \nth(l,n) and \length(l) denote, resp., the n-th element of logic list l and the

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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length of l. For instance, if we consider again the example of Fig. 2, then \nth(ll,0), \nth(ll,1)
and \nth(ll,2) return, respectively, &A &B and &C, and \length(ll) is equal to 3.

The predicate unchanged_ll on lines 41–44 states that between two labels (i.e. program points)
L1 and L2, all list elements in a logic list refer to a valid memory location at both points, and that
their respective next fields retain the same value. It is used to maintain the structure of the list
throughout the code. Line 60 includes lemmas necessary to conduct the proof, further discussed in
Sect. 6.

Lack of Support for Dynamic Memory Allocation. As mentioned above, per the TSS specifications,
the ESAPI layer does not maintain a global state between calls to TPM commands. The library
code uses contexts with linked lists of TPM resources, so list nodes need to be dynamically allo-
cated at runtime. The acsl language provides clauses to handle memory allocations: in particular,
\allocable{L}(p) states that a pointer p refers to the base address of an unallocated memory
block, and \fresh{L1,L2}(p, n) indicates that p refers to the base address of an unallocated
block at label L1, and to an allocated memory block of size n at label L2. Unfortunately, while the
Frama-C/Wp memory model8 is able to handle dynamic allocation (used internally to manage local
variables), these clauses are not currently supported. Without allocability and freshness, proving
goals involving validity or separation between a newly allocated node and any other pointer is
impossible.

Static Memory Allocator. To circumvent that issue, we define in Fig. 3 a bank-based static allocator
calloc_NODE_T that replaces calls to calloc used in the real-life code. It attributes preallocated
cells, following some existing implementations (like the memb module of Contiki [41]). Line 63
defines a node bank, that is, a static array of nodes of size _alloc_max. Line 64 introduces an
allocation index we use to track the next allocable node and to determine whether an allocation
is possible. Predicate valid_rsrc_mem_bank on line 66 states a validity condition for the bank:
_alloc_idx must always be between 0 and _alloc_max. It is equal to the upper bound if all nodes
have been allocated. Predicates on lines 67–73 specify separation between a logic list of nodes
(resp., a pointer or a double pointer to a node) and the allocable part of the heap, and is used later
on to simulate memory freshness.
Lines 76–99 show a part of the function contract for the allocator defined on lines 100–111.

The validity of the bank should be true before and after the function execution (lines 77, 79).
Line 78 specifies the variables the function is allowed to modify. The contract is specified using
several cases (called behaviors). Typically, a behavior considers a subset of possible input states
(respecting its assumes clause) and defines specific postconditions that must be respected for this
subset of inputs. In our case, the provided behaviors are complete (i.e. cover all states allowed by
the function precondition) and their corresponding subsets are disjoint (line 98). We show only one
behavior (lines 89–97) describing a successful allocation (when an allocable node exists, as stated
on line 90). Postconditions on lines 92–93 ensure the tracking index is incremented by one, and
that the returned pointer points to the first allocable block. While this fact is sufficient to deduce
the validity clause on line 94, we keep this validity clause as well (so that the specification reflects
more accurately the behavior of any allocator, rather than simply our custom static one). In the
same way, lines 96–97 specify that the nodes of the bank other than the newly allocated block have
not been modified9.

8that is, intuitively, the way in which program variables and memory locations are internally represented and manipulated
by the tool.
9This property is partly redundant with the assigns clause on line 78 but its presence facilitates the verification.

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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62 #define _alloc_max 100

63 static NODE_T _rsrc_bank[_alloc_max ]; // bank used by the static allocator

64 static int _alloc_idx = 0; // index of the next rsrc node to be allocated

65 /*@

66 predicate valid_rsrc_mem_bank{L} = 0 ≤ _alloc_idx ≤ _alloc_max;

67 predicate list_sep_from_allocables{L}(\list<NODE_T*> ll) =

68 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒
69 ptr_sep_from_list{L}(& _rsrc_bank[i], ll);

70 predicate ptr_sep_from_allocables{L}( NODE_T* node) =

71 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(node , &_rsrc_bank[i]);

72 predicate dptr_sep_from_allocables{L}( NODE_T ** p_node) =

73 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(p_node , &_rsrc_bank[i]);

74 */

. . .
76 /*@

77 requires valid_rsrc_mem_bank;

78 assigns _alloc_idx , _rsrc_bank[_alloc_idx ];

79 ensures valid_rsrc_mem_bank;

. . .
81 behavior not_allocable:

82 assumes _alloc_idx == _alloc_max;

83

84 ensures _alloc_idx == _alloc_max;

85 ensures \result == NULL;

. . .
89 behavior allocable:

90 assumes 0 ≤ _alloc_idx < _alloc_max;

91

92 ensures _alloc_idx == \old(_alloc_idx) + 1;

93 ensures \result == &( _rsrc_bank[ _alloc_idx - 1]);

94 ensures \valid(\result );

95 ensures zero_rsrc_node_t( *( \result) );

96 ensures ∀ int i; 0 ≤ i < _alloc_max ∧ i ≠ \old(_alloc_idx) ⇒
97 _rsrc_bank[i] == \old(_rsrc_bank[i]);

98 disjoint behaviors; complete behaviors;

99 */

100 NODE_T *calloc_NODE_T ()

101 {

102 static const RESOURCE empty_RESOURCE;

103 if(_alloc_idx < _alloc_max) {

104 _rsrc_bank[_alloc_idx ]. handle = (uint32_t) 0;

105 _rsrc_bank[_alloc_idx ].rsrc = empty_RESOURCE;

106 _rsrc_bank[_alloc_idx ].next = NULL;

107 _alloc_idx += 1;

108 return &_rsrc_bank[_alloc_idx - 1];

109 }

110 return NULL;

111 }

Fig. 3. Allocation bank and static allocator.

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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113 typedef struct CONTEXT {

114 int placeholder_int;

115 NODE_T *rsrc_list;

116 } CONTEXT;

117 /*@

118 predicate ctx_sep_from_list(CONTEXT *ctx , \list<NODE_T*> ll) =

119 ∀ Z i; 0 ≤ i < \length(ll) ⇒ \separated(\nth(ll, i), ctx);

120 predicate ctx_sep_from_allocables(CONTEXT *ctx) =

121 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(ctx , &_rsrc_bank[i]);

122

123 predicate freshness(CONTEXT * ctx , NODE_T ** node) =

124 ctx_sep_from_allocables(ctx)

125 ∧ list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL))

126 ∧ ptr_sep_from_allocables(ctx ->rsrc_list)

127 ∧ ptr_sep_from_allocables (*node)

128 ∧ dptr_sep_from_allocables(node);

129

130 predicate sep_from_list{L}( CONTEXT * ctx , NODE_T ** node) =

131 ctx_sep_from_list(ctx , to_ll{L}(ctx ->rsrc_list , NULL))

132 ∧ dptr_sep_from_list(node , to_ll{L}(ctx ->rsrc_list , NULL ));

133 */

Fig. 4. Context and predicates to handle separation from a list and memory freshness.

Currently, Frama-C/Wp does not offer a memory model able to handle byte-level assignments in
C objects. To represent as closely as possible the fact that allocated memory is initialized to zero by
a call to calloc in the real-life code, we initialize each field of the allocated node to zero (see the C
code on lines 104–106 and the postcondition on line 95).

Contexts, Separation Predicates and Freshness. In the target library (and in our illustrative example),
pointers to nodes are not passed directly as function arguments, but stored in a context variable,
and a pointer to the context is passed as a function argument. Lines 113–116 of Fig. 4 define a
simplified context structure, comprising an int and a NODE_T pointer to the head of a linked list of
resources.
Additional predicates to handle memory separation and memory freshness are defined on

lines 118–132. In particular, the ctx_sep_from_list predicate on lines 118–119 specifies memory
separation between a CONTEXT pointer and a logic list of nodes. Lines 120–121 define separation
between such a pointer and allocables nodes in the bank.

In C, a successful dynamic allocation of amemory block implies its freshness, that is, the separation
between the newly allocated block (typically located on the heap) and all pre-existing memory
locations (on the heap, stack or static storages). As this notion of freshness is currently not supported
by Frama-C/Wp, we have to simulate it in another way. Our allocator returns a cell in a static array,
so other global variables — as well as local variables declared within the scope of a function — will
be separated from the node bank. To obtain a complete freshness within the scope of a function,
we need to maintain separation between the allocable part of the bank and other memory locations
accessible through pointers. In our illustrative example, pointers come from arguments including
a pointer to a CONTEXT object (and pointers accessible from it) and a double pointer to a NODE_T
node. This allows us to define a predicate to handle freshness in both function contracts.
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The freshness predicate on lines 123–128 of Fig. 4 specifies memory separation between known
pointers within the scope of our functions and the allocable part of the bank, using separation
predicates previously defined on lines 120–121, and on lines 67–73 of Fig. 3. This predicate will
become unnecessary as soon as dynamic allocation is fully supported by Frama-C/Wp.

In the meanwhile, a static allocator with an additional separation predicate simulating freshness
provides a reasonable solution to verify the target library. Since no specific constraint is assumed
in our contracts on the position of previously allocated list nodes already added to the list, the
verification uses a specific position in the bank only for the newly allocated node. The fact that
the newly allocated node does not become valid during the allocation (technically, being part of
the bank, it was valid in the sense of acsl already before) is compensated in our contracts by the
freshness predicate stating that the new node — as one of the allocable nodes — was not used in
the list before the allocation (cf. line 310 in Fig. 6). We expect that the migration from our specific
allocator to a real-life dynamic allocator — with a more general contract — will be very easy to
perform, as soon as necessary features are supported by Frama-C.

Similarly, the sep_from_list predicate on lines 130–132 specifies separation between the con-
text’s linked list and known pointers, using predicates on lines 118–119, and on lines 28–29 of
Fig. 1.

Handling Separation: Frame Conditions. In acsl, frame conditions are expressed at the level of
function contracts, using the assigns clause to define which non-local memory locations can
be modified by the function. When such a clause is declared, Wp tries to prove it at the scale of
the function. More specifically, it tries to prove that all non-local memory locations that may be
modified by the function are included in the set of memory locations listed in the assigns clause.
The set of memory locations that may be modified is composed of all the locations that may be
written to in the code of the function, as well as all the locations provided by the assigns clauses
of its callees, to provide Wp information about the callees’ side effects.
For example, line 78 of Fig. 3 specifies that only the allocation index _alloc_idx and the next

allocable node _rsrc_bank[_alloc_idx] can be modified by our custom allocator. Because the
node creation function createNode in Fig. 5 calls the custom allocator on line 186 (in replacement
to the original call to calloc commented on line 185), the assigns clause we have to write for the
function contract of createNode (cf. line 145) must include the locations specified in the assigns
clause of calloc_NODE_T (that is to say, _alloc_idx and _rsrc_bank[_alloc_idx]). It must also
include ctx->rsrc_list, as it is modified on lines 197 and 216, as well as *out_node, which is
modified on line 232. We do not need to (nor can we) add new_head to the clause, as it is defined
only locally. We do not need to add *new_head either, while the corresponding memory location is
not defined locally, because Wp knows from the function contract of calloc_NODE_T, with lines 85
and 93, that within the scope of the function, new_head is either NULL, or *new_head is the freshly
allocated node (on line 186) from rsrc_bank — that is, _rsrc_bank[_alloc_idx]), — which is
already present in the list. In the same way, callers of the node creation function need to include its
modified memory locations in their respective assigns clauses.
Specifying frame conditions is in practice necessary in order to ensure validity and separation

properties. In the general case, if no assigns clause is given for a specific function, it means that
the function potentially modifies every known memory location, making it practically impossible
to prove anything in its callers (where Wp would not have any precise information on the callee’s
side effects).
Thus, in order to ensure separation properties (as well as functional properties such as the

well-formedness of the list), precise assigns clauses are required. In our case, in order to propagate
to callers separation of a newly allocated node with the list, we need to preserve throughout
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135 /*@

136 requires valid_rsrc_mem_bank ∧ freshness(ctx , out_node );
. . .

145 ass igns _ a l l o c _ i d x , _ r s r c_bank [ _ a l l o c _ i d x ] , c tx −> r s r c _ l i s t , ∗ out_node ;
146 ensures va l id_rs rc_mem_bank ∧ f r e s h n e s s ( c tx , out_node ) ;
147 ensures s e p _ f r om_ l i s t ( c tx , out_node ) ;

. . .
161 behavior allocated:

162 assumes 0 ≤ _alloc_idx < _alloc_max;
. . .

167 ensures ctx ->rsrc_list == &_rsrc_bank[_alloc_idx - 1];
. . .

175 disjoint behaviors; complete behaviors;

176 */

177 int createNode(CONTEXT * ctx , uint32_t esys_handle , NODE_T ** out_node ){

178 //@ ghost pre_calloc :;
. . .

185 // NODE_T *new_head = calloc(1, sizeof(NODE_T )); /* library version */

186 NODE_T *new_head = calloc_NODE_T ();

187 /*@ assert unchanged_ll{pre_calloc , Here}(

188 to_ll{pre_calloc }(ctx ->rsrc_list , NULL )); */
. . .

190 if (new_head == NULL){ return 833;}
. . .

195 if (ctx ->rsrc_list == NULL) {

196 /* The first object of the list will be added */

197 ctx ->rsrc_list = new_head;
. . .

201 new_head ->next = NULL;

202 /*@ assert to_ll(new_head , NULL) == [| new_head |]; */

203 }

204 else {

205 /* The new object will become the first element of the list */
. . .

208 new_head ->next = ctx ->rsrc_list;
. . .

216 ctx ->rsrc_list = new_head;
. . .

223 }
. . .

232 *out_node = new_head;
. . .

236 /*@ assert \nth(to_ll(ctx ->rsrc_list , NULL), 0)->handle == esys_handle ;*/

237 /*@ assert in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL ));*/

238 /*@ assert list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL )); */

239 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

240 return 1610;

241 }

Fig. 5. The node creation function, where some annotations are removed.
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function contracts the freshness predicate, as well as information to associate an allocated node
with the allocation bank. In particular, the property on line 93 ensuring that the pointer returned
by the allocator (in case of a successful allocation) points to the _alloc_idx-th element of array
_rsrc_bank is required. This is necessary in order to propagate to the node creation function that,
given the freshness, the returned allocated node on line 186 of createNode is separated from the
list. The callee’s assigns clause helps prove the assertion line 187-188, which indicates that the
structure of the list was not changed (as the location potentially written by the call on line 186 was
separated from the list). Similarly, we need to ensure the same equality in the postcondition of
the node creation function with line 167, in order to provide the necessary information to specify
and prove assigns clauses in callers, and to help propagate to the callers (in this case, the search
function of Figs. 6 and 7) that the newly allocated node is separated from the previous list.

5 Memory Management

This section presents how we use the definitions introduced in Sect. 4 to prove selected ESAPI
functions involving linked lists. We also identify separation issues related to limitations of the
Typed memory model of Wp, as well as a way to manage memory to overcome such issues. In this
section, we present some parts of Fig. 5 and Figs. 6–10.

The Search Function. Figures 6 (contract) and 7 (body) provide the search operation getNodewith
a partial contract illustrating functional and memory safety properties we aim to verify and judge
necessary for the proof at a larger scale. Some proof-guiding annotations (assertions, loop contracts)
have been skipped for readability, but the code is preserved (mostly with the same line numbers).
The arguments include a context, a handle to search and a double pointer for the returned node.

In Fig. 7, lines 380–416 perform the search of a node by its handle: variable temp_node iterates
over the nodes of the resource list, and the node is returned if its handle is equal to the searched
one (in which case, the function returns 616 for success).

Lines 420–430 convert the resource handle to a TPM one, call the creation function to allocate a
new node and add it to the list as its new head with the given handle if the allocation was successful
(and return 833 if not). The new node is returned by createNode in temp_node_2 (again via a
double pointer).

Lines 435–462 perform some modifications on the content of the newly allocated node, without
affecting the structure of the list. An error code is returned in case of a failure, and 1611 (with the
allocated node in *node) otherwise. Lines 450–451, 453–454 and 461 provide some assertions to
propagate information to the last return clause of the function, attained in case of the successful
addition of the new element to the list.
Compared to the real-life code, we have introduced anonymous blocks on lines 380–416 and

422–452 (which are not semantically necessary and were not present in the original code), as
well as two local variables tmp_node and tmp_node2 instead of only one. We explain these code
adaptations below.

Contract of the Search Function. Figure 6 provides a partial function contract, illustrating two
behaviors of getNode: if the element was found by its handle in the list (cf. lines 325–326), and if
the element was not found at first, but was then successfully allocated and added (cf. lines 355–359).
For each of them, specific postconditions are stated. For instance, for the latter behavior, lines
369–370 ensure that if a new node was successfully allocated and added to the list, the old head
becomes the second element of the list, while line 372 ensures the separation of known pointers
from the new list. We specify that the complete list of provided behaviors must be complete and
disjoint (line 374).
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309 /*@

310 requires valid_rsrc_mem_bank{Pre} ∧ freshness(ctx , node);

313 requires linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));

317 requires sep_from_list(ctx , node) ∧ \separated(node , ctx);
. . .

321 ensures valid_rsrc_mem_bank ∧ freshness(ctx , node);
. . .

325 behavior handle_in_list:

326 assumes in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));
. . .

332 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL ));

333 ensures \result == 616;
. . .

355 behavior handle_not_in_list_and_node_allocated:

356 assumes !( in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL )));

357 assumes rsrc_handle ≤ 31U ∨ (rsrc_handle \in {0x10AU , 0x10BU})

358 ∨ (0 x120U ≤ rsrc_handle ≤ 0x12FU);

359 assumes 0 ≤ _alloc_idx < _alloc_max;
. . .

369 ensures \old(ctx ->rsrc_list) ≠ NULL ⇒
370 \nth(to_ll(ctx ->rsrc_list , NULL), 1) == \old(ctx ->rsrc_list );

371 ensures linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));

372 ensures sep_from_list(ctx , node);

373 ensures \result == 1611;

374 disjoint behaviors; complete behaviors;

375 */

Fig. 6. The search function contract, where some annotations are removed.

As global preconditions, we notably require for the list to be well-formed (through the use of
the linking predicate, cf. line 313), and the validity of our bank and freshness of allocable nodes
with respect to function arguments and global variables (cf. line 310). Line 317 requires memory
separation of known pointers from the list of resources using the sep_from_list predicate, and
separation among known pointers using the \separated predicate.
As a global postcondition, we require that our bank stays valid, and that freshness of the

(remaining) allocable nodes relatively to function arguments and global variables is maintained
(cf. line 321). However, properties regarding the list itself — such as the preservation of the list
when it is not modified (line 332), or ensuring that it remains well-formed after being modified (line
371) — have to be issued to acsl behaviors to be proved, due to the way how local variables are
handled in the memory model of Wp. The logic list properties are much more difficult for solvers
to manipulate in global behaviors.

Memory Model Limitation: an Unprovable Property. Consider the assertion on line 377 of Fig. 7.
Despite the presence of the same property as a precondition of the function (line 313 in Fig. 6),
currently this assertion cannot be proved by Wp at the entry point for the real-life version of the
function. Basically, the real-life version can be obtained10 from Fig. 7 by removing the curly braces
on lines 380, 416, 422, 452. This issue is due to a limitation of the Wp memory model.

10another difference — removing variable tmp_node2 declared on line 423 and using tmp_node instead — can be
ignored in this context.
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376 int getNode(PSEUDO_CONTEXT *ctx , uint32_t rsrc_handle , NODE_T ** node) {

377 /*@ assert linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));*/

378 int r;

379 uint32_t tpm_handle;

380 { /* Block added to circumvent issues with the WP memory model */

381 NODE_T *tmp_node;
. . .

401 for (tmp_node = ctx ->rsrc_list; tmp_node ≠ NULL;

402 tmp_node = tmp_node ->next) {
. . .

405 if (tmp_node ->handle == rsrc_handle ){* node = tmp_node; return 616;}

. . .
415 }

416 }
. . .

420 r = iesys_handle_to_tpm_handle(rsrc_handle , &tpm_handle );
. . .

422 { /* Block added to circumvent issues with the WP memory model */

423 NODE_T *tmp_node_2 = NULL;
. . .

428 r = createNode(ctx , rsrc_handle , &tmp_node_2 );

429 /*@ assert sep_from_list(ctx , node );*/

430 if (r == 833) {return r;};
. . .

435 tmp_node_2 ->rsrc.handle = tpm_handle;

436 tmp_node_2 ->rsrc.rsrcType = 0;

437 size_t offset = 0;
. . .

440 r = uint32_Marshal(tpm_handle , &tmp_node_2 ->rsrc.name.name[0],

441 sizeof(tmp_node_2 ->rsrc.name.name),&offset );
. . .

443 if (r ≠0) {return r;};

444 tmp_node_2 ->rsrc.name.size = offset;
. . .

449 *node = tmp_node_2;

450 /*@ assert unchanged_ll{Pre , Here}(

451 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

452 }

453 /*@ assert unchanged_ll{Pre , Here}(

454 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/
. . .

461 /*@ assert sep_from_list(ctx , node );*/

462 return 1611;

463 }

Fig. 7. The (slightly rewritten) search function body.

Indeed, for such an assertion (as in general for any annotation to be proved), Wp generates a proof
obligation, to be proved by either Wp itself or by external provers via the Why3 platform [28]. Such
an obligation includes a representation of the current state of the program memory. In particular,
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a int getNode (..., NODE_T ** node){

b // list properties unprovable

c int r;

d

e NODE_T *tmp_node;

f ... // iterate over the list

g

h

i

j r = createNode (..., &tmp_node );

k ...

l *node = tmp_node;

m

n return 1611;

o }

a int getNode (..., NODE_T ** node){

b // list properties proved

c int r;

d {

e NODE_T *tmp_node;

f ... // iterate over the list

g }

h {

i NODE_T *tmp_node_2 = NULL;

j r = createNode (..., &tmp_node_2 );

k ...

l *node = tmp_node_2;

m }

n return 1611;

o }

Fig. 8. Comparison of the real-life code of getNode (on the left) and its rewriting with additional blocks (on

the right) for proving list properties.

pointers such as the resource list ctx->rsrc_list (and by extension, any reachable node of the
list) will be considered part of the heap. To handle the existence of a variable in memory — should
it be the heap, the stack or the static segments — Wp uses an allocation table to express when
memory blocks are used or freed, which is where the issue lies. For instance, on line 428 of Fig. 7,
the temp_node_2 pointer has its address taken, and is considered as used locally due to requires
involving it in our function contract for createNode (e.g. on line 136 in Fig. 5). It is consequently
transferred to the memory model, where it has to be allocated.
Currently, the memory model of Wp does not provide separated allocation tables for the heap,

stack and static segments. Using temp_node_2 the way it is used on line 428 changes the modifica-
tion status of the allocation table, which is then considered as modified as a whole. This affects the
status of other “allocated” (relatively to the memory model) variables as well, including (but not
limited to) any reachable node of the list.

Therefore, the call to createNode (line 428 of Fig. 7) in the real-life code that uses the address of
a local pointer as a third argument is sufficient to affect the status of the resource list on the scale
of the entire function. As a result, the assertion on line 377 is not proved.

A Workaround. As a workaround (found thanks to an indication of the Wp team) to the afore-
mentioned issue, we use additional blocks and variable declarations. Figure 8 presents those minor
rewrites (with line numbers in alphabetical style to avoid confusion with the illustrative example).
The left side illustrates the structure of the original C code, where the address of temp_node is
taken and used in the createNode call on line j, and the same pointer is used to iterate on the
list. On the right, we add additional blocks and a new pointer temp_node_2, initialized to NULL to
match the previous iteration over the list. Each block defines a new scope, outside of which the
pointer used by createNode will not exist and side-effect-prone allocations will not happen. It
solves the issue.

Additional Proof-Guiding Annotations. Additional annotations (mostly omitted in Fig. 7) include,
as usual, loop contracts and a few assertions. Assertions can help the tool to establish necessary
intermediate properties or activate the application of relevant lemmas. For instance, the assertions
in lines 450–451 and 453–454 help propagate information over the structure of the linked list (by its
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422 { /* Block added to circumvent issues with the WP memory model */

423 NODE_T *tmp_node_2 = NULL;

424 /*@ assert dptr_sep_from_list (&tmp_node_2 ,

425 to_ll{post_loop }(ctx ->rsrc_list , NULL ));*/

426 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(ctx ->rsrc_list , NULL ));*/

427 /*@ assert \separated(node , &tmp_node_2 );*/

428 r = createNode(ctx , rsrc_handle , &tmp_node_2 );

429 /*@ assert sep_from_list(ctx , node );*/

430 if (r == 833) {/*@ assert sep_from_list(ctx , node );*/ return r;};

431 //@ ghost post_alloc :;
. . .

444 tmp_node_2 ->rsrc.name.size = offset;

445 /*@ assert unchanged_ll{post_alloc , Here}(to_ll(ctx ->rsrc_list , NULL ));*/

446 /*@ assert dptr_sep_from_list(node , to_ll(ctx ->rsrc_list , NULL ));*/

447 /*@ assert dptr_sep_from_list(node ,

448 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

449 *node = tmp_node_2;

450 /*@ assert unchanged_ll{Pre , Here}(

451 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

452 }

453 /*@ assert unchanged_ll{Pre , Here}(

454 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

455 /*@ assert in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));*/

456 /*@ assert ctx ->rsrc_list ->next == \at(ctx ->rsrc_list , Pre );*/

457 /*@ assert \at(ctx ->rsrc_list , Pre) ≠ \null ⇒
458 ctx ->rsrc_list ->next == \nth(to_ll(ctx ->rsrc_list , NULL), 1);*/

459 /*@ assert ctx ->rsrc_list ->handle == rsrc_handle ;*/

460 /*@ assert freshness(ctx , node );*/

461 /*@ assert sep_from_list(ctx , node );*/

462 return 1611;

Fig. 9. Examples of supplementary annotations needed to propagate properties with additional blocks.

logic list representation) outside each block, and finally to postconditions. Some other intermediate
assertions are needed to prove the unchanged nature of the list. Such additional assertions can be
tricky to find in some cases and need some experience.

Additional intermediate annotations can be required in order to help propagate separations from
the list, and the well-formedness of the list through the introduced anonymous blocks, and from
the scope of the function to its postconditions. For instance, the assertions in lines 455–461 of
Fig. 9 are used to deduce and prove — as part of postconditions, outside the anonymous blocks —
functional properties on the list.

More specifically, the assertions on lines 460 and 461 (which serve to preserve the freshness and
the separation of the context pointer to any reachable node of the list) are proved in this instance
using information provided by assertions on line 453–459. Lines 456–458 in particular help prove
lines 460–461 by describing the list at this program point as the list provided at the entry of the
function, to which a new node was added (as the new head of the list) using createNode. In the
same vein, lines 453–454 that establish that the structure of the previously known list has not
changed between the start of the function and the current program point help prove properties
of lines 456–458. This is however only achievable at this scale, but not when the property is
in the postcondition of the function. Indeed, given a specific postcondition (e.g. line 371), the
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271 /*@

272 requires \valid(src) ∧ \valid(dest + (0 .. sizeof (*src)-1));

273 requires \separated(dest +(0.. sizeof (*src)-1),src);

274

275 assigns dest[0 .. sizeof (*src)-1];
. . .

279 */

280 void memcpy_custom(uint8_t *dest , uint32_t *src) {

281 dest [3] = (uint8_t )(*src & 0xFF);

282 dest [2] = (uint8_t )((* src >> 8) & 0xFF);

283 dest [1] = (uint8_t )((* src >> 16) & 0xFF);

284 dest [0] = (uint8_t )((* src >> 24) & 0xFF);

285 }
. . .

298 int uint32_Marshal(uint32_t in,uint8_t buff[],size_t buff_size ,size_t *offset ){

299 size_t local_offset = 0;
. . .

302 // memcpy (&buff[local_offset], &in , sizeof (in));

303 memcpy_custom (&buff[local_offset], &in);
. . .

306 }

Fig. 10. Definition for memcpy replacement in marshal.

corresponding proof obligation generated by Wp will “only” contain information on the program
memory (be it from the acsl annotations or the C code itself) after return clauses but “before
postconditions”, hence after any locally defined variable has been freed.
In this instance, the proof obligation does not contain any information pertaining to other

ensures clauses, but without anonymous blocks, would still contain the variable allocations
(relatively to the memory model) such as that of tmp_node_2 that would modify the modification
status of the list as a whole in the scope of the function. The list would be considered to be “modified”
again after any return clause, as tmp_node_2 would be freed (relatively to the memory model).
From there, most postconditions would be very difficult to prove. Anonymous blocks and the
described assertions allow for the proof of all postconditions, and thus a complete functional proof
of the function.

Handling Pointer Casts. Another memory manipulation issue we have encountered comes from
the function call on line 440 in getNode: after having been added to the resource list, the newly
allocated node must have its name (or more precisely, the name of its resource) set from its TPM
handle tpm_handle (derived from the handle of the node by the function call on line 420). This is
done through marshaling using the uint32_Marshal function, partially shown on lines 298–306 of
Fig. 10, whose role is to store a 4-byte unsigned int (in this case, our TPM handle) in a flexible array
of bytes (the name of the resource). The function calls memcpy on (commented) line 302, which is
the source of our issue (a correct endianness being ensured by a previous byte swap in in).
For most functions of the standard libraries, Frama-C provides basic acsl contracts to handle

their use. However, for memory manipulation functions like memcpy, such contracts rely on pointer
casts, whose support in Wp is currently limited. To circumvent this issue, we define our own
memory copy function on lines 280–285: instead of directly copying the 4-byte unsigned int pointed
by src byte per byte using pointer casts using memcpy, we extract one-byte chunks using byte
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lemma in_next_not_bound_in{L}: ∀ NODE_T *bl, *el, *item , \list<NODE_T*> ll;

linked_ll(bl , el, ll) ⇒ in_list(item , ll) ⇒ item ->next ≠ el ⇒
in_list(item ->next , ll);

lemma linked_ll_split_variant{L}:

∀ NODE_T *bl , *bound , *el, \list<NODE_T*> l1, l2;

linked_ll(bl , el, l1 ^ l2) ⇒ l2 ≠ \Nil ⇒
bound == \nth(l1 ^ l2, \length(l1 ^ l2) - \length(l2)) ⇒

linked_ll(bl, bound , l1) ∧ linked_ll(bound , el, l2);

Fig. 11. New lemmas proved in our verification work (in addition to those in [8]).

shifts and bitmasks (cf. lines 281–284, 303) without casts. Line 272 requires that both source and
destination locations are valid, also without casts. The assigns clause on line 275 implies that
the function may only modify sizeof(*src) bytes, that is to say, sizeof(uint32_t)= 4 bytes,
at address dest, also without casts. This version is fully handled by Wp. Current contracts are
sufficient for the currently considered functional properties and the absence of runtime errors (and
we expect they will be easy to extend for more precise properties if needed).

6 Interactively Proved Lemmas and Assertions

When SMT solvers become inefficient (e.g. for inductive definitions), it can be necessary to add
lemmas to facilitate the proof. These lemmas can then be directly instantiated by solvers, but
proving them often requires to reason by induction, with an interactive proof assistant.

The previous work using logic lists [8] defined and proved several lemmas using the Coq proof
assistant. We have added two new useful lemmas (defined in Fig. 11) and used twelve of the previous
ones to verify both the illustrative example and the subset of real-life functions. However, because
the formalization of the memory models and various aspects of acsl changed between the version
of Frama-C used in the previous work [8] and the one we use, we could not reuse the proofs of
these lemmas. While older Frama-C versions directly generated Coq specifications, the Frama-C
version used in this work lets Why3 generate them. Even if the new translation is close to the
previous one, the way logic lists are handled was modified significantly.11

In the past, Frama-C logic lists were translated into the lists Coq offers in its standard library: an
inductively defined type as usually found in functional programming languages such as OCaml and
Haskell. Such types come with an induction principle that allows to reason by induction. Without
reasoning inductively, it also offers the possibility to reason by case on lists: a list is defined either
as empty, or as built with the cons constructor. In the Frama-C version used in this work, acsl
logic lists are axiomatized as follows: two functions nil and cons are declared, as well as a few
other functions on logic lists, including the length of a list (length), the concatenation of two lists
(concat), and getting an element from a list given its position (nth). However, there is no induction
principle for logic lists, and because nil and cons are not constructors, it is not possible to reason
by case on logic lists in the Coq formalization. It is possible to test if a list is empty, but if not, we
do not know that it is built with cons. Writing new recursive functions on such lists is also very
difficult. Indeed, we only have nth to observe a list, while the usual way to program functions on
lists uses the head and the tail of a list for writing the recursive case.

In this case study, there are typically two inductive definitions that can allow proof by induction
of a property in which they are involved: the inductive definition of the list type and the definition
of the inductive predicate linked_ll. Interestingly, even if the translation of logic lists into Coq

11Thanks to the identification of these limitations in this work, this issue was fixed in the following versions of Frama-C.
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772 Inductive P_linked_ll: (Numbers.BinNums.Z → Numbers.BinNums.Z) →
773 (addr → addr) → addr → addr → list addr → Prop :=

774 | Q_linked_ll_nil :

775 ∀ (Malloc:Numbers.BinNums.Z → Numbers.BinNums.Z)

776 (Mptr:addr → addr) (el:addr),

777 P_linked_ll Malloc Mptr el el (nil : list addr)

778 | Q_linked_ll_cons :

779 ∀ (Malloc:Numbers.BinNums.Z → Numbers.BinNums.Z)

780 (Mptr:addr → addr) (bl:addr) (el:addr) (tail:list addr),

781 P_ptr_sep_from_list bl tail → valid_rw Malloc bl 73%Z →
782 separated bl 73%Z el 73%Z →
783 P_linked_ll Malloc Mptr (Mptr (shift bl 72%Z)) el tail →
784 P_linked_ll Malloc Mptr bl el (cons bl tail).

Fig. 12. Coq definition of linked_ll generated by Why3.

does not allow proof by induction over a logic list, when the hypotheses of our lemmas include a
fact expressed using linked_ll (defined in lines 34-40 of Fig. 1), it is still possible to reason by case,
because this inductive predicate is translated into Coq as an inductive predicate. Consequently,
there are only two possible cases for the logic list: either it is empty, or it is built with cons. To
allow proof by induction when such a hypothesis is missing, we axiomatized a tail function, and a
decomposition principle stating that a list is either nil or cons. These axioms are quite classic and
can be implemented using a list type defined by induction. We did not need an inductive principle
on logic lists as either the lemmas did not require a proof by induction, or we reasoned inductively
on the inductive predicate linked_ll. However, we proved such an induction principle using only
the axioms we added. It is thus available to prove some other lemmas provided in [8] — not needed
yet in our current work — that were proved by induction on lists.

Because of these changes, to prove all lemmas we need, we had to adapt all previous proof scripts,
and in a few cases significantly. The largest proof scripts are about 100 lines long excluding our
axioms, and the shortest takes a dozen lines. Thanks to our approach, we expect that the required
changes in our proofs of lemmas will remain minimal for later versions of Frama-C/Wp in which
the translation of logic lists into Coq will be improved: we will only have to prove the statements
of the axioms we introduced on tail and our decomposition principle.

When SMT solvers fail on apparently simple goals, it can be necessary to dive into the Coq
translation, including the formalization of the Wp memory model, in order to better understand
the underlying difficulties. The remainder of this section will explore the difficulties to verify the
initial getNode function, i.e. before adding the anonymous block in Section 4. We will present the
application of the Coq interactive prover with reference to Figs. 12–14. These figures are extracted
from the Coq proof obligation of the first assertion of getNode (line 377 of Fig. 7) without adding
anonymous blocks as a workaround. The Coq file has initially been generated by Why3, then the
Coq proof script has been crafted by hand. It is available in file

artifact/proofs/lemmas/wp_coq/getNode_assert_target.v

in the companion artifact. The full illustrative example, from which it was generated, is contained
in file artifact/proofs/example/linked_ll_self_contained_no_block.c of the companion
artifact.
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Coq Representation. Lines 772–784 of Fig. 12 illustrate the direct translation generated by Why3
of the linked_ll predicate as defined in Fig.1. We observe that both definitions are inductive
and that their constructors have matching parameters including bl, el and tail. Moreover, both
definitions also exhibit matching built-in predicates such as separated and valid (named valid_rw
in the Coq representation) or user-defined predicates like ptr_sep_from_list and linked_ll
(which are prefixed by P_ in the Coq representation). However, the representation also reveals new
parameters, namely Malloc and Mptr, which constitute elements of the memory model employed
by Frama-C/Wp.

Wp Memory Model. Firstly, the Wp memory model handles pointer validity as we can observe in
the Coq representation. Indeed, this is the purpose of the allocation table Malloc, which is formal-
ized as a function taking and returning an integer (represented here by the Numbers.BinNums.Z
Coq type). This allocation table can be conceptualized as a map-based collection of memory blocks,
wherein each block’s unique ID is associated with its corresponding size. In accordance with this
rationale, an address (designated by the addr Coq type) is defined as a tuple comprising a base
(the ID of a memory block) and an offset (the offset with respect to the beginning of the block).
The allocation table is employed through the valid built-in predicate, defined on lines 174–178
of Fig. 13, to guarantee the validity of memory accesses. This is achieved by verifying that, given
a starting address and a size of a memory segment, the whole memory segment belongs to an
existing memory block (and, in particular, does not exceed its allocated size).

Secondly, Wp memory model handles memory values. It is important to note that the memory is
abstracted as a set of unsized cells containing any primitive type. Hence, a valid pointer has to refer
to one of these cells, and any type can be accessed through it. This is formalized in the Wp memory
model through the use of type-specific value tables for each utilized primitive type. To illustrate
this, the linked_ll predicate only refers to pointers when reasoning about the next field of the
cell, so it only uses the pointer table, referenced here as Mptr. It would also include the integer table
Mint if we had to reason about pointers of integers. These tables are represented as functions that
accept Wp addresses and return values of the type of the table in question. While this modeling
approach potentially permits the mapping of the same address into multiple tables, in practice,
each address must be mapped into only one value table to ensure soundness of the memory model.

Wp finally introduces the concept of memory regions, which are used to discriminate existentially
quantified memory blocks (usually introduced through valid clauses in the function’s precondition)
and new blocks from the function’s local memory. The mapping of blocks into their regions is
formalized as a function taking a block ID and returning the corresponding region ID. Usually,
regions are used to categorize memory locations based on their provenance. The rationale for that
is that global variables, addresses to the heap and to callers’ local variables are stored in regions
with a negative or null ID, and addresses referring to function local memory, such as variables, are
stored in regions with a strictly positive ID.

Wp Predicates. The Coq representation in Fig. 13 also shows the formalization of each predicate
used in the lemma definition. Along with the valid predicate already described above, there are
several other built-in predicates. The separated predicate, defined on lines 156–162, specifies that
two addresses point to different memory blocks, or to non-overlapping parts of the same block. The
framed predicate, defined on lines 227–229, specifies that pointers to non-local memory locations,
assigned prior to the current function, actually contain addresses that also point to non-local
memory locations (that is, with a negative or null ID).
We observe that the user-defined predicates translated into Coq are very similar to their acsl

counterparts, but accept more arguments, such as an allocation table or value tables. For example,
the unchanged_ll predicate, defined on lines 794–802 of Fig. 13, accepts four new arguments:
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156 Definition separated (p:addr) (p_size:Numbers.BinNums.Z) (q:addr)

157 (q_size:Numbers.BinNums.Z) : Prop :=

158 (p_size <= 0%Z)%Z ∨
159 (q_size <= 0%Z)%Z ∨
160 ∼ ((base p) = (base q)) ∨
161 (((offset q) + q_size)%Z <= (offset p))%Z ∨
162 (((offset p) + p_size)%Z <= (offset q))%Z.

. . .
174 Definition valid_rw (Malloc:Numbers.BinNums.Z → Numbers.BinNums.Z) (p:addr)

175 (size:Numbers.BinNums.Z) : Prop :=

176 (0%Z < size)%Z →
177 (0%Z < (base p))%Z ∧
178 (0%Z <= (offset p))%Z ∧ (((offset p) + size)%Z <= (Malloc (base p)))%Z.

. . .
227 Definition framed (Mptr:addr → addr) : Prop :=

228 ∀ (p:addr), ((region (base p)) <= 0%Z)%Z →
229 ((region (base (Mptr p))) <= 0%Z)%Z.

. . .
794 Definition P_unchanged_ll (Malloc:Numbers.BinNums.Z → Numbers.BinNums.Z)

795 (Mptr:addr → addr) (Malloc1:Numbers.BinNums.Z → Numbers.BinNums.Z)

796 (Mptr1:addr → addr) (ll:list addr) : Prop :=

797 ∀ (i:Numbers.BinNums.Z),

798 let a := nth ll i in

799 let a1 := shift a 72%Z in

800 (0%Z <= i)%Z → (i < (length ll))%Z →
801 (((Mptr a1) = (Mptr1 a1)) ∧ valid_rw Malloc a 73%Z) ∧
802 valid_rw Malloc1 a 73%Z.

Fig. 13. Examples of built-in and user-defined predicates in Coq.

546 Axiom Q_L_tmp_node_1142_region : ((region 1143%Z) = 2%Z).
. . .

1005 Theorem simpl_wp_goal :

1006 ∀ (Malloc: Numbers.BinNums.Z → Numbers.BinNums.Z) (Mptr: addr → addr) (ctx:addr),

1007 let bl := Mptr (shift ctx 1%Z) in

1008 let ll := L_to_ll Malloc Mptr bl null in

1009 let m := map.Map.set Malloc 1143%Z 1%Z in

1010 framed Mptr →
1011 ((region (base ctx)) <= 0%Z)%Z →
1012 P_linked_ll Malloc Mptr bl null (L_to_ll Malloc Mptr bl null) →
1013 P_linked_ll m Mptr bl null (L_to_ll m Mptr bl null).

Fig. 14. Slightly simplified proof obligation in Coq of the first assertion of getNode without anonymous

blocks.

Malloc, Mptr, Malloc1 and Mptr1. These new arguments represent the memory states at the labels
(i.e. program points, previously mentioned in Sect. 4), between which the structure of the linked
list must remain unchanged.
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Modifying the Allocation Table. Now, thanks to the introduction of the memory model used by
Frama-C/Wp, the issue outlined in Sect. 5 can be elucidated with more clarity. We observe that the
allocation table is an argument to both the linked_ll predicate and the logic function to_ll, for
example on lines 1012–1013 of Fig. 14. Consequently, given that both of them are defined recursively,
any modification to the allocation table requires a proof of the preservation of linked_ll and the
absence of change of to_ll through induction.

This happens in the getNode function presented in Fig. 7 on the first assertion (line 377). Without
the added anonymous blocks in Fig. 8, the allocation table is modified at the function entry and
thus, all assertions about the inductive predicate will now fail.
The proof can still be done inductively in Coq and a slightly modified proof obligation in Coq

is presented on lines 1005–1013 in Fig. 14 (where all unused preconditions are filtered out). The
concept underlying the proof is relatively simple, as only the allocation table has been altered.
So, it is necessary to demonstrate that to_ll remains unchanged and linked_ll is preserved
via induction. Both inductions are similar, let us briefly describe the induction used to prove the
preservation of linked_ll (an interested reader will find the full proof script in the companion
artifact). The induction step is about proving that an arbitrary list cell, previously head of the
linked_ll predicate (the bl parameter of the inductive case, lines 778–784 of Fig. 12), can still be
head of a newly constructed linked_ll predicate with the modified allocation table. To achieve
this, it is first needed to reconstruct the proofs of all the previously known properties affected by
the allocation table, which only correspond to the valid clauses here. To prove that the valid clauses
still hold, we have to prove that the modified block (line 1096 of Fig. 14) is always different from the
existentially quantified block containing the list cell. To that purpose, the axiom provided by Why3
on line 546 of Fig. 14 is mandatory, as it allows reasoning on the memory region of the modified
block. The second requisite property is the framed built-in predicate (defined on lines 227–229 of
Fig. 13), which similarly permits reasoning about the memory region of the list cells. It should be
noted, however, that to use the framed predicate, it is needed to remember that the region ID of
the list head is always less than or equal to zero. Therefore, this property must be carried over in
the induction step. Once this has been done, it is evident that since both blocks must correspond to
different regions, they must be different. From this point onward, the proof of the preservation of
linked_ll is straightforward.

7 Verification Results

Proof results. Proof results, presented in Fig. 15, were obtained by running Frama-C 26.1 (Iron)
on a desktop computer running Ubuntu 20.04.4 LTS, with an Intel(R) Core(TM) i5-6600 CPU @ 3.30
GHz, featuring 4 cores and 4 threads, with 16GB RAM. We ran Frama-C with options -wp-par 3
and -wp-timeout 30. We used the Alt-Ergo v2.4.3 and CVC4 v1.8 solvers, via Why3 v1.5.1. Both
functional properties and the absence of runtime errors (RTE) were proved. Assertions to ensure
the absence of runtime errors are automatically generated by the Rte plugin of Frama-C (using
the -wp-rte option). Functional properties include usual properties such as the fact that the well-
formedness of the list is preserved, that a new resource has been successfully added to the resource
list, that the searched element is correctly found if present, etc.
In our illustrative example, 282 goals were proved in a total time of 5min13s with 56% proved

by SMT solvers, and the rest by the internal simplifier engine Qed of Wp and one Wp script. The
maximum time to prove a goal was 20s. It was the case for example for the assertion on line 429
(see Fig. 8), presumably, because properties related to memory separation in our case study are
more complicated to prove for SMT solvers.
Solutions to memory manipulation problems presented in this paper were used on a larger

verification study over 10 different functions of the target library (excluding macro functions, and
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User-provided RTE Total
acsl

Code subset Prover #Goals #Goals #Goals Time
Illustrative Qed 105 18 123 (43.62%)
example Script 1 0 1 (0.35%)

SMT 137 21 158 (56.03%)
All 243 (86.17%) 39 (13.83%) 282 5m13s

Library Qed 274 38 312 (47.34%)
code subset Script 5 0 5 (0.76%)

SMT 311 31 342 (51.90%)
All 590 (89.53%) 69 (10.47%) 659 18m07s

Fig. 15. Proof results for the illustrative example and the real-life code.

interfaces without code whose behaviors needed to be modeled in acsl), related to linked-list
manipulations and some internal ESAPI feasibility checks and operations (cryptographic operations
excluded). Over 659 goals proved in a total of 18m07s, 52% were proved by SMT solvers and 47% by
Qed. Only 5 Wp proof scripts were used, when automatic proof either failed or was too slow. This
shows a high level of automation achieved in our project, in particular, thanks to carefully chosen
predicates and lemmas (which are usually tricky to find for the first time and can be useful in other
similar projects). The maximum time to prove a goal was 1min50s.
We also used smoke-tests to detect unexpected dead code or possible inconsistencies in the

specification, and manually checked that no unexpected cases of those were detected.
As for the 14 lemmas we used, 11 are proved by Coq using our scripts, and the remaining 3

directly by Alt-Ergo. Their proof takes 6 seconds in our configuration, with the maximum time to
prove a goal being 650ms.

Development time. The verification work took about 8 person-months and was mainly conducted
by a junior verification engineer with no knowledge of the target code and verification tools. This
effort includes the time required to study and understand the target code, to write and refine the
specification over time, to understand and analyze proof issues, as well as to find, understand and
report tool limitations, and to determine, test and implement workarounds.

Thanks to our findings and proposed workarounds, we expect the average verification time for
similar code to be considerably shorter now, reduced to 1-2 person-months.

8 Related Work

TPM related safety and security. Various case studies centered around TPM uses have emerged
over the last decade, often focusing on use cases relying on functionalities of the TPM itself. A
recent formal analysis of the key exchange primitive of TPM 2.0 [56] provides a security model
to capture TPM protections on keys and protocols. The authors of [55] propose a security model
for the cryptographic support commands in TPM 2.0, proved using the CryptoVerif tool. A model
of TPM commands was used to formalize the session-based HMAC authorization and encryption
mechanisms [48]. Such works focus on the TPM itself, but to the best of our knowledge, none of
the previously published works aim at verifying the tpm2-tss library or any implementation of the
TSS.

Linked lists and recursive data structures. We use logical definitions from [8] to formalize and
manipulate C linked lists as acsl logic lists in our effort, while another approach [9] relies on a
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parallel view of a linked list via a companion ghost array. Both approaches were tested on the linked
list module of the Contiki OS [27], which relies on static allocations and simple structures. In this
work we used a logic list based approach rather than a ghost code based approach following the
conclusions in [8]. Realized in SPARK, a deductive verification tool for a subset of the Ada language
and also the name of this subset, the approach to the verification of red-black trees [26] is related
to the verification of linked lists in Frama-C using ghost arrays including the auto-verification
aspects [10]. However, the trees themselves were implemented using arrays, since pointers have
only been recently introduced in SPARK [25]. Programs with pointers in SPARK are based on an
ownership policy enforcing non-aliasing which makes their verification closer to Rust programs
than C programs.
In the verification of C programs, specifying data-structures in a high-level way requires the

possibility to express abstract data types (ADT) in the specification language. That is what the logic
types of acsl basically provide. In high-level languages, in particular object-oriented languages
such as Eiffel or Java, the language itself is expressive enough to write side-effect free immutable
ADTs that can be leveraged in specifications [46]. Such data-structures are often called models
and are related to implementation classes in a fashion similar to how we relate C linked lists with
acsl logic lists. An advantage of such model classes over logic lists is that they are valid classes
of the programming language and as such can be executed for dynamic verification tasks. On
the deductive verification side, most of the time these classes represent concepts (e.g. sets) that
can be translated into elements of theories of provers (and it is possible to verify the faithfulness
of the translation [17]). In EVE (Eiffel Verification Environment), model classes together with
auto-active verification techniques [29] were used to verify a container library [47]. Gladisch and
Tyszberowicz [31] specify Java methods on linked data structures, including lists, in JML. However,
unlike the previously described approaches, they do not relate Java lists to logical lists or model
classes. Instead, they use a pure observer method (hence that can be used in specifications) that
returns the object held by the list at a given index.
In the verification of Rust programs, the strong non-aliasing rules of Rust ownership policy

remove major parts of the complexity when reasoning about memory accesses. As Rust is a system
programming language, it can be used in embedded and critical systems. Combined with the
compiler invariants, it is a target of choice for formal verification. As the verification ecosystem for
Rust is still growing, several tools are available. The authors of [7] present the landscape of Rust
verification tools. Creusot [19], relying on Why3, was used to prove iterators’ behavior in [20], as
well as a SAT solver in [49]. Prusti [4] is implemented on top of the Viper [43], which performs
deductive verification using separation logic. A significant case study using Prusti is a verified
non-trivial key-value store data structure [30]. Verus [37] aims at the verification of low-level
system programs. Unlike Creusot, it supports the verification of concurrent code. Both Creusot and
Verus trust the results of Rust’s borrow checker. Verus allows the deductive verification of safe
Rust code but also goes beyond and allows reasoning on raw pointers using ghost code associated
with the pointers, specifying the protocol for their safe usage. This feature is particularly important
to reason about linked data structures. Verus has been applied in particular to several system case
studies [36].

Formal verification for real-life code. Deductive verification on real-life code has been spreading in
the last decades, with various verification case studies where bugs were often found by annotating
and verifying the code [32]. Such studies include [24], providing feedback on the authors’ experience
of using acsl and Frama-C on a real-world example. The authors of [22] managed a large scale
formal verification of global security properties on the C code of the JavaCard Virtual Machine.
SPARK was used in [15] to translate and formally verify the TCP layer of an embedded TCP/IP
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library. The authors of [38] highlight some issues specific to the verification of the Hyper-V
hypervisor, and how they can be solved with VCC, a deductive verification tool for C. The authors
of [13] were able to prove thread safety of the interprocess communication mechanism of FreeRTOS
using VeriFast [33]. The authors of [51] propose a deductive verification approach for embedded
systems that are modeled with SystemC using VerCors [11], a deductive verification tool for
concurrent programs. In [45], Oortwijn and Huisman found undesired behavior using VerCors in
an industrial safety-critical traffic tunnel control system. In [18], de Gouw et. al. investigate the Java
standard library and its main sorting method using KeY [1], a semi-automatic interactive theorem
prover for Java that relying on symbolic execution: they found that Java 8’s implementation of
TimSort performed incomplete checks of the algorithm’s invariants, which could lead to an array-
out-of-bound exception. The authors of [52] used KeY to formally specify OpenJDK’s BitSet class
and identified several bugs. Deductive verification has also been applied to ensure the correctness
of smart contracts. For instance, the authors of [44] have shown that the Why3 platform [28] can
be used to to ensure functional properties and the absence of runtime errors, and to write provably
correct contracts that can be compiled on the runtime environment for smart contracts on the
Ethereum blockchain. Another recent work relies on Dafny [39], a powerful verification-friendly
programming language. In particular, Cassez, Fuller and Quiles [12] propose a methodology using
Dafny to model and reason about Ethereum smart contracts, allowing the authors to specify and
prove the main properties of a smart contract. Dafny was also used in [14] to implement, specify
and verify the QOI image format.

While all the cited tools have been successful in verifying real-life code, their maturity in terms of
usability by engineers differ. Some tools have a scarce documentation and are no longer maintained
(for e.g. VCC) while others are very actively maintained and extended (Frama-C, KeY, Dafny,
Why3, VeriFast, SPARK) with good documentation and even books [2, 35, 40, 42]. In addition,
Frama-C is a recognized verification tool by certification authorities, and a JavaCard virtual machine
verified with Frama-C was awarded the highest Evaluation Assurance Level (EAL7) of the Common
Criteria security evaluation [23].

Combining deductive verification with shape analysis. In a recent NIER (New Ideas and Emerging
Results) article [6], we sketched a possible combination of deductive verification with shape analysis.
That work proposed a verification approach combining Frama-C/Wp with a shape analysis tool,
MemCAD [50]. The purpose of MemCAD is to automatically infer precise invariants about programs
manipulating complex data structures. It is based on shape analysis [21], a static code analysis
technique that verifies properties of recursive, dynamically allocated data structures. It is based on
separation logic and abstract interpretation. Unlike in Wp, the analysis in MemCAD is global. In
the combined approach, the main idea is to prove structural and separation properties in MemCAD
and then to assume them in Frama-C/Wp in order to increase the level of automation of deductive
verification and overcome some of its limitations. Thus, this approach proposes to let MemCAD
deal with the structural invariants of recursive data structures and separation properties, and to
admit them in Frama-C/Wp at some key points. Explicit separation conditions in the acsl predicate
for Wp are expressed by the separating conjunction in the MemCAD counterpart. A practical
application of this approach was illustrated on a few (slightly simplified) functions of tpm2-tss. This
work is still preliminary and opens interesting research questions and perspectives: automation of
the proposed verification technique including a coordinated generation of checks and assumptions,
proof of its soundness, design of a common (higher-level) specification mechanism for recursive
data structures with automatic translation into suitable definitions for MemCAD and Frama-C, as
well as evaluation on other relevant case studies.
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9 Conclusion and Future Work

This paper presents a first case study on formal verification of the tpm2-tss library, a popular
implementation of the TPM Software Stack. Making the bridge between the TPM and applications,
this library is highly critical: to take advantage of security guarantees of the TPM, its deductive
verification is highly desired. The library code is very complex and challenging for verification
tools. In addition, it was not designed with the goal of formal verification in mind.

We have presented our verification results for a subset of 10 functions of the ESAPI layer of the
library that we verified with Frama-C. The verified properties include both functional properties
and the absence of runtime errors such as invalid pointers and buffer overflows, which often
lead to security vulnerabalities. We have described current limitations of the verification tool and
temporary solutions we used to address them. We have proved all necessary lemmas (extending
those of a previous case study for linked lists [8]) in Coq using the most recent version of the
Frama-C–Coq translation and identified some necessary improvements in handling logic lists.
Finally, we identified desired tool improvements to achieve a full formal verification of the library:
support of dynamic allocations and basic acsl clauses to handle them, a memory model that works
at byte level, and clearer separation of modification statuses of variables between the heap, the
stack, and static segments. The real-life code was slightly simplified for verification, but the logical
behavior was preserved in the verified version. While the current real-life code cannot be verified
without adaptations, we expect that it will become provable as soon as those improvements of the
tool are implemented12.

This work opens the way towards a full verification of the tpm2-tss library. Future work includes
the verification of a larger subset of functions, including lower-level layers and operations. Specifi-
cation and verification of specific security properties is another future work direction. Maintaining
proofs for changing versions of tools is also an interesting research direction, in particular, by
automating the generation of proof scripts as recently proposed in [16]. Combinations of deductive
verification with shape analysis, mentioned in Sect. 8, should be further investigated. An ongoing
project on Frama-C, called CoMeMoV, targets the development of collaborative memory models
(with different levels of detail for memory representation for different parts of code), which are
expected to improve the global capacity of proof for real-life code. Finally, combining formally
verified modules with modules which undergo a partial verification (e.g. limited to the absence of
runtime errors, or runtime assertion checking of expected specifications on large test suites) can be
another promising work direction to increase confidence in the security of the library.
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A Appendix: Supplementary Material

This appendix presents the complete illustrative example. It is also available in the companion
artifact in file artifact/proofs/example/linked_ll_self_contained.c.

A.1 Complete Illustrative Example

Figures 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 give the complete version of the illustrative
example (presented in Figs. 1–10 in the paper), annotated in acsl. It was proved with Frama-C
26.1, Why3 1.5.1, Alt-Ergo 2.4.3 and CVC4 1.8. The command used to run the proof (assuming this
file is saved in example.c) is given at the end of the file.

Figure 16 provides the definition of the lemmas required to perform the proof. The same lemmas
are used for the illustrative example and the proved subset of the real-life code. All necessary
lemmas were proved with Coq 8.16.1 (but other recent versions should also work). The Coq proof
scripts and the instructions how to run the proof are available in the companion artifact.
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1 /********************** lemmas_node_t.h **********************/

2 /*@

3 lemma linked_ll_in_valid{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

4 linked_ll(bl , el, ll) ⇒ ∀ Z n ; 0 ≤ n < \length(ll) ⇒
5 \valid(\nth(ll, n));

6 lemma ptr_sep_from_nil{L}: ∀ NODE_T* l;

7 ptr_sep_from_list(l, \Nil);

8 lemma ptr_sep_from_cons{L}: ∀ NODE_T *e, *hd, \list<NODE_T*> l;

9 ptr_sep_from_list(e, \Cons(hd, l))⇐⇒
10 (\separated(hd, e) ∧ ptr_sep_from_list(e, l));

11 lemma dptr_sep_from_nil{L}:

12 ∀ NODE_T ** l ; dptr_sep_from_list(l, \Nil);

13 lemma linked_ll_all_separated{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

14 linked_ll(bl , el, ll) ⇒ all_sep_in_list(ll);

15 lemma linked_ll_unchanged_ll{L1, L2}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

16 linked_ll{L1}(bl, el, ll) ⇒
17 unchanged_ll{L1, L2}(ll) ⇒ linked_ll{L2}(bl, el, ll);

18 lemma linked_ll_to_ll{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

19 linked_ll(bl , el, ll) ⇒ ll == to_ll(bl, el);

20 lemma to_ll_split{L}: ∀ NODE_T *bl, *el, *sep , \list<NODE_T*> ll;

21 ll ≠ \Nil ⇒ linked_ll(bl, el, ll) ⇒ ll == to_ll(bl, el) ⇒
22 in_list(sep , ll) ⇒ ll == (to_ll(bl, sep) ^ to_ll(sep , el));

23 lemma in_list_in_sublist: ∀ NODE_T* e, \list<NODE_T*> rl, ll, l;

24 (rl ^ ll) == l ⇒ (in_list(e, l)⇐⇒(in_list(e, rl) ∨ in_list(e, ll)));

25 lemma linked_ll_end{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

26 ll ≠ \Nil ⇒ linked_ll(bl, el, ll) ⇒
27 \nth(ll , \length(ll)-1)->next == el;

28 lemma linked_ll_end_separated{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

29 linked_ll(bl , el, ll) ⇒ ptr_sep_from_list(el, ll);

30 lemma linked_ll_end_not_in{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> ll;

31 linked_ll(bl , el, ll) ⇒ !in_list(el, ll);

32 //new lemmas wrt. previous work on linked lists [Blanchard et al., SAC '19]

33 lemma in_next_not_bound_in{L}: ∀ NODE_T *bl, *el, *item , \list<NODE_T*> ll;

34 linked_ll(bl , el, ll) ⇒ in_list(item , ll) ⇒ item ->next ≠ el ⇒
35 in_list(item ->next , ll);

36 lemma linked_ll_split_variant{L}:

37 ∀ NODE_T *bl , *bound , *el, \list<NODE_T*> l1, l2;

38 linked_ll(bl , el, l1 ^ l2) ⇒ l2 ≠ \Nil ⇒
39 bound == \nth(l1 ^ l2, \length(l1 ^ l2) - \length(l2)) ⇒
40 linked_ll(bl, bound , l1) ∧ linked_ll(bound , el, l2);

41 */

Fig. 16. Lemmas used to prove the illustrative example and the subset of real-life code.

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.



1:32 Yani Ziani, Téo Bernier, Nikolai Kosmatov, Frédéric Loulergue, and Daniel Gracia Pérez

1 #include <stdint.h> // for uint types definitions

2 #include <string.h> // for size_t definition

3 #include <byteswap.h> // used in marshal

4 #define HOST_TO_BE_32(value) __bswap_32 (value) // swap endianness

5 typedef struct TPM2B_NAME { uint16_t size; uint8_t name [68];} TPM2B_NAME;

6 typedef struct {

7 uint32_t handle; // handle used by TPM

8 TPM2B_NAME name; // TPM name of the object

9 uint32_t rsrcType; // selector for resource type

10 } RESOURCE;

11 typedef struct NODE_T {

12 uint32_t handle; // the handle used as reference

13 RESOURCE rsrc; // the metadata for this rsrc

14 struct NODE_T * next; // next node in the list

15 } NODE_T; // linked list of resource

16 /*@

17 predicate zero_tpm2b_name(TPM2B_NAME tpm2b_name) =

18 tpm2b_name.size == 0 ∧ ∀ int i; 0 ≤ i < 68 ⇒ tpm2b_name.name[i] == 0;

19 predicate zero_resource(RESOURCE rsrc) =

20 rsrc.handle == 0 ∧ zero_tpm2b_name(rsrc.name) ∧ rsrc.rsrcType == 0;

21 predicate zero_rsrc_node_t(NODE_T node) =

22 node.handle == 0 ∧ zero_resource(node.rsrc) ∧ node.next == \null;

23 */

24 /************** Logic lists and linked lists definitions *************/

25 /*@

26 predicate ptr_sep_from_list{L}( NODE_T* e, \list<NODE_T*> ll) =

27 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));

28 predicate dptr_sep_from_list{L}( NODE_T ** e, \list<NODE_T*> ll) =

29 ∀ Z n; 0 ≤ n < \length(ll) ⇒ \separated(e, \nth(ll, n));

30 predicate in_list{L}( NODE_T* e, \list<NODE_T*> ll) =

31 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll, n) == e;

32 predicate in_list_handle{L}( uint32_t out_handle , \list<NODE_T*> ll) =

33 ∃ Z n; 0 ≤ n < \length(ll) ∧ \nth(ll, n)->handle == out_handle;

34 inductive linked_ll{L}( NODE_T *bl, NODE_T *el, \list<NODE_T*> ll) {

35 case linked_ll_nil{L}: ∀ NODE_T *el; linked_ll{L}(el, el, \Nil);

36 case linked_ll_cons{L}: ∀ NODE_T *bl, *el, \list<NODE_T*> tail;

37 (\separated(bl, el) ∧ \valid(bl) ∧ linked_ll{L}(bl->next , el, tail) ∧
38 ptr_sep_from_list(bl, tail)) ⇒
39 linked_ll{L}(bl, el, \Cons(bl, tail ));

40 }

41 predicate unchanged_ll{L1, L2}(\list<NODE_T*> ll) =

42 ∀ Z n; 0 ≤ n < \length(ll) ⇒
43 \valid{L1}(\nth(ll,n)) ∧ \valid{L2}(\nth(ll,n)) ∧
44 \at((\nth(ll,n))->next , L1) == \at((\nth(ll,n))->next , L2);

45 predicate all_sep_in_list(\list<NODE_T*> ll) =

46 ∀ Z n1 , n2; (0 ≤ n1 < \length(ll) ∧ 0 ≤ n2 < \length(ll) ∧ n1 ≠ n2) ⇒
47 \separated(\nth(ll, n1), \nth(ll, n2));

Fig. 17. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 1/13.
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48 axiomatic Node_To_ll {

49 logic \list<NODE_T*> to_ll{L}( NODE_T* beg , NODE_T* end)

50 reads {node ->next | NODE_T* node; \valid(node) ∧
51 in_list(node , to_ll(beg , end ))};

52 axiom to_ll_nil{L}: ∀ NODE_T *node; to_ll{L}(node , node) == \Nil;

53 axiom to_ll_cons{L}: ∀ NODE_T *beg , *end;

54 (\separated(beg , end) ∧ \valid{L}(beg) ∧
55 ptr_sep_from_list{L}(beg , to_ll{L}(beg ->next , end))) ⇒
56 to_ll{L}(beg , end) == \Cons(beg , to_ll{L}(beg ->next , end));

57 }

58 */

59

60 #include "lemmas_node_t.h"

61

62 #define _alloc_max 100

63 static NODE_T _rsrc_bank[_alloc_max ]; // bank used by the static allocator

64 static int _alloc_idx = 0; // index of the next rsrc node to be allocated

65 /*@

66 predicate valid_rsrc_mem_bank{L} = 0 ≤ _alloc_idx ≤ _alloc_max;

67 predicate list_sep_from_allocables{L}(\list<NODE_T*> ll) =

68 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒
69 ptr_sep_from_list{L}(& _rsrc_bank[i], ll);

70 predicate ptr_sep_from_allocables{L}( NODE_T* node) =

71 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(node , &_rsrc_bank[i]);

72 predicate dptr_sep_from_allocables{L}( NODE_T ** p_node) =

73 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(p_node , &_rsrc_bank[i]);

74 */

Fig. 18. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 2/13.
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75 /***************************************************************************/

76 /*@

77 requires valid_rsrc_mem_bank;

78 assigns _alloc_idx , _rsrc_bank[_alloc_idx ];

79 ensures valid_rsrc_mem_bank;

80

81 behavior not_allocable:

82 assumes _alloc_idx == _alloc_max;

83

84 ensures _alloc_idx == _alloc_max;

85 ensures \result == NULL;

86 ensures _rsrc_bank == \old(_rsrc_bank );

87 ensures ∀ int i; 0 ≤ i < _alloc_max ⇒
88 _rsrc_bank[i] == \old(_rsrc_bank[i]);

89 behavior allocable:

90 assumes 0 ≤ _alloc_idx < _alloc_max;

91

92 ensures _alloc_idx == \old(_alloc_idx) + 1;

93 ensures \result == &( _rsrc_bank[ _alloc_idx - 1]);

94 ensures \valid(\result );

95 ensures zero_rsrc_node_t( *( \result) );

96 ensures ∀ int i; 0 ≤ i < _alloc_max ∧ i ≠ \old(_alloc_idx) ⇒
97 _rsrc_bank[i] == \old(_rsrc_bank[i]);

98 disjoint behaviors; complete behaviors;

99 */

100 NODE_T *calloc_NODE_T ()

101 {

102 static const RESOURCE empty_RESOURCE;

103 if(_alloc_idx < _alloc_max) {

104 _rsrc_bank[_alloc_idx ]. handle = (uint32_t) 0;

105 _rsrc_bank[_alloc_idx ].rsrc = empty_RESOURCE;

106 _rsrc_bank[_alloc_idx ].next = NULL;

107 _alloc_idx += 1;

108 return &_rsrc_bank[_alloc_idx - 1];

109 }

110 return NULL;

111 }

Fig. 19. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 3/13.
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112

113 typedef struct CONTEXT {

114 int placeholder_int;

115 NODE_T *rsrc_list;

116 } CONTEXT;

117 /*@

118 predicate ctx_sep_from_list(CONTEXT *ctx , \list<NODE_T*> ll) =

119 ∀ Z i; 0 ≤ i < \length(ll) ⇒ \separated(\nth(ll, i), ctx);

120 predicate ctx_sep_from_allocables(CONTEXT *ctx) =

121 ∀ int i; _alloc_idx ≤ i < _alloc_max ⇒ \separated(ctx , &_rsrc_bank[i]);

122

123 predicate freshness(CONTEXT * ctx , NODE_T ** node) =

124 ctx_sep_from_allocables(ctx)

125 ∧ list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL))

126 ∧ ptr_sep_from_allocables(ctx ->rsrc_list)

127 ∧ ptr_sep_from_allocables (*node)

128 ∧ dptr_sep_from_allocables(node);

129

130 predicate sep_from_list{L}( CONTEXT * ctx , NODE_T ** node) =

131 ctx_sep_from_list(ctx , to_ll{L}(ctx ->rsrc_list , NULL))

132 ∧ dptr_sep_from_list(node , to_ll{L}(ctx ->rsrc_list , NULL ));

133 */

Fig. 20. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 4/13.
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135 /*@

136 requires valid_rsrc_mem_bank ∧ freshness(ctx , out_node );

137 requires \valid(ctx);

138 requires ctx ->rsrc_list ≠ NULL ⇒ \valid(ctx ->rsrc_list );

139 requires linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));

140 requires sep_from_list(ctx , out_node );

141 requires ptr_sep_from_list (*out_node , to_ll(ctx ->rsrc_list , NULL ));

142 requires !( in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL )));

143 requires \valid(out_node) ∧ \separated(ctx , out_node );

144 requires *out_node ≠ NULL ⇒ \valid (* out_node) ∧ (* out_node)->next == NULL;

145 assigns _alloc_idx , _rsrc_bank[_alloc_idx], ctx ->rsrc_list , *out_node;

146 ensures valid_rsrc_mem_bank ∧ freshness(ctx , out_node );

147 ensures sep_from_list(ctx , out_node );

148 ensures unchanged_ll{Pre , Post}(to_ll{Pre}(\old(ctx ->rsrc_list), NULL ));

149 ensures \result \in {1610, 833};

150

151 behavior not_allocable:

152 assumes _alloc_idx == _alloc_max;

153

154 ensures _alloc_idx == _alloc_max;

155 ensures \valid(ctx);

156 ensures !( in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL )));

157 ensures ctx ->rsrc_list == \old(ctx ->rsrc_list );

158 ensures *out_node == \old(* out_node );

159 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL ));

160 ensures \result == 833;

161 behavior allocated:

162 assumes 0 ≤ _alloc_idx < _alloc_max;

163

164 ensures _alloc_idx == \old(_alloc_idx) + 1;

165 ensures in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL ));

166 ensures \valid(ctx ->rsrc_list) ∧ *out_node == ctx ->rsrc_list;

167 ensures ctx ->rsrc_list == &_rsrc_bank[_alloc_idx - 1];

168 ensures ctx ->rsrc_list ->handle == esys_handle;

169 ensures ctx ->rsrc_list ->next == \old(ctx ->rsrc_list );

170 ensures linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));

171 ensures unchanged_ll{Pre , Post}(to_ll{Pre}(\old(ctx ->rsrc_list), NULL ));

172 ensures \old(ctx ->rsrc_list) ≠ NULL ⇒
173 \nth(to_ll(ctx ->rsrc_list , NULL), 1) == \old(ctx ->rsrc_list );

174 ensures \result == 1610;

175 disjoint behaviors; complete behaviors;

176 */

Fig. 21. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 5/13.
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177 int createNode(CONTEXT * ctx , uint32_t esys_handle , NODE_T ** out_node ){

178 //@ ghost pre_calloc :;

179 // @ghost int if_id = 0;

180 /*@ assert \separated(out_node , &_rsrc_bank[_alloc_idx ]);*/

181 /*@ assert \separated(ctx ->rsrc_list , &_rsrc_bank[_alloc_idx ]); */

182 /*@ assert list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL )); */

183 /*@ assert ptr_sep_from_list (& _rsrc_bank[_alloc_idx], to_ll{pre_calloc }(ctx ->rsrc_list , NULL )); */

184 /*@ assert ptr_sep_from_list (& _rsrc_bank[_alloc_idx], to_ll(ctx ->rsrc_list , NULL )); */

185 // NODE_T *new_head = calloc(1, sizeof(NODE_T )); /* library version */

186 NODE_T *new_head = calloc_NODE_T ();

187 /*@ assert unchanged_ll{pre_calloc , Here}(

188 to_ll{pre_calloc }(ctx ->rsrc_list , NULL )); */

189 //@ ghost post_calloc :;

190 if (new_head == NULL){ return 833;}

191 /*@ assert \valid(new_head) ∧ new_head ->next == NULL; */

192 /*@ assert ptr_sep_from_list(new_head , to_ll(ctx ->rsrc_list , NULL )); */

193 /*@ assert unchanged_ll{Pre , Here}(to_ll{Here}(ctx ->rsrc_list , NULL ));*/

194 //@ ghost pre_if :;

195 if (ctx ->rsrc_list == NULL) {

196 /* The first object of the list will be added */

197 ctx ->rsrc_list = new_head;

198 /*@ assert unchanged_ll{pre_if , Here}(to_ll(new_head , NULL ));*/

199 /*@ assert to_ll(new_head , NULL) == [| new_head |]; */

200 /*@ assert \separated(new_head , new_head ->next );*/

201 new_head ->next = NULL;

202 /*@ assert to_ll(new_head , NULL) == [| new_head |]; */

203 }

204 else {

205 /* The new object will become the first element of the list */

206 /*@ assert dptr_sep_from_list (&ctx ->rsrc_list ,

207 to_ll(ctx ->rsrc_list , NULL ));*/

208 new_head ->next = ctx ->rsrc_list;

209 //@ ghost post_assign :;

210 /*@ assert unchanged_ll{pre_if , Here}(

211 to_ll{pre_if }(ctx ->rsrc_list , NULL ));*/

212 /*@ assert to_ll(new_head , NULL) ==

213 ([| new_head |] ^ to_ll(\at(ctx ->rsrc_list , pre_if), NULL ));*/

214 /*@ assert dptr_sep_from_list (&ctx ->rsrc_list ,

215 to_ll(new_head , NULL ));*/

216 ctx ->rsrc_list = new_head;

217 /*@ assert unchanged_ll{post_assign , Here}(

218 to_ll{post_assign }(new_head , NULL ));*/

219 /*@ assert ctx ->rsrc_list ->next == \at(ctx ->rsrc_list , Pre );*/

220 /*@ assert to_ll(ctx ->rsrc_list , NULL) ==

221 ([| new_head |] ^ to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

222 /*@ assert ctx ->rsrc_list == \nth(to_ll(ctx ->rsrc_list , NULL), 0);*/

223 }

Fig. 22. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 6/13.
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224 //@ ghost post_add :;

225 /*@ assert ctx ->rsrc_list == \nth(to_ll(ctx ->rsrc_list , NULL), 0);*/

226 /*@ assert ctx_sep_from_list(ctx , to_ll(ctx ->rsrc_list , NULL ));*/

227 /*@ assert ctx ->rsrc_list == new_head ;*/

228 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

229 /*@ assert to_ll(new_head , NULL) ==

230 ([| new_head |] ^ to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

231 /*@ assert dptr_sep_from_list(out_node , to_ll(new_head , NULL ));*/

232 *out_node = new_head;

233 /*@ assert unchanged_ll{post_add , Here}(to_ll{post_add }(new_head , NULL ));*/

234 /*@ assert ctx ->rsrc_list == \nth(to_ll(ctx ->rsrc_list , NULL), 0);*/

235 new_head ->handle = esys_handle;

236 /*@ assert \nth(to_ll(ctx ->rsrc_list , NULL), 0)->handle == esys_handle ;*/

237 /*@ assert in_list_handle(esys_handle , to_ll(ctx ->rsrc_list , NULL ));*/

238 /*@ assert list_sep_from_allocables(to_ll(ctx ->rsrc_list , NULL )); */

239 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

240 return 1610;

241 }

Fig. 23. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 7/13.

243 /*@

244 requires \valid(out_handle );

245 assigns *out_handle;

246 ensures \result \in {0, 12};

247 ensures *out_handle \in {esys_handle , 0x4000000A , 0x4000000B ,

248 0x40000110 + (esys_handle - 0x120U), \old(* out_handle )};

249 behavior ok_handle:

250 assumes esys_handle ≤ 31U ∨ 0x120U ≤ esys_handle ≤ 0x12FU

251 ∨ esys_handle \in {0x10AU , 0x10BU};

252 ensures \result == 0;

253 behavior wrong_handle:

254 assumes esys_handle > 31U

255 ∧ (esys_handle < 0x120U ∨ esys_handle > 0x12FU);

256 assumes !( esys_handle \in {0x10AU , 0x10BU });

257 ensures *out_handle == \old(* out_handle );

258 ensures \result == 12;

259 disjoint behaviors; complete behaviors;

260 */

261 int iesys_handle_to_tpm_handle(uint32_t esys_handle , uint32_t * out_handle)

262 {

263 if (esys_handle ≤ 31U) {* out_handle = (uint32_t) esys_handle; return 0;}

264 if (esys_handle == 0x10AU ){* out_handle = 0x4000000A; return 0;}

265 if (esys_handle == 0x10BU ){* out_handle = 0x4000000B; return 0;}

266 if (esys_handle ≥ 0x120U ∧ esys_handle ≤ 0x12FU)

267 {* out_handle = 0x40000110 + (esys_handle - 0x120U); return 0;}

268 return 12;

269 }

Fig. 24. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 8/13.
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270

271 /*@

272 requires \valid(src) ∧ \valid(dest + (0 .. sizeof (*src)-1));

273 requires \separated(dest +(0.. sizeof (*src)-1),src);

274

275 assigns dest[0 .. sizeof (*src)-1];

276

277 ensures \valid(src);

278 ensures \valid(dest + (0 .. sizeof (*src)-1));

279 */

280 void memcpy_custom(uint8_t *dest , uint32_t *src) {

281 dest [3] = (uint8_t )(*src & 0xFF);

282 dest [2] = (uint8_t )((* src >> 8) & 0xFF);

283 dest [1] = (uint8_t )((* src >> 16) & 0xFF);

284 dest [0] = (uint8_t )((* src >> 24) & 0xFF);

285 }

286

287 /*@

288 requires \valid(offset) ∧ 0 ≤ *offset ≤ UINT8_MAX - sizeof(in);

289 requires buff_size > 0 ∧ \valid (&buff [0] + (0 .. buff_size - 1));

290 requires *offset ≤ buff_size ∧ sizeof(in) + *offset ≤ buff_size;

291 requires \separated(offset , buff);

292

293 assigns *offset , (&buff[* offset ])[0.. sizeof(in) - 1];

294

295 ensures *offset == \old(* offset) + sizeof(in);

296 ensures \result == 0;

297 */

298 int uint32_Marshal(uint32_t in,uint8_t buff[],size_t buff_size ,size_t *offset ){

299 size_t local_offset = 0;

300 if (offset ≠ NULL){ local_offset = *offset ;}

301 in = HOST_TO_BE_32(in);

302 // memcpy (&buff[local_offset], &in , sizeof (in));

303 memcpy_custom (&buff[local_offset], &in);

304 if (offset ≠ NULL ){* offset = local_offset + sizeof (in);}

305 return 0;

306 }

Fig. 25. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 9/13.
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307

308

309 /*@

310 requires valid_rsrc_mem_bank{Pre} ∧ freshness(ctx , node);

311 requires \valid(ctx);

312 requires ctx ->rsrc_list ≠ \null ⇒ \valid(ctx ->rsrc_list );

313 requires linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));

314 requires 0 ≤ \length(to_ll(ctx ->rsrc_list , NULL)) < INT_MAX;

315 requires \valid(node);

316 requires *node ≠ \null ⇒( \valid (*node) ∧ (*node)->next == \null);

317 requires sep_from_list(ctx , node) ∧ \separated(node , ctx);

318 requires ptr_sep_from_list (*node , to_ll(ctx ->rsrc_list , NULL ));

319 assigns _alloc_idx , _rsrc_bank[_alloc_idx], ctx ->rsrc_list;

320 assigns *node , (&ctx ->rsrc_list ->rsrc.name.name [0])[0];

321 ensures valid_rsrc_mem_bank ∧ freshness(ctx , node);

322 ensures \separated(node , ctx);

323 ensures \result \in {616, 833, 1611, 12};

Fig. 26. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 10/13.
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325 behavior handle_in_list:

326 assumes in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));

327

328 ensures _alloc_idx == \old(_alloc_idx );

329 ensures ctx ->rsrc_list == \old(ctx ->rsrc_list );

330 ensures in_list (*node , to_ll(ctx ->rsrc_list , NULL)) ∧ *node ≠ NULL;

331 ensures (*node)->handle == rsrc_handle ∧ sep_from_list(ctx , node);

332 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL ));

333 ensures \result == 616;

334 behavior handle_not_converted:

335 assumes !( in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL )));

336 assumes rsrc_handle > 31U ∧ ! ( rsrc_handle \in {0x10AU , 0x10BU} );

337 assumes rsrc_handle < 0x120U ∨ rsrc_handle > 0x12FU;

338

339 ensures unchanged_ll{Pre , Post}(to_ll(ctx ->rsrc_list , NULL ));

340 ensures ptr_sep_from_list (*node , to_ll(ctx ->rsrc_list , NULL ));

341 ensures sep_from_list(ctx , node) ∧ *node == \old(*node);

342 ensures \result == 12;

343 behavior handle_not_in_list_and_node_not_allocable:

344 assumes !( in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL )));

345 assumes rsrc_handle ≤ 31U ∨ (rsrc_handle \in {0x10AU , 0x10BU})

346 ∨ (0 x120U ≤ rsrc_handle ≤ 0x12FU);

347 assumes _alloc_idx == _alloc_max;

348

349 ensures _alloc_idx == _alloc_max;

350 ensures unchanged_ll{Pre , Post}(to_ll{Pre}(ctx ->rsrc_list , NULL ));

351 ensures *node == \old(*node) ∧ ctx ->rsrc_list == \old(ctx ->rsrc_list );

352 ensures ptr_sep_from_list (*node , to_ll{Pre}(ctx ->rsrc_list , NULL ));

353 ensures sep_from_list{Pre}(ctx , node); // has to stay in behavior

354 ensures \result == 833;

355 behavior handle_not_in_list_and_node_allocated:

356 assumes !( in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL )));

357 assumes rsrc_handle ≤ 31U ∨ (rsrc_handle \in {0x10AU , 0x10BU})

358 ∨ (0 x120U ≤ rsrc_handle ≤ 0x12FU);

359 assumes 0 ≤ _alloc_idx < _alloc_max;

360

361 ensures in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));

362 ensures (*ctx ->rsrc_list ). handle == rsrc_handle;

363 ensures _alloc_idx == \old(_alloc_idx) + 1;

364 ensures \valid(ctx ->rsrc_list) ∧ *node == ctx ->rsrc_list;

365 ensures ctx ->rsrc_list ≠ \old(ctx ->rsrc_list );

366 ensures ctx ->rsrc_list ->next == \old(ctx ->rsrc_list );

367 ensures to_ll(ctx ->rsrc_list , NULL)

368 == ([|ctx ->rsrc_list |] ^ to_ll{Pre}(\old(ctx ->rsrc_list), NULL) );

369 ensures \old(ctx ->rsrc_list) ≠ NULL ⇒
370 \nth(to_ll(ctx ->rsrc_list , NULL), 1) == \old(ctx ->rsrc_list );

371 ensures linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));

372 ensures sep_from_list(ctx , node);

373 ensures \result == 1611;

374 disjoint behaviors; complete behaviors;

375 */

Fig. 27. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 11/13.
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376 int getNode(CONTEXT *ctx , uint32_t rsrc_handle , NODE_T ** node) {

377 /*@ assert linked_ll(ctx ->rsrc_list , NULL , to_ll(ctx ->rsrc_list , NULL ));*/

378 int r;

379 uint32_t tpm_handle;

380 { /* Block added to circumvent issues with the WP memory model */

381 NODE_T *tmp_node;

382 /*@ ghost int n = 0;*/

383 /*@

384 loop invariant unchanged_ll{Pre , Here}(to_ll(ctx ->rsrc_list , NULL ));

385 loop invariant linked_ll(ctx ->rsrc_list , NULL ,

386 to_ll(ctx ->rsrc_list , NULL ));

387 loop invariant linked_ll(ctx ->rsrc_list , tmp_node ,

388 to_ll(ctx ->rsrc_list , tmp_node ));

389 loop invariant ptr_sep_from_list(tmp_node ,

390 to_ll(ctx ->rsrc_list , tmp_node ));

391 loop invariant tmp_node ≠ \null ⇒
392 in_list(tmp_node , to_ll(ctx ->rsrc_list , NULL ));

393 loop invariant !in_list_handle(rsrc_handle ,

394 to_ll(ctx ->rsrc_list , tmp_node ));

395 loop invariant n == \length(to_ll(ctx ->rsrc_list , tmp_node ));

396 for handle_in_list : loop invariant

397 in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));

398 loop assigns n, tmp_node;

399 loop variant \length(to_ll(tmp_node , NULL ));

400 */

401 for (tmp_node = ctx ->rsrc_list; tmp_node ≠ NULL;

402 tmp_node = tmp_node ->next) {

403 /*@ assert tmp_node == \nth(to_ll(ctx ->rsrc_list , NULL), n);*/

404 /*@ assert linked_ll(tmp_node , NULL , to_ll(tmp_node , NULL ));*/

405 if (tmp_node ->handle == rsrc_handle ){

406 /*@ assert dptr_sep_from_list(node , to_ll(ctx ->rsrc_list , NULL ));*/

407 *node = tmp_node;

408 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(ctx ->rsrc_list , NULL ));*/

409 /*@ assert ptr_sep_from_allocables (*node );*/

410 return 616;

411 }

412 /*@ assert to_ll(ctx ->rsrc_list , tmp_node ->next)

413 == (to_ll(ctx ->rsrc_list , tmp_node) ^ [| tmp_node |]);*/

414 /* @ghost n++;*/

415 }

416 }

Fig. 28. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 12/13.
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417 //@ ghost post_loop :;

418 /*@ assert !( in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL )));*/

419 /*@ assert unchanged_ll{Pre , Here}(to_ll(ctx ->rsrc_list , NULL ));*/

420 r = iesys_handle_to_tpm_handle(rsrc_handle , &tpm_handle );

421 if (r == 12) { return r; };

422 { /* Block added to circumvent issues with the WP memory model */

423 NODE_T *tmp_node_2 = NULL;

424 /*@ assert dptr_sep_from_list (&tmp_node_2 ,

425 to_ll{post_loop }(ctx ->rsrc_list , NULL ));*/

426 /*@ assert unchanged_ll{Pre , Here}(to_ll{Pre}(ctx ->rsrc_list , NULL ));*/

427 /*@ assert \separated(node , &tmp_node_2 );*/

428 r = createNode(ctx , rsrc_handle , &tmp_node_2 );

429 /*@ assert sep_from_list(ctx , node );*/

430 if (r == 833) {/*@ assert sep_from_list(ctx , node );*/ return r;};

431 //@ ghost post_alloc :;

432 /*@ assert to_ll(ctx ->rsrc_list , NULL)

433 ==([|ctx ->rsrc_list |] ^ to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

434 /*@ assert ctx_sep_from_list(ctx , to_ll(ctx ->rsrc_list , NULL ));*/

435 tmp_node_2 ->rsrc.handle = tpm_handle;

436 tmp_node_2 ->rsrc.rsrcType = 0;

437 size_t offset = 0;

438 /*@ assert ptr_sep_from_list(tmp_node_2 ,

439 to_ll(ctx ->rsrc_list ->next , NULL ));*/

440 r = uint32_Marshal(tpm_handle , &tmp_node_2 ->rsrc.name.name[0],

441 sizeof(tmp_node_2 ->rsrc.name.name),&offset );

442 /*@ assert in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));*/

443 if (r ≠ 0) { return r;};

444 tmp_node_2 ->rsrc.name.size = offset;

445 /*@ assert unchanged_ll{post_alloc , Here}(to_ll(ctx ->rsrc_list , NULL ));*/

446 /*@ assert dptr_sep_from_list(node , to_ll(ctx ->rsrc_list , NULL ));*/

447 /*@ assert dptr_sep_from_list(node ,

448 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

449 *node = tmp_node_2;

450 /*@ assert unchanged_ll{Pre , Here}(

451 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

452 }

453 /*@ assert unchanged_ll{Pre , Here}(

454 to_ll{Pre}(\at(ctx ->rsrc_list , Pre), NULL ));*/

455 /*@ assert in_list_handle(rsrc_handle , to_ll(ctx ->rsrc_list , NULL ));*/

456 /*@ assert ctx ->rsrc_list ->next == \at(ctx ->rsrc_list , Pre );*/

457 /*@ assert \at(ctx ->rsrc_list , Pre) ≠ \null ⇒
458 ctx ->rsrc_list ->next == \nth(to_ll(ctx ->rsrc_list , NULL), 1);*/

459 /*@ assert ctx ->rsrc_list ->handle == rsrc_handle ;*/

460 /*@ assert freshness(ctx , node );*/

461 /*@ assert sep_from_list(ctx , node );*/

462 return 1611;

463 }

464

465 /* Command to run the proof with Frama -C:

466 frama -c-gui -c11 example.c -wp -wp-rte -wp-prover altergo ,cvc4 ,cvc4 -ce,script

467 -wp-timeout 50 -wp-smoke -tests -wp-prop="-@lemma"

468 */

Fig. 29. Illustrative provable example of the adjusted tpm2-tss list manipulation code, part 13/13.

Form. Asp. Comput., Vol. 1, No. 1, Article 1. Publication date: January 2025.


	Abstract
	1 Introduction
	2 Frama-C Verification Platform
	3 The TPM Software Stack and the tpm2-tss Library
	4 Dynamic Memory Allocation
	5 Memory Management
	6 Interactively Proved Lemmas and Assertions
	7 Verification Results
	8 Related Work
	9 Conclusion and Future Work
	References
	A Appendix: Supplementary Material
	A.1 Complete Illustrative Example


